Top Banner
Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites John Huckans
30

The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

Jan 24, 2016

Download

Documents

hedia

Experiments with an Ultracold Three-Component Fermi Gas. The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites John Huckans. Overview. New Physics with Three Component Fermi Gases Color Superconductivity - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

Experiments with an Ultracold

Three-Component Fermi GasThe Pennsylvania State University

Ken O’Hara

Jason Williams

Eric Hazlett

Ronald Stites

John Huckans

Page 2: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

• New Physics with Three Component Fermi Gases– Color Superconductivity– Universal Three-Body Quantum Physics: Efimov States

• A Three-State Mixture of 6Li Atoms– Tunable Interactions– Collisional Stability

• Efimov Physics in a Three-State Fermi Gas– Universal Three-Body Physics– Three-Body Recombination– Evidence for Efimov States in a 3-State Fermi Gas

• Prospects for Color Superconductivity

Overview

Page 3: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

Color Superconductivity

• Color Superconducting Phase of Quark Matter– Attractive Interactions via Strong Force– Color Superconducting Phase: High Density “Cold” Quark Matter– Color Superconductivity in Neutron Stars – QCD is a SU(3) Gauge Field Theory– 3-State Fermi Gas with Identical Pairwise Interactions:

SU(3) Symmetric Field Theory

• BCS Pairing in a 3-State Fermi Gas– Pairing competition (attractive interactions)– Non-trivial Order Parameter– Anomalous number of Goldstone modes

(He, Jin, & Zhuang, PRA 74, 033604 (2006))

– No condensed matter analog

Page 4: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

QCD Phase Diagram

C. Sa de Melo, Physics Today, Oct. 2008

Page 5: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

Simulating the QCD Phase Diagram

Rapp, Hofstetter & Zaránd,

PRB 77, 144520 (2008)

• Color Superconducting-to-“Baryon” Phase Transition

• 3-state Fermi gas in an optical lattice– Rapp, Honerkamp, Zaránd & Hofstetter,

PRL 98, 160405 (2007)

• A Color Superconductor in a 1D Harmonic Trap– Liu, Hu, & Drummond, PRA 77, 013622 (2008)

Page 6: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

Universal Three-Body Physics

• New Physics with 3 State Fermi Gas: Three-body interactions

– No 3-body interactions in a cold 2-state Fermi gas (if db >> r0 )

– 3-body interactions allowed in a 3-state Fermi gas

• The quantum 3-body problem– Difficult problem of fundamental interest

(e.g. baryons, atoms, nuclei, molecules)

– Efimov (1970): Solutions with Universal Properties when a >> r0

db

db

Page 7: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

2/3=F

2/1=F

}

}1

2

3

Three States of 6Li

Hyperfine States Feshbach Resonances

Interactions at High Field2/1−=sm

2/1+=sm

Page 8: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

• No Spin-Exchange Collisions– Energetically forbidden

(in a bias field)

• Minimal Dipolar Relaxation

– Suppressed at high B-field• Electron spin-flip process irrelevant in electron-spin-polarized gas

• Three-Body Recombination– Allowed for a 3-state mixture– (Exclusion principle suppression for 2-state mixture)

2/3=F

2/1=F

}

}1

2

3

Inelastic Collisions

Page 9: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

Making Degenerate Fermi Gases

• Rapid, all-optical production of DFGs– 1 DFG every 5 seconds

• Load Magneto-Optical Trap– 109 atoms– T ~ 200 K

• Transfer 5x106 atoms to optical trap

• Create incoherent 2-state mixture– Optical pumping into F=1/2 ground state– Noisy rf pulse equalizes populations

• Forced Evaporative Cooling– Apply 300 G bias field for a12 = -300 a0

– Lower depth of trap by factor of ~100

Crossed Optical Dipole Trap:Two 80 Watt 1064 nm Beams

y = 106 Hzz = 965 Hzx = 3.84 kHz

1.2 mm

Umax = 1 mK/beam

Uf = 38 K/beam

= 732 Hz

Page 10: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

DFG and BEC

1.5 mm

1.5

mm

Absorption Image after Expansion

2-State Degenerate Fermi Gas BEC of Li2 MoleculesAbsorption Image after Expansion

1 mm

Page 11: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

Making a 3-State MixturePopulating 3 states

– 2 RF signals with field gradient

B (Gauss)

High Field Absorption Imaging– 3 states imaged separately

200 400 600 800 10000

Page 12: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

Stability of 3-State Fermi Gas

Fraction Remaining

in 3-State Fermi Gas

after 200 ms

Fraction Remaining

in 2-State Fermi Gases

after 200 ms

Page 13: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

Resonant Loss Features

Resonance Resonance

Resonances in the 3-Body Recombination Rate!

Page 14: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

Universality in 3-body systems

Vitaly Efimov circa 1970

(1970) Efimov: pairwise interactions in resonant limit

3-Body Problem in QM: Notoriously Difficult

6 coordinates in COM!

Hyper-radius: , + 5 hyper-angles

Hyper-radial wavefunction obeys a 1D Schrodinger eqn.with an effective potential!

Page 15: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

Universal Scaling

Vitaly Efimov circa 1970

(1970) Efimov: An infinite number of bound 3-body states

A single 3-body parameter:

Inner wall B.C.determined byshort-range interactions

Infinitely many 3-body bound states (universal scaling):

Page 16: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

Universality with Large “a”

Vitaly Efimov circa 1970

(1971) Efimov: extended treatment to large scattering lengths

Trimer binding energies are universal functions of

Diagram from T. Kraemer et al. Nature 440 315 (2006)

Page 17: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

Efimov Resonances

Resonant features in 3-body loss rate observed in ultracold Cs T. Kraemer et al. Nature 440 315 (2006)

Resonance Resonance

Page 18: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

Universal Predictions

• Efimov’s theory provides universal predictions for low-energy three-body observables

• Three-body recombination rate for identical bosons

E. Braaten, H.-W. Hammer, D. Kang and L. Platter, arXiv:0811.3578

Note: Only two free parameters:

and

Log-periodic scaling

Page 19: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

Measuring 3-Body Rate Constants

Loss of atoms due to recombination:

Evolution assuming a thermal

gas at temperature T:

“Anti-evaporation” and

recombination heating:

Page 20: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

Recombination Rate Constants

(Heidelberg)

(to appear in PRL) (Penn State)

Page 21: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

Recombination Rate Constants

Fit with 2 free parameters:

*,

* (aeff is known)

Page 22: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

Efimov Resonances

Page 23: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

3-Body Params. in SU(3) Regime

Unitarity Limit at 2 K

Page 24: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

3-Body Params. in SU(3) Regime

Unitarity Limit at 2 K

Page 25: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

3-Body Params. in SU(3) Regime

Unitarity Limit at 2 K

Page 26: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

3-Body Params. in SU(3) Regime

Unitarity Limit at 100 nK

Page 27: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

Trap for 100 nK cloud

Z

y

x

Helmholtz arrangementprovides Bz for Feshbach

tuning and sufficientradial gradient foratom trapping

T = 100 nK

TF = 180 nK

x = z

y = Hz

z = 109 Hz

Ntotal ~ 3.6 x 105

Elliptical beamprovides trappingin z direction

1600

1400

1200

1000

800

600

400

200

0

y-position [micro-meters]

16001400120010008006004002000x-position [micro-meters]

Evaporationbeams

= 42 Hz

kF a = 0.25

Quantum DegenerateGas in SU(3) Regime

Page 28: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

Prospects for Color Superfluidity

• Color Superfluidity in a Lattice (increased density of states)– TC = 0.2 TF (in a lattice with d = 2 m, V0 = 3 ER )

– Atom density ~1011 /cc– Atom lifetime ~ 1 s (assuming K3 ~ 10-22 cm6/s)

– Timescale for Cooper pair formation

Page 29: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

Summary

• Degenerate 3-State Fermi gas

• Observed “Efimov” resonances – Two resonances with moderate scattering lengths

• Measured three-body recombination rates

• Reasonable agreement with Efimov theory for a ~ r0 – Fits yield 3-body parameters for 6Li at low field

• Measured recombination rate at high field – Color superconductivity may be possible in a low-density gas

Page 30: The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites

Thanks to

Ken O’Hara John Huckans Ron Stites Eric Hazlett Jason Williams