Top Banner
The Projects • Control of DO across scales – Langman et al. • Beyond Odum – Hanson et al. • Surprise! – Langman et al.
18

The Projects Control of DO across scales –Langman et al. Beyond Odum –Hanson et al. Surprise! –Langman et al.

Mar 27, 2015

Download

Documents

Tyler Fox
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Projects Control of DO across scales –Langman et al. Beyond Odum –Hanson et al. Surprise! –Langman et al.

The Projects

• Control of DO across scales – Langman et al.

• Beyond Odum– Hanson et al.

• Surprise!– Langman et al.

Page 2: The Projects Control of DO across scales –Langman et al. Beyond Odum –Hanson et al. Surprise! –Langman et al.

Dissolved Oxygen

8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

9

Dissolved Oxygen

6.8

7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

Dissolved Oxygen

2

2.5

3

3.5

4

4.5

5

5.5

6

Wind

0

0.5

1

1.5

2

2.5

3

3.5

4

Water Temperature

21.5

22

22.5

23

23.5

24

Irradiance

0

200

400

600

800

1000

1200

1400

1600

Hummingbird Trout Bog Allequash

Unprocessed Data

Source: Owen Langman

Page 3: The Projects Control of DO across scales –Langman et al. Beyond Odum –Hanson et al. Surprise! –Langman et al.

Single Lake Wavelet Decompositions

Hummingbird 150 Min. Decomposition

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321

Time

Wind

DO

Trout Bog 1500 Min. Decomposition

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

1 21 41 61 81 101 121 141 161 181 201 221

Time

Temp

DO

Allequash 1440 Min. Decomposition

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

1 21 41 61 81 101 121 141 161 181 201 221 241

Time

Light

DO

Wavelet Transforms:

A method of separating a signal into frequency components while preserving the time domain.

Continuous Wavelet Transforms:

A signal of finite length and energy is projected on a continuous family of frequency bands.

Hummingbird; 2 hr; DO, U

Trout Bog; 24+ hr; DO, T

Allequash; 24 hr; DO, I

Source: Owen Langman

Page 4: The Projects Control of DO across scales –Langman et al. Beyond Odum –Hanson et al. Surprise! –Langman et al.
Page 5: The Projects Control of DO across scales –Langman et al. Beyond Odum –Hanson et al. Surprise! –Langman et al.

The effect of light on DO

Lake area (ha)

Sca

le (

hr)

30

25

20

15

10

5

1

Source: Owen Langman

Page 6: The Projects Control of DO across scales –Langman et al. Beyond Odum –Hanson et al. Surprise! –Langman et al.

The effect of wind on DO

Lake area (ha)

Sca

le (

hr)

30

25

20

15

10

5

1

Source: Owen Langman

Page 7: The Projects Control of DO across scales –Langman et al. Beyond Odum –Hanson et al. Surprise! –Langman et al.

MetDataWoodruffAirport.xls

PAR

P, T

air,

U

0

5

10

15

20

25

30

232 232.5 233 233.5 234 234.5 235 235.5 236 236.5 237

0

500

1000

1500

2000AVG_PAR

TOT_PRECIP

AVG_AIR_TEMP

AVG_WIND_SPEED

Dis

solv

ed O

xyge

n (m

g/L) Crystal Bog

dO2/dt = GPP – R – Fatm + A (Odum 1956)

Page 8: The Projects Control of DO across scales –Langman et al. Beyond Odum –Hanson et al. Surprise! –Langman et al.

Irradiance

Gro

ss P

rim

ary

Prod

ucti

vity

, Res

pira

tion

0

0

P0 (always= 0)

R0 (night time R)

IP

IR

Simple modelComplicated model(s)

Figure X. Responses for ecosystem GPP and R as a function of irradiance. Parameters are per Table X.

Pmax

GPP = Pmax.* (1- exp(-IP * I / Pmax))

Page 9: The Projects Control of DO across scales –Langman et al. Beyond Odum –Hanson et al. Surprise! –Langman et al.

Time of day

Eff

ectiv

e I

I originalBeta = 0.1Beta = 1Beta = 10Beta = 100

Test of the Ibeta (light history) parameter

RunSimulation.m

Page 10: The Projects Control of DO across scales –Langman et al. Beyond Odum –Hanson et al. Surprise! –Langman et al.

Model R0 IP Pmax IR Ibeta

1 X X

2 X X X

3 X X X X

4 X X X X

5 X X X X X

Night R GPP GPP Day R Light historyProcesses:

1. Use simulated data to determine which are identifiable.2. Fit all the valid models for 3 lakes over one week.3. Use AIC to discriminate among models.

Page 11: The Projects Control of DO across scales –Langman et al. Beyond Odum –Hanson et al. Surprise! –Langman et al.

0

500

1000

1500

2000

233 233.25 233.5 233.75 234

Crystal BogIr

radi

ance

DO

obs

erva

tion

s,

mod

els

(mg/

L)

Proc

esse

s

GPPRNEPFatm

Day fractionGraphResults.m

1. Models performed similarly2. Biology explains diel3. Much unexplained variability4. Fatm similar to NEP

Page 12: The Projects Control of DO across scales –Langman et al. Beyond Odum –Hanson et al. Surprise! –Langman et al.

0

500

1000

1500

2000

233 233.25 233.5 233.75 234

Trout BogIr

radi

ance

DO

obs

erva

tion

s,

mod

els

(mg/

L)

Proc

esse

s

GPPRNEPFatm

Day fractionGraphResults.m

1. Midnight surge unexplained2. Complex model best3. Fatm similar to NEP

Page 13: The Projects Control of DO across scales –Langman et al. Beyond Odum –Hanson et al. Surprise! –Langman et al.

0

500

1000

1500

2000

233 233.25 233.5 233.75 234

Trout LakeIr

radi

ance

DO

obs

erva

tion

s,

mod

els

(mg/

L)

Proc

esse

s

GPPRNEPFatm

Day fractionGraphResults.m

1. Complex model best2. NEP >> Fatm3. R remains elevated

Page 14: The Projects Control of DO across scales –Langman et al. Beyond Odum –Hanson et al. Surprise! –Langman et al.

Tem

pera

ture

(C

)Sparkling L. 20041-6 m

Page 15: The Projects Control of DO across scales –Langman et al. Beyond Odum –Hanson et al. Surprise! –Langman et al.

Surprise Theory

)(PD

dxxq

xpxpQPDKL

)(

)(ln)()|(

)|( QPD

Prior PDF Posterior PDF

Kullback-Leibler divergence measures the difference between

the distributions

• Result: A quantitative single value measuring how unexpected the point is based on the amount of change from the prior to the posterior

• Prior can be formed from historical data, existing models, or developed over a short training period from real time data

• Capable of observing events at multiple temporal scales

• Capable of observing events in 2D / 3D space

Source: Owen Langman

Page 16: The Projects Control of DO across scales –Langman et al. Beyond Odum –Hanson et al. Surprise! –Langman et al.

End

Page 17: The Projects Control of DO across scales –Langman et al. Beyond Odum –Hanson et al. Surprise! –Langman et al.

CompareModels.m => ResultsSummary.xls

Table X. AIC scores for each model for each lake. Model with the lowest AIC has the rank of 1.

Lake Model AIC RankCB 1 298 3CB 2 233 4CB 3 228 1CB 4 302 5CB 5 231 2SP 1 -3551 5SP 2 -3606 3SP 3 -3645 2SP 4 -3570 7SP 5 -3655 1TB 1 -258 4TB 2 -273 3TB 3 -259 5TB 4 -495 2TB 5 -529 1TR 1 -17105 5TR 2 -18037 3TR 3 -18286 2TR 4 -17852 4TR 5 -19772 1

MeanR0 IP Pmax IR Ibeta Model RankX X 1 4.25X X X 2 3.25X X X X 3 2.50X X X X 4 4.50X X X X X 5 1.25

Page 18: The Projects Control of DO across scales –Langman et al. Beyond Odum –Hanson et al. Surprise! –Langman et al.

% Parameter sets ************************************Parameters = [0 3.0 0.005 0.001 5 20 0.1];% PO RO IP IR Pmax Ibeta PhysicsInitialDO = 7.5;

Sigma = 0.1 mg L-1 d-1

Sigma = 1.0 mg L-1 d-1

Sigma = 20 mg L-1 d-1

DO

(m

g L

-1)

Day fraction