Top Banner
Technische Universit¨ at M ¨ unchen The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz: The Plasmaturbulence Code GENE Computational Science at the Petascale and Beyond – Challenges and Opportunities, 13.02.2012 1
22

The Plasmaturbulence Code GENEusers.cecs.anu.edu.au/.../events/petaCompWkshop12/Gene.pdf · 2012. 2. 22. · The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz:

Aug 30, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Plasmaturbulence Code GENEusers.cecs.anu.edu.au/.../events/petaCompWkshop12/Gene.pdf · 2012. 2. 22. · The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz:

Technische Universitat Munchen

The Plasmaturbulence Code GENE

Christoph Kowitz

13.02.2012

Christoph Kowitz: The Plasmaturbulence Code GENE

Computational Science at the Petascale and Beyond – Challenges and Opportunities, 13.02.2012 1

Page 2: The Plasmaturbulence Code GENEusers.cecs.anu.edu.au/.../events/petaCompWkshop12/Gene.pdf · 2012. 2. 22. · The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz:

Technische Universitat Munchen

Fusion Energy Research

Confining a hot plasma well enoughto initiate a self-sustained fusion

Gyrokinetics

Numerical modelling of hot plasmas

GENE

• Gyrokinetic ElectromagneticNumerical Experiment

• highly parallel plasmaturbulencesimulation code

Christoph Kowitz: The Plasmaturbulence Code GENE

Computational Science at the Petascale and Beyond – Challenges and Opportunities, 13.02.2012 2

Page 3: The Plasmaturbulence Code GENEusers.cecs.anu.edu.au/.../events/petaCompWkshop12/Gene.pdf · 2012. 2. 22. · The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz:

Technische Universitat Munchen

Fusion Energy Research

Confining a hot plasma well enoughto initiate a self-sustained fusion

Gyrokinetics

Numerical modelling of hot plasmas

GENE

• Gyrokinetic ElectromagneticNumerical Experiment

• highly parallel plasmaturbulencesimulation code

Christoph Kowitz: The Plasmaturbulence Code GENE

Computational Science at the Petascale and Beyond – Challenges and Opportunities, 13.02.2012 2

Page 4: The Plasmaturbulence Code GENEusers.cecs.anu.edu.au/.../events/petaCompWkshop12/Gene.pdf · 2012. 2. 22. · The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz:

Technische Universitat Munchen

Fusion Energy Research

Confining a hot plasma well enoughto initiate a self-sustained fusion

Gyrokinetics

Numerical modelling of hot plasmas

GENE

• Gyrokinetic ElectromagneticNumerical Experiment

• highly parallel plasmaturbulencesimulation code

Christoph Kowitz: The Plasmaturbulence Code GENE

Computational Science at the Petascale and Beyond – Challenges and Opportunities, 13.02.2012 2

Page 5: The Plasmaturbulence Code GENEusers.cecs.anu.edu.au/.../events/petaCompWkshop12/Gene.pdf · 2012. 2. 22. · The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz:

Technische Universitat Munchen

Fusion Reaction

Nuclear Fusion

fusion of tritium and deuterium

21H + 3

1H −→42He + 1

0n + 17.59MeV

Christoph Kowitz: The Plasmaturbulence Code GENE

Computational Science at the Petascale and Beyond – Challenges and Opportunities, 13.02.2012 3

Page 6: The Plasmaturbulence Code GENEusers.cecs.anu.edu.au/.../events/petaCompWkshop12/Gene.pdf · 2012. 2. 22. · The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz:

Technische Universitat Munchen

Fusion for Energy Production:

• high temperatures required (200 million K)• efficient confinement

Plasma

At high temperature amatter gets in the stateof a plasma

Gas Plasma

Plasma Confinement

By magnetic fields

Christoph Kowitz: The Plasmaturbulence Code GENE

Computational Science at the Petascale and Beyond – Challenges and Opportunities, 13.02.2012 4

Page 7: The Plasmaturbulence Code GENEusers.cecs.anu.edu.au/.../events/petaCompWkshop12/Gene.pdf · 2012. 2. 22. · The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz:

Technische Universitat Munchen

Devices

• different devices developed in the last 50 years• two main types for magnetically confined fusion

• Tokamak• Stellarator

Christoph Kowitz: The Plasmaturbulence Code GENE

Computational Science at the Petascale and Beyond – Challenges and Opportunities, 13.02.2012 5

Page 8: The Plasmaturbulence Code GENEusers.cecs.anu.edu.au/.../events/petaCompWkshop12/Gene.pdf · 2012. 2. 22. · The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz:

Technische Universitat Munchen

Turbulent Transport

• confinement times are still too short for self-fed fusion• a lot of heat is transported out of the core zone due to

anomalous transport• that transport is larger than initially expected

Anomalous Transport

• result of microscopic turbulence• driven by macroscopic temperature and density gradients• so far only circumvented by larger and larger dimensions of

the experiments

Christoph Kowitz: The Plasmaturbulence Code GENE

Computational Science at the Petascale and Beyond – Challenges and Opportunities, 13.02.2012 6

Page 9: The Plasmaturbulence Code GENEusers.cecs.anu.edu.au/.../events/petaCompWkshop12/Gene.pdf · 2012. 2. 22. · The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz:

Technische Universitat Munchen

ITER ≈ 2018• 10 times more energy

out than invested• more than 10 billion

Euros in cost• self-sustained fusion

(no external heating)• dimension are large

enough to reduce theturbulent transport

But:

Numerical modeling is still required to understand themacroscopic and microscopic behavior of the plasma. Thesuccess of ITER does heavily depend on simulations!

Christoph Kowitz: The Plasmaturbulence Code GENE

Computational Science at the Petascale and Beyond – Challenges and Opportunities, 13.02.2012 7

Page 10: The Plasmaturbulence Code GENEusers.cecs.anu.edu.au/.../events/petaCompWkshop12/Gene.pdf · 2012. 2. 22. · The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz:

Technische Universitat Munchen

Numerical Models

Many Particle Description

• only for dilute plasmas ( e.g. astrophysics)• computation intensive• wide range of time and spatial scales

Magnetohydrodynamics

• fluid like description• for macroscopic description only• microturbulence and anomalous transport not

representable (collision dominated)

Christoph Kowitz: The Plasmaturbulence Code GENE

Computational Science at the Petascale and Beyond – Challenges and Opportunities, 13.02.2012 8

Page 11: The Plasmaturbulence Code GENEusers.cecs.anu.edu.au/.../events/petaCompWkshop12/Gene.pdf · 2012. 2. 22. · The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz:

Technische Universitat Munchen

Kinetic Description

The time development of the 6D distribution function f (x,v, t) inphase space is simulated.

Vlasov Equation

∂f∂t

+ v∂f∂x

+ F∂f∂v

= ∆(f ) (1)

• F = qm (E + v× B)

• ∆(f ): collision operator −→ can be neglected• E and B depend on f −→ nonlinear• still a wide spectrum of scales

Christoph Kowitz: The Plasmaturbulence Code GENE

Computational Science at the Petascale and Beyond – Challenges and Opportunities, 13.02.2012 9

Page 12: The Plasmaturbulence Code GENEusers.cecs.anu.edu.au/.../events/petaCompWkshop12/Gene.pdf · 2012. 2. 22. · The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz:

Technische Universitat Munchen

Wide Range of Time Scales

fast gyration ! slow drifts

• microturbulence is driven by drifts• resolution of the fast gyration is not required• exact angle does not have to be resolved

Christoph Kowitz: The Plasmaturbulence Code GENE

Computational Science at the Petascale and Beyond – Challenges and Opportunities, 13.02.2012 10

Page 13: The Plasmaturbulence Code GENEusers.cecs.anu.edu.au/.../events/petaCompWkshop12/Gene.pdf · 2012. 2. 22. · The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz:

Technische Universitat Munchen

Coordinate Transformation

x,v x, v‖, µ =mv2

⊥2B

• the smallest timescale dropped out• the position of the particle is not resolved anymore• just the position of the gyro center is known

Christoph Kowitz: The Plasmaturbulence Code GENE

Computational Science at the Petascale and Beyond – Challenges and Opportunities, 13.02.2012 11

Page 14: The Plasmaturbulence Code GENEusers.cecs.anu.edu.au/.../events/petaCompWkshop12/Gene.pdf · 2012. 2. 22. · The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz:

Technische Universitat Munchen

Further Approximations:

• perturbation theory• one-form formulation• . . .

Gyrokinetic Equations

∂f∂t

+ v∂f∂x

+ F∂f∂v‖

= ∆(f ) (2)

• 5D −→ f (x, v‖, µ)

• v and F are rather complex expressions, which contain theevaluation of the magnetic and electric fields

Christoph Kowitz: The Plasmaturbulence Code GENE

Computational Science at the Petascale and Beyond – Challenges and Opportunities, 13.02.2012 12

Page 15: The Plasmaturbulence Code GENEusers.cecs.anu.edu.au/.../events/petaCompWkshop12/Gene.pdf · 2012. 2. 22. · The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz:

Technische Universitat Munchen

GENE - Gyrokinetic Electromagnetic NumericalExperiment

• implements the gyrokinetic equations• ab initio turbulence simulations• code developed at IPP in Garching• group of Prof. Frank Jenko (http://gene.rzg.mpg.de)• fully MPI parallelized (OpenMP is enabled)• successfully ported to petascale machines• can be ported to a variety of different machines• comes with a package of diagnostic tools• used in the fusion community

Christoph Kowitz: The Plasmaturbulence Code GENE

Computational Science at the Petascale and Beyond – Challenges and Opportunities, 13.02.2012 13

Page 16: The Plasmaturbulence Code GENEusers.cecs.anu.edu.au/.../events/petaCompWkshop12/Gene.pdf · 2012. 2. 22. · The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz:

Technische Universitat Munchen

Flux Tube

Christoph Kowitz: The Plasmaturbulence Code GENE

Computational Science at the Petascale and Beyond – Challenges and Opportunities, 13.02.2012 14

Page 17: The Plasmaturbulence Code GENEusers.cecs.anu.edu.au/.../events/petaCompWkshop12/Gene.pdf · 2012. 2. 22. · The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz:

Technische Universitat Munchen

x , y – Fourier Space

• periodic boundaries• transformed to Fourier domain kx , ky

• accurate derivatives localised integration

z – real space

• complicated periodic boundary z due to a shear in themagnetic field

• simulation box is tilted, so coupling in z at different x

µ and v‖

• Dirichlet boundaries

Christoph Kowitz: The Plasmaturbulence Code GENE

Computational Science at the Petascale and Beyond – Challenges and Opportunities, 13.02.2012 15

Page 18: The Plasmaturbulence Code GENEusers.cecs.anu.edu.au/.../events/petaCompWkshop12/Gene.pdf · 2012. 2. 22. · The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz:

Technische Universitat Munchen

∂f∂t

= L[f ] +N [f ] (3)

Linear Gyrokinetics

• fast

• microinstabilities getvisible, but no turbulence

• y direction decouples −→4D problem

• moderate grid sizes, butlarge parameter scans

• time integration

• eigenvalue decomposition

Nonlinear Gyrokinetics

• accurate

• huge grid sizes

• microscopic turbulenttransport is resolved

• structures due tononlinear effects arevisible

• time consuming (FFT . . . )

Christoph Kowitz: The Plasmaturbulence Code GENE

Computational Science at the Petascale and Beyond – Challenges and Opportunities, 13.02.2012 16

Page 19: The Plasmaturbulence Code GENEusers.cecs.anu.edu.au/.../events/petaCompWkshop12/Gene.pdf · 2012. 2. 22. · The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz:

Technische Universitat Munchen

Global Simulations of whole Tokamaks

• local approximation does not hold anymore — no periodicboundaries in x direction — much more gridpoints in xdirection

• artificial sources and sinks have to be introduced• so far it only achievable for medium sized tokamaks• requires up to hundreds of thousands CPU hours

Computationally most expensive calculationsBut they can nearly simulate a whole tokamak!

Christoph Kowitz: The Plasmaturbulence Code GENE

Computational Science at the Petascale and Beyond – Challenges and Opportunities, 13.02.2012 17

Page 20: The Plasmaturbulence Code GENEusers.cecs.anu.edu.au/.../events/petaCompWkshop12/Gene.pdf · 2012. 2. 22. · The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz:

Technische Universitat Munchen

Movie

Christoph Kowitz: The Plasmaturbulence Code GENE

Computational Science at the Petascale and Beyond – Challenges and Opportunities, 13.02.2012 18

Page 21: The Plasmaturbulence Code GENEusers.cecs.anu.edu.au/.../events/petaCompWkshop12/Gene.pdf · 2012. 2. 22. · The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz:

Technische Universitat Munchen

Strong Scaling

Global Run

• grid: 512× 32×24× 64× 24× 2

• 1.2 billionunknowns, sumsup to 200 GBmemoryrequirement

• scales up to 10kcores

• on EPCC HectorCRAY XE6

Gorler et al. (2011). Journal of Computational Physics, 230(18), 7053-7071.

Christoph Kowitz: The Plasmaturbulence Code GENE

Computational Science at the Petascale and Beyond – Challenges and Opportunities, 13.02.2012 19

Page 22: The Plasmaturbulence Code GENEusers.cecs.anu.edu.au/.../events/petaCompWkshop12/Gene.pdf · 2012. 2. 22. · The Plasmaturbulence Code GENE Christoph Kowitz 13.02.2012 Christoph Kowitz:

Technische Universitat Munchen

GENE in Petascale and Exascale?

• GENE is already highly efficient• it adopts itself to different architectures by competing

alternative implementations of certain parts in the code• checks automatically for the optimal parallelization strategy

But:

• ITER relevant setups require easily 10 times larger gridsand even longer computation times

• new techniques are required to be able to be handled oncoming large scale architectures

Christoph Kowitz: The Plasmaturbulence Code GENE

Computational Science at the Petascale and Beyond – Challenges and Opportunities, 13.02.2012 20