Top Banner
The Plasma Physics of Quark-Gluon Plasmas (A Theorist's Perspective) q q _ g g q Peter Arnold, University of Virginia
52

The Plasma Physics of QuarkGluon Plasmas

Feb 03, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Plasma Physics of QuarkGluon Plasmas

The Plasma Physics of Quark­Gluon Plasmas

(A Theorist's Perspective)

q q_

gg

q

Peter Arnold, University of Virginia

Page 2: The Plasma Physics of QuarkGluon Plasmas

A brief summary of the field ofplasma physics

(A particle theorist's perspective)

First...

Page 3: The Plasma Physics of QuarkGluon Plasmas

Plasma physics is complicated

Image of solar coronal filament from NASA’s TRACE satellite

Page 4: The Plasma Physics of QuarkGluon Plasmas

plasma = gas of charged particles

quark­gluon plasma:electromagnetism color force

Page 5: The Plasma Physics of QuarkGluon Plasmas

Similarity:

Minor difference: 1 photon 8 colors of gluon

Major difference:

scattering

Page 6: The Plasma Physics of QuarkGluon Plasmas

Familiar difference in T=0 physics:No free quarks!   (confinement into color­neutral objects)

Note for later: lots of partons in hadrons if you resolve small distances     (probe with high energies)

Page 7: The Plasma Physics of QuarkGluon Plasmas
Page 8: The Plasma Physics of QuarkGluon Plasmas

blackbody radiation

Page 9: The Plasma Physics of QuarkGluon Plasmas

kBT ~ 0.5 MeV

Page 10: The Plasma Physics of QuarkGluon Plasmas

kBT ~ 50 MeV

Higher T higher density

Page 11: The Plasma Physics of QuarkGluon Plasmas

kBT ~ 200 MeV

Higher T higher density

Page 12: The Plasma Physics of QuarkGluon Plasmas

kBT >> 200 MeV

Higher T higher density

Page 13: The Plasma Physics of QuarkGluon Plasmas

Also: Asymptotic Freedom

Higher temperature smaller coupling αs

Page 14: The Plasma Physics of QuarkGluon Plasmas

Ideal gas

Lattice data(courtesy F. Karsch)

= 2 2

30T 4photons:

2 polarizations

massless pions: = 3 2

30T 4≃T 4

π0 , π+ , π- (spin 0)

quark­gluon plasma with u,d,s: = 47.5 2

30T 4≃16T 4

(u,d,s) (3 colors) (2 spins)+ anti­quarks + gluons (8 colors) (2 polarizations)

units:

Page 15: The Plasma Physics of QuarkGluon Plasmas

Where to find a QGP?

The Early Universe

Heavy Ion Collisions

E ~ 100 GeV per nucleonv = 0.99995 cAu:

RHIC

t10−6 sec

Page 16: The Plasma Physics of QuarkGluon Plasmas

Deconfinement as Debye Screening

Potential energy between 2 charges in vacuum

QED QCD

Page 17: The Plasma Physics of QuarkGluon Plasmas

Deconfinement as Debye Screening

In a medium with free charges:

QED

Debye screening length: D~ Te2 n

1/2

ultra­relativistic: n~T 3 D~1

eT

Higher temperature smaller Debye radius

re−r /D

r

Page 18: The Plasma Physics of QuarkGluon Plasmas

QED QCD

Deconfinement as Debye Screening

In a medium with free charges:

Higher temperature smaller Debye radius

Page 19: The Plasma Physics of QuarkGluon Plasmas

The Debye effect screens electric fields.  In contrast:

So

QED: magnetic forces are still long range

QCD: could there be confinement of colored currents?

Magnetic fields are not screened in a plasma.

no long range colored B fields?

Version for particle theorists: Do spatialWilson loops still have area­law behavior?

Page 20: The Plasma Physics of QuarkGluon Plasmas

YES, and at very short distances too!

nBose=1

eE−1

TE

as E 0

For massless bosons,

E~ p~T nBose~1

Photons don't directly interact with each other, but gluons do.

Result: Perturbation theory breaks down for gluons with p ~ α T .

nBose~1

∣e∣2~costs for extra interaction

for density of extra gluons

1 total

Page 21: The Plasma Physics of QuarkGluon Plasmas

Summary

electric screening at D~1

eTno charge confinement

no traditional magnetic screening current confinement at 1e2 T

1e2 T

1eT

1T

1 fm1e4 T

Long distance physics is hydrodynamics,not colored MHD.

Note: “e” means “gs” here

Page 22: The Plasma Physics of QuarkGluon Plasmas
Page 23: The Plasma Physics of QuarkGluon Plasmas

Is there no “interesting” plasma physics in aquark­gluon plasma?

Page 24: The Plasma Physics of QuarkGluon Plasmas

QGP hydrodynamicsIndependent collisions:    mean free path >> anything

Hydrodynamics:              mean free path << whatever

elliptic flow

Page 25: The Plasma Physics of QuarkGluon Plasmas

Hydrodynamics usually associated with fluids in local equilibrium.

Distributions are isotropic in local fluid rest frames.

Page 26: The Plasma Physics of QuarkGluon Plasmas

How well does hydrodynamics do?

Phenomenological question:    Is t = 0.6 fm/c reasonable?

Can a quark­gluon plasma reach local equilibrium in a time of order 0.6 fm/c?

Groups studying flow successfully model  many aspectsof heavy­ion collisions withideal hydrodynamics.

But it requires hydrodynamical behavior to set in fairly early.Some like like to quote: t  = 0.6 fm/c

Pasi Huovinen

Page 27: The Plasma Physics of QuarkGluon Plasmas

ThermalizationQuestion:     What is the (local) thermalization time for QGPs in heavy ion     collisions?

A simpler question:     What is it for arbitrarily high energy collisions, where αs < < 1?

A much simpler question:     How does that time depend on αs?

Page 28: The Plasma Physics of QuarkGluon Plasmas

ThermalizationQuestion:     What is the (local) thermalization time for QGPs in heavy ion     collisions?

A simpler question:     What is it for arbitrarily high energy collisions, where αs < < 1?

A much simpler question:     How does that time depend on αs?

“Bottom­up thermalization” predicted ?? = 13/5 (Baier, Mueller, Schiff, and Son)

Page 29: The Plasma Physics of QuarkGluon Plasmas

Bottom­Up Thermalization(Baier, Mueller, Schiff, Son '00)

Starting point

System expandsdensity decreasesmore perturbative

Page 30: The Plasma Physics of QuarkGluon Plasmas

Bottom­Up Thermalization(Baier, Mueller, Schiff, Son '00)

Later, if interactions ignored

∆ z » vz t

Page 31: The Plasma Physics of QuarkGluon Plasmas

pz

Later, if interactions ignored

Bottom­Up Thermalization(Baier, Mueller, Schiff, Son '00)

Page 32: The Plasma Physics of QuarkGluon Plasmas

thermalized

equilibrium

Bottom­Up Thermalization(Baier, Mueller, Schiff, Son '00)

Page 33: The Plasma Physics of QuarkGluon Plasmas

So what's the problem?

Page 34: The Plasma Physics of QuarkGluon Plasmas

Plasma physics is complicated

Image of solar coronal filament from NASA’s TRACE satellite

Page 35: The Plasma Physics of QuarkGluon Plasmas

1e2 T

1eT

1T

1e4 T

typical p

articlesep

aration

Big enough for collective effects.Small enough for magnetic effects.

A Window for Interesting Collective Effects

Page 36: The Plasma Physics of QuarkGluon Plasmas

The Weibel (or filamentation) instability

Parallel currentsattract

Opposite currentsrepel

Page 37: The Plasma Physics of QuarkGluon Plasmas

Parallel currentsattract

Opposite currentsrepel

The Weibel (or filamentation) instability

Page 38: The Plasma Physics of QuarkGluon Plasmas

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

o

o

o

o

o

o

o

o

o

o

o

o

B

The Weibel (or filamentation) instability

Parallel currentsattract

Opposite currentsrepel

Page 39: The Plasma Physics of QuarkGluon Plasmas

Weibel instability occurs when velocity distribution is anisotropic.

Example: T−1

eT −1

In relativistic QED, would grow until

1e2 T

1eT

1T

1e4 T

typical p

articlesep

aration

Weib

elin

stability

rand

om

ization

via ind

ividu

al2 ­­>

 2 collisio

ns

Instabilitiesfast randomization

Except ...

Page 40: The Plasma Physics of QuarkGluon Plasmas

Colored magnetic fields can interact with each other!

Can this stop instability growth before ?

or

T 4

e2 T 4

T 4

B2

growth until

growth limited by ?

(log

axis)

Page 41: The Plasma Physics of QuarkGluon Plasmas

The Vlasov Equations

Traditional QED Plasmas

Describe particles by classical phase space density f(p,x,t).Describe EM fields by classical gauge fields Aµ(x,t).

Collisionless Boltzmann eq.∂t f v⋅∇ x f eEv×B⋅∇ p f =0

∂ F= j=∫p e v f Maxwell's eqs.

QCD Plasmas

∂t ∂t−i e A0 and ∇ x ∇ x−i e A above.

f(p,x,t) becomes a color density matrix.

Page 42: The Plasma Physics of QuarkGluon Plasmas

vs.

T 4

e2 T 4

T 4

B2

Can cleanly study shaded region of

by writing  f = fo + δf  and linearizing in δf :

e2 T 4 e2 T 4vs.

Numerical Simulations:

Treat x as a lattice (lattice gauge theory).Discretize p.Evolve classical QCD Vlasov equations in time.

Page 43: The Plasma Physics of QuarkGluon Plasmas
Page 44: The Plasma Physics of QuarkGluon Plasmas

Rebhan, Romatschke, Stickland  '04

Page 45: The Plasma Physics of QuarkGluon Plasmas

Arnold, Moore, Yaffe  '05

Page 46: The Plasma Physics of QuarkGluon Plasmas
Page 47: The Plasma Physics of QuarkGluon Plasmas

Coulomb gauge spectra

Arnold & Moore

Page 48: The Plasma Physics of QuarkGluon Plasmas
Page 49: The Plasma Physics of QuarkGluon Plasmas
Page 50: The Plasma Physics of QuarkGluon Plasmas

Examples of energy cascadesTurbulence in hydrodynamics

Big whirls make little whirlswhich feed on their velocity;

Little whirls make lesser whirls,and so on to viscosity.

L.F.G. Richardson

Applications in Particle Physics

Kolmogorov spectrum: (energy)k ~ k­5/3

Thermalization after inflation in the early Universe.

Page 51: The Plasma Physics of QuarkGluon Plasmas

So what's the answer?

Problem:

So far, only understood the case of moderate anisotropy,

But early stages of super­high­energy heavy ion collisionswould initially generate parametrically extremeanisotropy, e.g.

Page 52: The Plasma Physics of QuarkGluon Plasmas

Summary

➢ There is interesting plasma physics in quark­gluon plasmas,but it behaves differently than in traditional plasmas.

➢ Because of this interesting plasma physics, theorists havemore work to do to understand quark­gluon plasmaequilibration even at the weak couplings of arbitrarilyhigh energy collisions.

Guy Moore Jonathan Lenaghan Larry Yaffe

My collaborators:

(McGill) (Physical Review) (U. Washington)Po­shan Leang

(UVa)Caglar Dogan

(UVa)