Top Banner
The Origin of Matter Ewan Stewart KAIST Physics Colloquium 4 May 2009 Dept. of Physics, KAIST
187

The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Apr 05, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

The Origin of Matter

Ewan Stewart

KAIST

Physics Colloquium4 May 2009

Dept. of Physics, KAIST

Page 2: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

The Origin of Matter

The Standard Model

Beyond the Standard Model

Big Bang cosmology

A theory for the origin of matter

Page 3: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

The Origin of Matter

The Standard ModelOrdinary matterQuarksNeutrinosHiggs boson

Beyond the Standard ModelNeutrino massesSupersymmetryAxionsGravitinos and moduliParticle spectrum

Big Bang cosmologyThe hot Big BangPrimordial inflationMatter/antimatter asymmetryDark matterGravitinos and moduli

A theory for the origin of matterA Minimal Supersymmetric Cosmological ModelThermal inflationBaryogenesisDark matterHistory of the observable universe

Page 4: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Ordinary matter

atom = electrons

photons

+ nucleus

nucleus = protons + neutrons

Page 5: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Ordinary matter

atom = electronsphotons

+ nucleus

nucleus = protons + neutrons

Page 6: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Ordinary matter

atom = electronsphotons

+ nucleus

nucleus = protons + neutrons

Page 7: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

electron

neutronproton

photon graviton

Page 8: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Quarks

proton = up quark

gluons

+ up quark

gluons

+ down quark

neutron = up quark

gluons

+ down quark

gluons

+ down quark

Page 9: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Quarks

proton = up quarkgluons

+ up quarkgluons

+ down quark

neutron = up quarkgluons

+ down quarkgluons

+ down quark

Page 10: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

electron

neutronproton

photon graviton

Page 11: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Quarks Strong

electron

neutronproton

photon graviton

Page 12: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Quarks Strong

electron

downup

photon

gluon

graviton

Page 13: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Quarks Strong

electron

top

bottomcharm

strange

downup

photon

gluon

graviton

Page 14: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Neutrinos

In the Sunproton + proton→ deuterium + antielectron + neutrino

Trillions of neutrinos pass through us every second!

neutrino interactions

electromagneticstrong nuclearweak nucleargravitational

The weak nuclear force is mediated by the W and Z bosons

upquark

downquark

Wantielectron

neutrino

The W and Z bosons are massive and hence do not give rise to a long range force.The electromagnetic and weak nuclear forces are unified into the electroweak force.

Page 15: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Neutrinos

In the Sunproton + proton→ deuterium + antielectron + neutrino

Trillions of neutrinos pass through us every second!

neutrino interactions

electromagneticstrong nuclearweak nucleargravitational

The weak nuclear force is mediated by the W and Z bosons

upquark

downquark

Wantielectron

neutrino

The W and Z bosons are massive and hence do not give rise to a long range force.The electromagnetic and weak nuclear forces are unified into the electroweak force.

Page 16: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Neutrinos

In the Sunproton + proton→ deuterium + antielectron + neutrino

Trillions of neutrinos pass through us every second!

neutrino interactions

electromagneticstrong nuclearweak nucleargravitational

The weak nuclear force is mediated by the W and Z bosons

upquark

downquark

Wantielectron

neutrino

The W and Z bosons are massive and hence do not give rise to a long range force.The electromagnetic and weak nuclear forces are unified into the electroweak force.

Page 17: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Neutrinos

In the Sunproton + proton→ deuterium + antielectron + neutrino

Trillions of neutrinos pass through us every second!

neutrino interactions

electromagneticstrong nuclearweak nucleargravitational

The weak nuclear force is mediated by the W and Z bosons

upquark

downquark

Wantielectron

neutrino

The W and Z bosons are massive and hence do not give rise to a long range force.The electromagnetic and weak nuclear forces are unified into the electroweak force.

Page 18: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Neutrinos

In the Sunproton + proton→ deuterium + antielectron + neutrino

Trillions of neutrinos pass through us every second!

neutrino interactions

electromagneticstrong nuclearweak nucleargravitational

The weak nuclear force is mediated by the W and Z bosons

upquark

downquark

Wantielectron

neutrino

The W and Z bosons are massive and hence do not give rise to a long range force.The electromagnetic and weak nuclear forces are unified into the electroweak force.

Page 19: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Neutrinos

In the Sunproton + proton→ deuterium + antielectron + neutrino

Trillions of neutrinos pass through us every second!

neutrino interactions

electromagneticstrong nuclearweak nucleargravitational

The weak nuclear force is mediated by the W and Z bosons

upquark

downquark

Wantielectron

neutrino

The W and Z bosons are massive and hence do not give rise to a long range force.

The electromagnetic and weak nuclear forces are unified into the electroweak force.

Page 20: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Neutrinos

In the Sunproton + proton→ deuterium + antielectron + neutrino

Trillions of neutrinos pass through us every second!

neutrino interactions

electromagneticstrong nuclearweak nucleargravitational

The weak nuclear force is mediated by the W and Z bosons

upquark

downquark

Wantielectron

neutrino

The W and Z bosons are massive and hence do not give rise to a long range force.The electromagnetic and weak nuclear forces are unified into the electroweak force.

Page 21: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Quarks Strong

electron

top

bottomcharm

strange

downup

photon

gluon

graviton

Page 22: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Quarks Strong

electron

neutrinos

top

bottomcharm

strange

downup

photon

gluon

graviton

Page 23: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Leptons Quarks Electroweak Strong

electron

neutrinos

top

bottomcharm

strange

downup

photon

gluon

graviton

Page 24: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Leptons Quarks Electroweak Strong

electron

neutrinos

top

bottomcharm

strange

downup

photon

Z W

gluon

graviton

Page 25: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Leptons Quarks Electroweak Strong

tau

muon

electron

neutrinos

top

bottomcharm

strange

downup

photon

Z W

gluon

graviton

Page 26: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Higgs boson

The Higgs boson couples to the quarks and leptons in the Standard Model

λuQHu + λdQHd + λeLHe

→ muuu + mddd + meee

where

Q =

(ud

), L =

(νe

)

, H →(

0h

)When the Higgs boson acquires a non-zero value, it gives mass to the quarks andelectron

mu = λuh , md = λdh∗ , me = λeh∗

It similarly gives masses to the W and Z bosons.

Page 27: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Higgs boson

The Higgs boson couples to the quarks and leptons in the Standard Model

λuQHu + λdQHd + λeLHe

→ muuu + mddd + meee

where

Q =

(ud

), L =

(νe

), H →

(0h

)When the Higgs boson acquires a non-zero value,

it gives mass to the quarks andelectron

mu = λuh , md = λdh∗ , me = λeh∗

It similarly gives masses to the W and Z bosons.

Page 28: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Higgs boson

The Higgs boson couples to the quarks and leptons in the Standard Model

λuQHu + λdQHd + λeLHe → muuu + mddd + meee

where

Q =

(ud

), L =

(νe

), H →

(0h

)When the Higgs boson acquires a non-zero value, it gives mass to the quarks andelectron

mu = λuh , md = λdh∗ , me = λeh∗

It similarly gives masses to the W and Z bosons.

Page 29: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Higgs boson

The Higgs boson couples to the quarks and leptons in the Standard Model

λuQHu + λdQHd + λeLHe → muuu + mddd + meee

where

Q =

(ud

), L =

(νe

), H →

(0h

)When the Higgs boson acquires a non-zero value, it gives mass to the quarks andelectron

mu = λuh , md = λdh∗ , me = λeh∗

It similarly gives masses to the W and Z bosons.

Page 30: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Leptons Quarks Electroweak Strong

tau

muon

electron

neutrinos

top

bottomcharm

strange

downup

photon

Z W

gluon

graviton

Page 31: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Leptons Quarks Higgs Electroweak Strong

tau

muon

electron

neutrinos

top

bottomcharm

strange

downup

Higgs

photon

Z W

gluon

graviton

Page 32: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

The Origin of Matter

The Standard ModelOrdinary matterQuarksNeutrinosHiggs boson

Beyond the Standard ModelNeutrino massesSupersymmetryAxionsGravitinos and moduliParticle spectrum

Big Bang cosmologyThe hot Big BangPrimordial inflationMatter/antimatter asymmetryDark matterGravitinos and moduli

A theory for the origin of matterA Minimal Supersymmetric Cosmological ModelThermal inflationBaryogenesisDark matterHistory of the observable universe

Page 33: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Neutrino masses

Neutrinos have no mass in the Standard Model. However, in reality one expects higherorder couplings including

1

2λν (LH)2

→1

2mνν

2

where

L =

(νe

)

, H →(

0h

)When the Higgs boson acquires a non-zero value, it gives small masses to the neutrinos

mν = λνh2

in agreement with observations.

Page 34: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Neutrino masses

Neutrinos have no mass in the Standard Model. However, in reality one expects higherorder couplings including

1

2λν (LH)2

→1

2mνν

2

where

L =

(νe

), H →

(0h

)When the Higgs boson acquires a non-zero value,

it gives small masses to the neutrinos

mν = λνh2

in agreement with observations.

Page 35: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Neutrino masses

Neutrinos have no mass in the Standard Model. However, in reality one expects higherorder couplings including

1

2λν (LH)2 →

1

2mνν

2

where

L =

(νe

), H →

(0h

)When the Higgs boson acquires a non-zero value, it gives small masses to the neutrinos

mν = λνh2

in agreement with observations.

Page 36: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Leptons Quarks Higgs Electroweak Strong

tau

muon

electron

neutrinos

top

bottomcharm

strange

downup

Higgs

photon

Z W

gluon

graviton

Page 37: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Supersymmetry

Supersymmetry is a symmetry between bosons and fermions

bosonsusy←→ fermion

It extends Poincare symmetry {Q, Q

}∼ P

In a supersymmetric field theory, fields are replaced by superfields, which contain bothbosons and fermions

field→ superfield =

(boson

fermion

)

Page 38: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Supersymmetry

Supersymmetry is a symmetry between bosons and fermions

bosonsusy←→ fermion

It extends Poincare symmetry {Q, Q

}∼ P

In a supersymmetric field theory, fields are replaced by superfields, which contain bothbosons and fermions

field→ superfield =

(boson

fermion

)

Page 39: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Supersymmetry

Supersymmetry is a symmetry between bosons and fermions

bosonsusy←→ fermion

It extends Poincare symmetry {Q, Q

}∼ P

In a supersymmetric field theory, fields are replaced by superfields, which contain bothbosons and fermions

field→ superfield =

(boson

fermion

)

Page 40: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

The Minimal Supersymmetric Standard Model

MSSM = Standard Model + supersymmetry

It is described by the superpotential

W = λuQHu u + λdQHd d + λeLHd e + µHuHd

There are new superparticles for each of the Standard Model particles. For example

quark→(

squarkquark

)spin 0spin 1

2

, photon→(

photinophoton

)spin 1

2spin 1

The lightest superparticle (LSP) is expected to be stable, and is usually assumed to bea neutralino, which is a mixture of the Higgsino, photino and Zino.

Physical motivation

I In the Standard Model, the mass of the Higgs boson is quantum mechanicallyunstable. Supersymmetry stabilizes the Higgs boson’s mass.

I The MSSM leads to gauge coupling unification, and hence by assuming gaugecoupling unification can correctly predict one of the gauge couplings from theother two.

For these reasons, supersymmetry, in the form of the MSSM, is expected to bediscovered next year!

Page 41: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

The Minimal Supersymmetric Standard Model

MSSM = Standard Model + supersymmetry

It is described by the superpotential

W = λuQHu u + λdQHd d + λeLHd e + µHuHd

There are new superparticles for each of the Standard Model particles. For example

quark→(

squarkquark

)spin 0spin 1

2

, photon→(

photinophoton

)spin 1

2spin 1

The lightest superparticle (LSP) is expected to be stable, and is usually assumed to bea neutralino, which is a mixture of the Higgsino, photino and Zino.

Physical motivation

I In the Standard Model, the mass of the Higgs boson is quantum mechanicallyunstable. Supersymmetry stabilizes the Higgs boson’s mass.

I The MSSM leads to gauge coupling unification, and hence by assuming gaugecoupling unification can correctly predict one of the gauge couplings from theother two.

For these reasons, supersymmetry, in the form of the MSSM, is expected to bediscovered next year!

Page 42: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

The Minimal Supersymmetric Standard Model

MSSM = Standard Model + supersymmetry

It is described by the superpotential

W = λuQHu u + λdQHd d + λeLHd e + µHuHd

There are new superparticles for each of the Standard Model particles. For example

quark→(

squarkquark

)spin 0spin 1

2

, photon→(

photinophoton

)spin 1

2spin 1

The lightest superparticle (LSP) is expected to be stable, and is usually assumed to bea neutralino, which is a mixture of the Higgsino, photino and Zino.

Physical motivation

I In the Standard Model, the mass of the Higgs boson is quantum mechanicallyunstable. Supersymmetry stabilizes the Higgs boson’s mass.

I The MSSM leads to gauge coupling unification, and hence by assuming gaugecoupling unification can correctly predict one of the gauge couplings from theother two.

For these reasons, supersymmetry, in the form of the MSSM, is expected to bediscovered next year!

Page 43: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

The Minimal Supersymmetric Standard Model

MSSM = Standard Model + supersymmetry

It is described by the superpotential

W = λuQHu u + λdQHd d + λeLHd e + µHuHd

There are new superparticles for each of the Standard Model particles. For example

quark→(

squarkquark

)spin 0spin 1

2

, photon→(

photinophoton

)spin 1

2spin 1

The lightest superparticle (LSP) is expected to be stable,

and is usually assumed to bea neutralino, which is a mixture of the Higgsino, photino and Zino.

Physical motivation

I In the Standard Model, the mass of the Higgs boson is quantum mechanicallyunstable. Supersymmetry stabilizes the Higgs boson’s mass.

I The MSSM leads to gauge coupling unification, and hence by assuming gaugecoupling unification can correctly predict one of the gauge couplings from theother two.

For these reasons, supersymmetry, in the form of the MSSM, is expected to bediscovered next year!

Page 44: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

The Minimal Supersymmetric Standard Model

MSSM = Standard Model + supersymmetry

It is described by the superpotential

W = λuQHu u + λdQHd d + λeLHd e + µHuHd

There are new superparticles for each of the Standard Model particles. For example

quark→(

squarkquark

)spin 0spin 1

2

, photon→(

photinophoton

)spin 1

2spin 1

The lightest superparticle (LSP) is expected to be stable, and is usually assumed to bea neutralino, which is a mixture of the Higgsino, photino and Zino.

Physical motivation

I In the Standard Model, the mass of the Higgs boson is quantum mechanicallyunstable. Supersymmetry stabilizes the Higgs boson’s mass.

I The MSSM leads to gauge coupling unification, and hence by assuming gaugecoupling unification can correctly predict one of the gauge couplings from theother two.

For these reasons, supersymmetry, in the form of the MSSM, is expected to bediscovered next year!

Page 45: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

The Minimal Supersymmetric Standard Model

MSSM = Standard Model + supersymmetry

It is described by the superpotential

W = λuQHu u + λdQHd d + λeLHd e + µHuHd

There are new superparticles for each of the Standard Model particles. For example

quark→(

squarkquark

)spin 0spin 1

2

, photon→(

photinophoton

)spin 1

2spin 1

The lightest superparticle (LSP) is expected to be stable, and is usually assumed to bea neutralino, which is a mixture of the Higgsino, photino and Zino.

Physical motivation

I In the Standard Model, the mass of the Higgs boson is quantum mechanicallyunstable. Supersymmetry stabilizes the Higgs boson’s mass.

I The MSSM leads to gauge coupling unification, and hence by assuming gaugecoupling unification can correctly predict one of the gauge couplings from theother two.

For these reasons, supersymmetry, in the form of the MSSM, is expected to bediscovered next year!

Page 46: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

The Minimal Supersymmetric Standard Model

MSSM = Standard Model + supersymmetry

It is described by the superpotential

W = λuQHu u + λdQHd d + λeLHd e + µHuHd

There are new superparticles for each of the Standard Model particles. For example

quark→(

squarkquark

)spin 0spin 1

2

, photon→(

photinophoton

)spin 1

2spin 1

The lightest superparticle (LSP) is expected to be stable, and is usually assumed to bea neutralino, which is a mixture of the Higgsino, photino and Zino.

Physical motivation

I In the Standard Model, the mass of the Higgs boson is quantum mechanicallyunstable. Supersymmetry stabilizes the Higgs boson’s mass.

I The MSSM leads to gauge coupling unification, and hence by assuming gaugecoupling unification can correctly predict one of the gauge couplings from theother two.

For these reasons, supersymmetry, in the form of the MSSM, is expected to bediscovered next year!

Page 47: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

The Minimal Supersymmetric Standard Model

MSSM = Standard Model + supersymmetry

It is described by the superpotential

W = λuQHu u + λdQHd d + λeLHd e + µHuHd

There are new superparticles for each of the Standard Model particles. For example

quark→(

squarkquark

)spin 0spin 1

2

, photon→(

photinophoton

)spin 1

2spin 1

The lightest superparticle (LSP) is expected to be stable, and is usually assumed to bea neutralino, which is a mixture of the Higgsino, photino and Zino.

Physical motivation

I In the Standard Model, the mass of the Higgs boson is quantum mechanicallyunstable. Supersymmetry stabilizes the Higgs boson’s mass.

I The MSSM leads to gauge coupling unification, and hence by assuming gaugecoupling unification can correctly predict one of the gauge couplings from theother two.

For these reasons, supersymmetry, in the form of the MSSM, is expected to bediscovered next year!

Page 48: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

The Minimal Supersymmetric Standard Model

MSSM = Standard Model + supersymmetry

It is described by the superpotential

W = λuQHu u + λdQHd d + λeLHd e + µHuHd

There are new superparticles for each of the Standard Model particles. For example

quark→(

squarkquark

)spin 0spin 1

2

, photon→(

photinophoton

)spin 1

2spin 1

The lightest superparticle (LSP) is expected to be stable, and is usually assumed to bea neutralino, which is a mixture of the Higgsino, photino and Zino.

Physical motivation

I In the Standard Model, the mass of the Higgs boson is quantum mechanicallyunstable. Supersymmetry stabilizes the Higgs boson’s mass.

I The MSSM leads to gauge coupling unification, and hence by assuming gaugecoupling unification can correctly predict one of the gauge couplings from theother two.

For these reasons, supersymmetry, in the form of the MSSM, is expected to bediscovered next year!

Page 49: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Leptons Quarks Higgs Electroweak Strong

tau

muon

electron

neutrinos

top

bottomcharm

strange

downup

Higgs

photon

Z W

gluon

graviton

Page 50: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Leptons Quarks Higgs Electroweak Strong

sleptons

tau

muon

electron

neutrinos

squarks

top

bottomcharm

strange

downup

Higgsino

Higgs

photino

photon

Zino

Z

Wino

W

gluino

gluon

graviton

Page 51: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Leptons Quarks Higgs Electroweak Strong

sleptons

tau

muon

electron

neutrinos

squarks

top

bottomcharm

strange

downup

Higgsino

Higgs

photino

photon

Zino

Z

Wino

W

neutralinogluino

gluon

graviton

Page 52: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

The strong CP problem

The strong interactions would be expected to contain a CP violating term

θF ∧ F

where F is the gluon field strength.

However, experimental constraints on the electricdipole moment of the neutron require

θ . 10−10

Page 53: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

The strong CP problem

The strong interactions would be expected to contain a CP violating term

θF ∧ F

where F is the gluon field strength. However, experimental constraints on the electricdipole moment of the neutron require

θ . 10−10

Page 54: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Axions

The strong CP problem can be solved by introducing a complex scalar field φ with arotationally symmetric classical potential

axion

CP conserving vacua

The angular part of the field is the axion

φ = φ0 exp

(ia√

2φ0

)If φ is coupled to quarks, then the parameter θ becomes dynamical

θF ∧ F →(θ −

Na√

2φ0

)F ∧ F

and quantum mechanics generates a potential for the axion. The minima of the axionpotential are automatically CP conserving, cancelling off the problematic term.

Page 55: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Axions

The strong CP problem can be solved by introducing a complex scalar field φ with arotationally symmetric classical potential

axion

CP conserving vacua

The angular part of the field is the axion

φ = φ0 exp

(ia√

2φ0

)

If φ is coupled to quarks, then the parameter θ becomes dynamical

θF ∧ F →(θ −

Na√

2φ0

)F ∧ F

and quantum mechanics generates a potential for the axion. The minima of the axionpotential are automatically CP conserving, cancelling off the problematic term.

Page 56: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Axions

The strong CP problem can be solved by introducing a complex scalar field φ with arotationally symmetric classical potential

axion

CP conserving vacua

The angular part of the field is the axion

φ = φ0 exp

(ia√

2φ0

)If φ is coupled to quarks, then the parameter θ becomes dynamical

θF ∧ F

→(θ −

Na√

2φ0

)F ∧ F

and quantum mechanics generates a potential for the axion. The minima of the axionpotential are automatically CP conserving, cancelling off the problematic term.

Page 57: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Axions

The strong CP problem can be solved by introducing a complex scalar field φ with arotationally symmetric classical potential

axion

CP conserving vacua

The angular part of the field is the axion

φ = φ0 exp

(ia√

2φ0

)If φ is coupled to quarks, then the parameter θ becomes dynamical

θF ∧ F →(θ −

Na√

2φ0

)F ∧ F

and quantum mechanics generates a potential for the axion. The minima of the axionpotential are automatically CP conserving, cancelling off the problematic term.

Page 58: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Axions

The strong CP problem can be solved by introducing a complex scalar field φ with arotationally symmetric classical potential

axion

CP conserving vacua

The angular part of the field is the axion

φ = φ0 exp

(ia√

2φ0

)If φ is coupled to quarks, then the parameter θ becomes dynamical

θF ∧ F →

(θ −

Na√

2φ0

)F ∧ F

and quantum mechanics generates a potential for the axion.

The minima of the axionpotential are automatically CP conserving, cancelling off the problematic term.

Page 59: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Axions

The strong CP problem can be solved by introducing a complex scalar field φ with arotationally symmetric classical potential

axion

CP conserving vacua

The angular part of the field is the axion

φ = φ0 exp

(ia√

2φ0

)If φ is coupled to quarks, then the parameter θ becomes dynamical

θF ∧ F →

(θ −

Na√

2φ0

)F ∧ F

and quantum mechanics generates a potential for the axion.

The minima of the axionpotential are automatically CP conserving, cancelling off the problematic term.

Page 60: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Axions

The strong CP problem can be solved by introducing a complex scalar field φ with arotationally symmetric classical potential

axion

CP conserving vacua

The angular part of the field is the axion

φ = φ0 exp

(ia√

2φ0

)If φ is coupled to quarks, then the parameter θ becomes dynamical

θF ∧ F →

(θ −

Na√

2φ0

)F ∧ F

and quantum mechanics generates a potential for the axion. The minima of the axionpotential are automatically CP conserving,

cancelling off the problematic term.

Page 61: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Axions

The strong CP problem can be solved by introducing a complex scalar field φ with arotationally symmetric classical potential

axion

CP conserving vacua

The angular part of the field is the axion

φ = φ0 exp

(ia√

2φ0

)If φ is coupled to quarks, then the parameter θ becomes dynamical

θF ∧ F →

(θ −

Na√

2φ0

)F ∧ F

and quantum mechanics generates a potential for the axion. The minima of the axionpotential are automatically CP conserving, cancelling off the problematic term.

Page 62: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Leptons Quarks Higgs Electroweak Strong

sleptons

tau

muon

electron

neutrinos

squarks

top

bottomcharm

strange

downup

Higgsino

Higgs

photino

photon

Zino

Z

Wino

W

neutralinogluino

gluon

graviton

Page 63: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Leptons Quarks Higgs Electroweak Strong Axion

sleptons

tau

muon

electron

neutrinos

squarks

top

bottomcharm

strange

downup

Higgsino

Higgs

photino

photon

Zino

Z

Wino

W

neutralinogluino

gluon

axion

graviton

Page 64: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Leptons Quarks Higgs Electroweak Strong Axion

sleptons

tau

muon

electron

neutrinos

squarks

top

bottomcharm

strange

downup

Higgsino

Higgs

photino

photon

Zino

Z

Wino

W

neutralinogluino

gluon

saxino

axino

axion

graviton

Page 65: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Gravitinos

graviton→(

gravitinograviton

)spin 3

2spin 2

Page 66: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Leptons Quarks Higgs Electroweak Strong Axion

sleptons

tau

muon

electron

neutrinos

squarks

top

bottomcharm

strange

downup

Higgsino

Higgs

photino

photon

Zino

Z

Wino

W

neutralinogluino

gluon

saxino

axino

axion

graviton

Page 67: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Leptons Quarks Higgs Electroweak Strong Axion Gravity

sleptons

tau

muon

electron

neutrinos

squarks

top

bottomcharm

strange

downup

Higgsino

Higgs

photino

photon

Zino

Z

Wino

W

neutralinogluino

gluon

saxino

axino

axion

graviton

Page 68: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Leptons Quarks Higgs Electroweak Strong Axion Gravity

sleptons

tau

muon

electron

neutrinos

squarks

top

bottomcharm

strange

downup

Higgsino

Higgs

photino

photon

Zino

Z

Wino

W

neutralinogluino

gluon

saxino

axino

axion

gravitino

graviton

Page 69: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Moduli

field theories → many arbitrary parameters

string theory → no parameters

many scalar fields (moduli)

moduli vacuum values → low energy parameters

Typically moduli have Planckian values and so gravitational strength interactions.This makes them relatively long lived

moduli half-life ∼ minutes

Page 70: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Moduli

field theories → many arbitrary parameters

string theory → many scalar fields (moduli)

moduli vacuum values → low energy parameters

Typically moduli have Planckian values and so gravitational strength interactions.This makes them relatively long lived

moduli half-life ∼ minutes

Page 71: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Moduli

field theories → many arbitrary parameters

string theory → many scalar fields (moduli)

moduli vacuum values → low energy parameters

Typically moduli have Planckian values and so gravitational strength interactions.This makes them relatively long lived

moduli half-life ∼ minutes

Page 72: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Moduli

field theories → many arbitrary parameters

string theory → many scalar fields (moduli)

moduli vacuum values → low energy parameters

Typically moduli have Planckian values and so gravitational strength interactions.This makes them relatively long lived

moduli half-life ∼ minutes

Page 73: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Leptons Quarks Higgs Electroweak Strong Axion Gravity

sleptons

tau

muon

electron

neutrinos

squarks

top

bottomcharm

strange

downup

Higgsino

Higgs

photino

photon

Zino

Z

Wino

W

neutralinogluino

gluon

saxino

axino

axion

gravitino

graviton

Page 74: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Leptons Quarks Higgs Electroweak Strong Axion Gravity

sleptons

tau

muon

electron

neutrinos

squarks

top

bottomcharm

strange

downup

Higgsino

Higgs

photino

photon

Zino

Z

Wino

W

neutralinogluino

gluon

saxino

axino

axion

modulinosmoduli gravitino

graviton

Page 75: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

electron

neutronproton

photon graviton

Page 76: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Quarks Strong

electron

top

bottomcharm

strange

downup

photon

gluon

graviton

Page 77: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Leptons Quarks Electroweak Strong

tau

muon

electron

neutrinos

top

bottomcharm

strange

downup

photon

Z W

gluon

graviton

Page 78: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Leptons Quarks Higgs Electroweak Strong

tau

muon

electron

neutrinos

top

bottomcharm

strange

downup

Higgs

photon

Z W

gluon

graviton

Page 79: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Leptons Quarks Higgs Electroweak Strong

sleptons

tau

muon

electron

neutrinos

squarks

top

bottomcharm

strange

downup

Higgsino

Higgs

photino

photon

Zino

Z

Wino

W

neutralinogluino

gluon

graviton

Page 80: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Leptons Quarks Higgs Electroweak Strong Axion

sleptons

tau

muon

electron

neutrinos

squarks

top

bottomcharm

strange

downup

Higgsino

Higgs

photino

photon

Zino

Z

Wino

W

neutralinogluino

gluon

saxino

axino

axion

graviton

Page 81: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Particle spectrum

Leptons Quarks Higgs Electroweak Strong Axion Gravity

sleptons

tau

muon

electron

neutrinos

squarks

top

bottomcharm

strange

downup

Higgsino

Higgs

photino

photon

Zino

Z

Wino

W

neutralinogluino

gluon

saxino

axino

axion

modulinosmoduli gravitino

graviton

Page 82: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

The Origin of Matter

The Standard ModelOrdinary matterQuarksNeutrinosHiggs boson

Beyond the Standard ModelNeutrino massesSupersymmetryAxionsGravitinos and moduliParticle spectrum

Big Bang cosmologyThe hot Big BangPrimordial inflationMatter/antimatter asymmetryDark matterGravitinos and moduli

A theory for the origin of matterA Minimal Supersymmetric Cosmological ModelThermal inflationBaryogenesisDark matterHistory of the observable universe

Page 83: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

The hot Big Bang

Big Bang = hot dense universe expands and cools

Based on General Relativity, the observed Hubble expansion and three keyobservationally verified theories:

Nucleosynthesis T ∼ 0.1 MeV

protons + neutrons→ 4He, 2H, 3He, 7Li , . . .

Microwave background T ∼ 0.3 eV

plasma→ atoms + photons

Galaxy formation T ∼ 1 eV

radiation domination→ matter domination

T . 1 eVdensity perturbations→ galaxies . . .

Page 84: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

The hot Big Bang

Big Bang = hot dense universe expands and cools

Based on General Relativity, the observed Hubble expansion and three keyobservationally verified theories:

Nucleosynthesis T ∼ 0.1 MeV

protons + neutrons→ 4He, 2H, 3He, 7Li , . . .

Microwave background T ∼ 0.3 eV

plasma→ atoms + photons

Galaxy formation T ∼ 1 eV

radiation domination→ matter domination

T . 1 eVdensity perturbations→ galaxies . . .

Page 85: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

The hot Big Bang

Big Bang = hot dense universe expands and cools

Based on General Relativity, the observed Hubble expansion and three keyobservationally verified theories:

Nucleosynthesis T ∼ 0.1 MeV

protons + neutrons→ 4He, 2H, 3He, 7Li , . . .

Microwave background T ∼ 0.3 eV

plasma→ atoms + photons

Galaxy formation T ∼ 1 eV

radiation domination→ matter domination

T . 1 eVdensity perturbations→ galaxies . . .

Page 86: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

The hot Big Bang

Big Bang = hot dense universe expands and cools

Based on General Relativity, the observed Hubble expansion and three keyobservationally verified theories:

Nucleosynthesis T ∼ 0.1 MeV

protons + neutrons→ 4He, 2H, 3He, 7Li , . . .

Microwave background T ∼ 0.3 eV

plasma→ atoms + photons

Galaxy formation T ∼ 1 eV

radiation domination→ matter domination

T . 1 eVdensity perturbations→ galaxies . . .

Page 87: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

The hot Big Bang

Big Bang = hot dense universe expands and cools

Based on General Relativity, the observed Hubble expansion and three keyobservationally verified theories:

Nucleosynthesis T ∼ 0.1 MeV

protons + neutrons→ 4He, 2H, 3He, 7Li , . . .

Microwave background T ∼ 0.3 eV

plasma→ atoms + photons

Galaxy formation T ∼ 1 eV

radiation domination→ matter domination

T . 1 eVdensity perturbations→ galaxies . . .

Page 88: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

RADIATION

MATTER

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

Page 89: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Vacuum energy

field0

potential

vacuaparticles

vacuum energy density

Figure: What is a vacuum?

vacuummore vacuummore vacuum energy

Figure: What happens when you expand a vacuum?

Page 90: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Vacuum energy

field0

potential

vacua

particles

vacuum energy density

Figure: What is a vacuum?

vacuummore vacuummore vacuum energy

Figure: What happens when you expand a vacuum?

Page 91: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Vacuum energy

field0

potential

vacua

particles

vacuum energy density

Figure: What is a vacuum?

vacuummore vacuummore vacuum energy

Figure: What happens when you expand a vacuum?

Page 92: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Vacuum energy

field0

potential

vacua

particles

vacuum energy density

Figure: What is a vacuum?

vacuummore vacuummore vacuum energy

Figure: What happens when you expand a vacuum?

Page 93: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Vacuum energy

field0

potential

vacua

particles

vacuum energy density

Figure: What is a vacuum?

vacuum

more vacuummore vacuum energy

Figure: What happens when you expand a vacuum?

Page 94: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Vacuum energy

field0

potential

vacua

particles

vacuum energy density

Figure: What is a vacuum?

vacuum

more vacuum

more vacuum energy

Figure: What happens when you expand a vacuum?

Page 95: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Vacuum energy

field0

potential

vacua

particles

vacuum energy density

Figure: What is a vacuum?

vacuummore vacuum

more vacuum energy

Figure: What happens when you expand a vacuum?

Page 96: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Inflation

VACUUMENERGY

VACUUMENERGY

VACUUMENERGY

Figure: What happens if the expanding universe has positive vacuum energy?

Page 97: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Inflation

VACUUMENERGY

VACUUMENERGY

VACUUMENERGY

Figure: What happens if the expanding universe has positive vacuum energy?

Page 98: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Inflation

VACUUMENERGY

VACUUMENERGY

VACUUMENERGY

Figure: What happens if the expanding universe has positive vacuum energy?

Page 99: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Primordial inflation

inflation→{

vacuum cleans the universegenerates vast amounts of energy

vacuum energy decays→ hot Big Bang

Furthermore

quantumvacuum

fluctuations

inflation−→classicaldensity

perturbations

gravity−→ galaxies . . .

Page 100: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Primordial inflation

inflation→{

vacuum cleans the universegenerates vast amounts of energy

vacuum energy decays→ hot Big Bang

Furthermore

quantumvacuum

fluctuations

inflation−→classicaldensity

perturbations

gravity−→ galaxies . . .

Page 101: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Primordial inflation

inflation→{

vacuum cleans the universegenerates vast amounts of energy

vacuum energy decays→ hot Big Bang

Furthermore

quantumvacuum

fluctuations

inflation−→classicaldensity

perturbations

gravity−→ galaxies . . .

Page 102: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Primordial inflation

inflation→{

vacuum cleans the universegenerates vast amounts of energy

vacuum energy decays→ hot Big Bang

Furthermore

quantumvacuum

fluctuations

inflation−→classicaldensity

perturbations

gravity−→ galaxies . . .

Page 103: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Primordial inflation

inflation→{

vacuum cleans the universegenerates vast amounts of energy

vacuum energy decays→ hot Big Bang

Furthermore

quantumvacuum

fluctuations

inflation−→classicaldensity

perturbations

gravity−→ galaxies . . .

Page 104: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

RADIATION

MATTER

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

Page 105: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

inflationdensity perturbationsgravitational waves?

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

vacuum energy dominates acceleration

Page 106: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Matter and antimatter

Every particle has an antiparticle with equal mass and opposite charges

electron ↔ antielectron

quark ↔ antiquark

photon ↔ photon

Particle-antiparticle pairs are created from, and annihilate into, pure energy

matter + antimatter = energy

In the early universe

inflation→ energy→ matter + antimatter

but now only matter is left. Why?If a small matter/antimatter asymmetry, with slightly more matter than antimatter,can be generated (baryogenesis) then

matter/antimatterasymmetry

annihilation−→ matter

Page 107: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Matter and antimatter

Every particle has an antiparticle with equal mass and opposite charges

electron ↔ antielectron

quark ↔ antiquark

photon ↔ photon

Particle-antiparticle pairs are created from, and annihilate into, pure energy

matter + antimatter = energy

In the early universe

inflation→ energy→ matter + antimatter

but now only matter is left. Why?If a small matter/antimatter asymmetry, with slightly more matter than antimatter,can be generated (baryogenesis) then

matter/antimatterasymmetry

annihilation−→ matter

Page 108: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Matter and antimatter

Every particle has an antiparticle with equal mass and opposite charges

electron ↔ antielectron

quark ↔ antiquark

photon ↔ photon

Particle-antiparticle pairs are created from, and annihilate into, pure energy

matter + antimatter = energy

In the early universe

inflation→ energy→ matter + antimatter

but now only matter is left. Why?If a small matter/antimatter asymmetry, with slightly more matter than antimatter,can be generated (baryogenesis) then

matter/antimatterasymmetry

annihilation−→ matter

Page 109: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Matter and antimatter

Every particle has an antiparticle with equal mass and opposite charges

electron ↔ antielectron

quark ↔ antiquark

photon ↔ photon

Particle-antiparticle pairs are created from, and annihilate into, pure energy

matter + antimatter = energy

In the early universe

inflation→ energy→ matter + antimatter

but now only matter is left. Why?

If a small matter/antimatter asymmetry, with slightly more matter than antimatter,can be generated (baryogenesis) then

matter/antimatterasymmetry

annihilation−→ matter

Page 110: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Matter and antimatter

Every particle has an antiparticle with equal mass and opposite charges

electron ↔ antielectron

quark ↔ antiquark

photon ↔ photon

Particle-antiparticle pairs are created from, and annihilate into, pure energy

matter + antimatter = energy

In the early universe

inflation→ energy→ matter + antimatter

but now only matter is left. Why?If a small matter/antimatter asymmetry, with slightly more matter than antimatter,can be generated (baryogenesis) then

matter/antimatterasymmetry

annihilation−→ matter

Page 111: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Baryogenesis mechanisms

Particle decayheavy particles

out of equilibriumdecay−→ matter/antimatter

asymmetry

Best example is decay of right-handed neutrinos.

Electroweak phase transition If the electroweak phase transition is first order

expandingbubble walls

→ matter/antimatterasymmetry

Affleck-Dine baryogenesis

angular momentumin field space

=matter/antimatter

asymmetry

Page 112: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Baryogenesis mechanisms

Particle decayheavy particles

out of equilibriumdecay−→ matter/antimatter

asymmetry

Best example is decay of right-handed neutrinos.

Electroweak phase transition If the electroweak phase transition is first order

expandingbubble walls

→ matter/antimatterasymmetry

Affleck-Dine baryogenesis

angular momentumin field space

=matter/antimatter

asymmetry

Page 113: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Baryogenesis mechanisms

Particle decayheavy particles

out of equilibriumdecay−→ matter/antimatter

asymmetry

Best example is decay of right-handed neutrinos.

Electroweak phase transition If the electroweak phase transition is first order

expandingbubble walls

→ matter/antimatterasymmetry

Affleck-Dine baryogenesis

angular momentumin field space

=matter/antimatter

asymmetry

Page 114: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Baryogenesis mechanisms

Particle decayheavy particles

out of equilibriumdecay−→ matter/antimatter

asymmetry

Best example is decay of right-handed neutrinos.

Electroweak phase transition If the electroweak phase transition is first order

expandingbubble walls

→ matter/antimatterasymmetry

Affleck-Dine baryogenesis

angular momentumin field space

=matter/antimatter

asymmetry

Page 115: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

inflationdensity perturbationsgravitational waves?

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

vacuum energy dominates acceleration

Page 116: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

inflationdensity perturbationsgravitational waves?

right-handed neutrino decay matter/antimatter?

electroweak transition matter/antimatter?

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

vacuum energy dominates acceleration

Page 117: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Dark matter

Two good candidates

Neutralino The neutralino is usually assumed to be the lightest superparticle(LSP) and hence stable. It is left as a remnant of the hot earlyuniverse.

Axion Generated in coherent oscillations when the axion potential turns onduring the QCD phase transition (when the strong nuclear forcebecomes strong).

Page 118: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Dark matter

Two good candidates

Neutralino The neutralino is usually assumed to be the lightest superparticle(LSP) and hence stable. It is left as a remnant of the hot earlyuniverse.

Axion Generated in coherent oscillations when the axion potential turns onduring the QCD phase transition (when the strong nuclear forcebecomes strong).

Page 119: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Dark matter

Two good candidates

Neutralino The neutralino is usually assumed to be the lightest superparticle(LSP) and hence stable. It is left as a remnant of the hot earlyuniverse.

Axion Generated in coherent oscillations when the axion potential turns onduring the QCD phase transition (when the strong nuclear forcebecomes strong).

Page 120: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

inflationdensity perturbationsgravitational waves?

right-handed neutrino decay matter/antimatter?

electroweak transition matter/antimatter?

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

vacuum energy dominates acceleration

Page 121: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

inflationdensity perturbationsgravitational waves?

right-handed neutrino decay matter/antimatter?

electroweak transition matter/antimatter?neutralino freeze out neutralino dark matter?

QCD transition axion dark matter?

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

vacuum energy dominates acceleration

Page 122: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Gravitinos and moduli

Moduli (scalar fields with Planckian vacuum values) are cosmologically dangerous. Forexample, nucleosynthesis constrains

n

s. 10−12

In the early universe

H2 (Ψ−Ψ1)2

m2susy (Ψ−Ψ0)2

∼ MPl

n

s∼ 107

Gravitinos are thermally produced in the early universe, leading to a similar, thoughless severe, problem.

Page 123: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Gravitinos and moduli

Moduli (scalar fields with Planckian vacuum values) are cosmologically dangerous. Forexample, nucleosynthesis constrains

n

s. 10−12

In the early universe

H2 (Ψ−Ψ1)2

m2susy (Ψ−Ψ0)2

∼ MPl

n

s∼ 107

Gravitinos are thermally produced in the early universe, leading to a similar, thoughless severe, problem.

Page 124: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Gravitinos and moduli

Moduli (scalar fields with Planckian vacuum values) are cosmologically dangerous. Forexample, nucleosynthesis constrains

n

s. 10−12

In the early universe

H2 (Ψ−Ψ1)2

m2susy (Ψ−Ψ0)2

∼ MPl

n

s∼ 107

Gravitinos are thermally produced in the early universe, leading to a similar, thoughless severe, problem.

Page 125: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Gravitinos and moduli

Moduli (scalar fields with Planckian vacuum values) are cosmologically dangerous. Forexample, nucleosynthesis constrains

n

s. 10−12

In the early universe

H2 (Ψ−Ψ1)2

m2susy (Ψ−Ψ0)2

∼ MPl

n

s∼ 107

Gravitinos are thermally produced in the early universe, leading to a similar, thoughless severe, problem.

Page 126: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Gravitinos and moduli

Moduli (scalar fields with Planckian vacuum values) are cosmologically dangerous. Forexample, nucleosynthesis constrains

n

s. 10−12

In the early universe

H2 (Ψ−Ψ1)2

m2susy (Ψ−Ψ0)2

∼ MPl

n

s∼ 107

Gravitinos are thermally produced in the early universe, leading to a similar, thoughless severe, problem.

Page 127: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

inflationdensity perturbationsgravitational waves?

right-handed neutrino decay matter/antimatter?

electroweak transition matter/antimatter?neutralino freeze out neutralino dark matter?

QCD transition axion dark matter?

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

vacuum energy dominates acceleration

Page 128: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

inflationdensity perturbationsgravitational waves?

right-handed neutrino decay matter/antimatter?

moduli, gravitinos, . . . disaster

electroweak transition matter/antimatter?neutralino freeze out neutralino dark matter?

QCD transition axion dark matter?

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

vacuum energy dominates acceleration

Page 129: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

The Origin of Matter

The Standard ModelOrdinary matterQuarksNeutrinosHiggs boson

Beyond the Standard ModelNeutrino massesSupersymmetryAxionsGravitinos and moduliParticle spectrum

Big Bang cosmologyThe hot Big BangPrimordial inflationMatter/antimatter asymmetryDark matterGravitinos and moduli

A theory for the origin of matterA Minimal Supersymmetric Cosmological ModelThermal inflationBaryogenesisDark matterHistory of the observable universe

Page 130: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

A Minimal Supersymmetric Cosmological Model

W = λuQHu u + λdQHd d + λeLHd e +1

2λν (LHu)2 + λµφ

2 HuHd + λχφχχ

MSSM neutrino masses MSSM µ-term axion

thermal inflationbaryogenesis dark matter

Page 131: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

A Minimal Supersymmetric Cosmological Model

W = λuQHu u + λdQHd d + λeLHd e +1

2λν (LHu)2 + λµφ

2 HuHd + λχφχχ

MSSM

neutrino masses MSSM µ-term axion

thermal inflationbaryogenesis dark matter

Page 132: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

A Minimal Supersymmetric Cosmological Model

W = λuQHu u + λdQHd d + λeLHd e +1

2λν (LHu)2 + λµφ

2 HuHd + λχφχχ

MSSM neutrino masses

MSSM µ-term axion

thermal inflationbaryogenesis dark matter

Page 133: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

A Minimal Supersymmetric Cosmological Model

W = λuQHu u + λdQHd d + λeLHd e +1

2λν (LHu)2 + λµφ

2 HuHd + λχφχχ

MSSM neutrino masses MSSM µ-term

axion

thermal inflationbaryogenesis dark matter

Page 134: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

A Minimal Supersymmetric Cosmological Model

W = λuQHu u + λdQHd d + λeLHd e +1

2λν (LHu)2 + λµφ

2 HuHd + λχφχχ

MSSM neutrino masses MSSM µ-term axion

thermal inflationbaryogenesis dark matter

Page 135: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Thermal inflation

The superpotential termW = λχφχχ

generates a potential

V = V0 −m2φ|φ|

2+m2χ|χ|2+m2

χ|χ|2+[Aχλχφχχ+ c.c.]+ |λχχφ|2 + |λχχφ|2+|λχχχ|2

At finite temperature

V (φ) = V0

+g2T 2|φ|2

−m2φ|φ|

2 + . . .

T & mφ =⇒ φ = 0

T 4 . V0 =⇒ inflation

Page 136: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Thermal inflation

The superpotential termW = λχφχχ

generates a potential

V = V0 −m2φ|φ|

2+m2χ|χ|2+m2

χ|χ|2+[Aχλχφχχ+ c.c.]+ |λχχφ|2 + |λχχφ|2+|λχχχ|2

At finite temperature

V (φ) = V0

+g2T 2|φ|2

−m2φ|φ|

2 + . . .

T & mφ =⇒ φ = 0

T 4 . V0 =⇒ inflation

Page 137: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Thermal inflation

The superpotential termW = λχφχχ

generates a potential

V = V0 −m2φ|φ|

2+m2χ|χ|2+m2

χ|χ|2+[Aχλχφχχ+ c.c.]+ |λχχφ|2 + |λχχφ|2+|λχχχ|2

At finite temperature

V (φ) = V0+g2T 2|φ|2−m2φ|φ|

2 + . . .

T & mφ =⇒ φ = 0

T 4 . V0 =⇒ inflation

Page 138: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Thermal inflation

The superpotential termW = λχφχχ

generates a potential

V = V0 −m2φ|φ|

2+m2χ|χ|2+m2

χ|χ|2+[Aχλχφχχ+ c.c.]+ |λχχφ|2 + |λχχφ|2+|λχχχ|2

At finite temperature

V (φ) = V0+g2T 2|φ|2−m2φ|φ|

2 + . . .

T & mφ =⇒ φ = 0

T 4 . V0 =⇒ inflation

Page 139: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Thermal inflation

The superpotential termW = λχφχχ

generates a potential

V = V0 −m2φ|φ|

2+m2χ|χ|2+m2

χ|χ|2+[Aχλχφχχ+ c.c.]+ |λχχφ|2 + |λχχφ|2+|λχχχ|2

At finite temperature

V (φ) = V0+g2T 2|φ|2−m2φ|φ|

2 + . . .

T & mφ =⇒ φ = 0

T 4 . V0 =⇒ inflation

Page 140: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Thermal inflation

|φ|

V

φ0

V0

Figure: Radiation domination

Page 141: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Thermal inflation

|φ|

V

φ0

V0

Figure: Thermal inflation

Page 142: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Thermal inflation

|φ|

V

φ0

V0

Figure: Thermal inflation

Page 143: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Thermal inflation

|φ|

V

φ0

V0

Figure: First order phase transition

Page 144: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Thermal inflation

|φ|

V

φ0

V0

Figure: Potential energy converted to particles

Page 145: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Thermal inflation

|φ|

V

φ0

V0

Figure: Matter domination

Page 146: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Key properties of thermal inflation

ForV

1/40 ∼ 106 to 107 GeV

Dilution factor (1020): pre-existing moduli sufficiently diluted.

Low energy scale (H ∼ 10−8m): moduli regenerated with sufficiently smallabundance.

Short duration (N ∼ 10): density perturbations from primordial inflation preserved onlarge scales.

Page 147: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Key properties of thermal inflation

ForV

1/40 ∼ 106 to 107 GeV

Dilution factor (1020): pre-existing moduli sufficiently diluted.

Low energy scale (H ∼ 10−8m): moduli regenerated with sufficiently smallabundance.

Short duration (N ∼ 10): density perturbations from primordial inflation preserved onlarge scales.

Page 148: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Key properties of thermal inflation

ForV

1/40 ∼ 106 to 107 GeV

Dilution factor (1020): pre-existing moduli sufficiently diluted.

Low energy scale (H ∼ 10−8m): moduli regenerated with sufficiently smallabundance.

Short duration (N ∼ 10): density perturbations from primordial inflation preserved onlarge scales.

Page 149: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Key properties of thermal inflation

ForV

1/40 ∼ 106 to 107 GeV

Dilution factor (1020): pre-existing moduli sufficiently diluted.

Low energy scale (H ∼ 10−8m): moduli regenerated with sufficiently smallabundance.

Short duration (N ∼ 10): density perturbations from primordial inflation preserved onlarge scales.

Page 150: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Gravitational waves from thermal inflation

The comoving length scale of thermal inflation is of order the Earth-Moon system. Onthese scales:

I any gravitational waves from primordial inflation wiped out

I new gravitational waves generated by the first order phase transition at the end ofthermal inflation

May be observable at future space based gravitational wave detectors such as BBO orDECIGO.

Page 151: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Gravitational waves from thermal inflation

The comoving length scale of thermal inflation is of order the Earth-Moon system. Onthese scales:

I any gravitational waves from primordial inflation wiped out

I new gravitational waves generated by the first order phase transition at the end ofthermal inflation

May be observable at future space based gravitational wave detectors such as BBO orDECIGO.

Page 152: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Gravitational waves from thermal inflation

The comoving length scale of thermal inflation is of order the Earth-Moon system. Onthese scales:

I any gravitational waves from primordial inflation wiped out

I new gravitational waves generated by the first order phase transition at the end ofthermal inflation

May be observable at future space based gravitational wave detectors such as BBO orDECIGO.

Page 153: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Gravitational waves from thermal inflation

The comoving length scale of thermal inflation is of order the Earth-Moon system. Onthese scales:

I any gravitational waves from primordial inflation wiped out

I new gravitational waves generated by the first order phase transition at the end ofthermal inflation

May be observable at future space based gravitational wave detectors such as BBO orDECIGO.

Page 154: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

inflationdensity perturbationsgravitational waves?

right-handed neutrino decay matter/antimatter?

moduli, gravitinos, . . . disaster

electroweak transition matter/antimatter?neutralino freeze out neutralino dark matter?

QCD transition axion dark matter?

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

vacuum energy dominates acceleration

Page 155: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

inflationdensity perturbationsgravitational waves?

moduli, gravitinos, . . . disaster

thermal inflation

saxino decayQCD transition axion dark matter?

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

vacuum energy dominates acceleration

Page 156: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

inflationdensity perturbationsgravitational waves?

moduli, gravitinos, . . . disaster

thermal inflation gravitational waves

saxino decayQCD transition axion dark matter?

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

vacuum energy dominates acceleration

Page 157: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Baryogenesis

Key assumption

m2LHu

=1

2

(m2

L + m2Hu

)< 0

Implies a dangerous non-MSSM vacuum with LHu ∼ (109GeV)2 and

λdQLd + λeLLe = µLHu

eliminating the µ-term contribution to LHu ’s mass squared.

LHu ,QLd , LLe

V

0

our vacuum

another vacuum

Page 158: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Baryogenesis

Key assumption

m2LHu

=1

2

(m2

L + m2Hu

)< 0

Implies a dangerous non-MSSM vacuum with LHu ∼ (109GeV)2 and

λdQLd + λeLLe = µLHu

eliminating the µ-term contribution to LHu ’s mass squared.

LHu ,QLd , LLe

V

0

our vacuum

another vacuum

Page 159: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Reduction

L =

(l0

), Hu =

(0hu

), Hd =

(hd

0

), e =

(0)

u =(

0 0 0)

, Q =

(0 0 0

d/√

2 0 0

), d =

(d/√

2 0 0)

φ = φ , χ = 0 , χ = 0

Page 160: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Potential

V = V0 + m2L|l |

2 −m2Hu|hu |2 + m2

Hd|hd |2 +

1

2

(m2

Q + m2d

)|d |2 − m2

φ|φ|2

+

[1

2Aνλν l

2h2u −

1

2Adλdhdd2 − Aµλµφ

2huhd + c.c.

]+∣∣λν lh2

u

∣∣2 +∣∣∣λν l2hu − λµφ2hd

∣∣∣2 +

∣∣∣∣λµφ2hu +1

2λdd2

∣∣∣∣2+ |λdhdd |2 + |2λµφhuhd |2 +

1

2g2

(|hu |2 − |hd |2 − |l |2 +

1

2|d |2

)2

drives thermal inflation lhu rolls away

lhu stabilizedwith

fixed phase

φ rolls away

hd forced outd held at origin

lhu returnswith

rotation

Page 161: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Potential

V = V0 + m2L|l |

2 −m2Hu|hu |2 + m2

Hd|hd |2 +

1

2

(m2

Q + m2d

)|d |2 − m2

φ|φ|2

+

[1

2Aνλν l

2h2u −

1

2Adλdhdd2 − Aµλµφ

2huhd + c.c.

]+∣∣λν lh2

u

∣∣2 +∣∣∣λν l2hu − λµφ2hd

∣∣∣2 +

∣∣∣∣λµφ2hu +1

2λdd2

∣∣∣∣2+ |λdhdd |2 + |2λµφhuhd |2 +

1

2g2

(|hu |2 − |hd |2 − |l |2 +

1

2|d |2

)2

drives thermal inflation

lhu rolls away

lhu stabilizedwith

fixed phase

φ rolls away

hd forced outd held at origin

lhu returnswith

rotation

Page 162: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Potential

V = V0 + m2L|l |

2 −m2Hu|hu |2 + m2

Hd|hd |2 +

1

2

(m2

Q + m2d

)|d |2 − m2

φ|φ|2

+

[1

2Aνλν l

2h2u −

1

2Adλdhdd2 − Aµλµφ

2huhd + c.c.

]+∣∣λν lh2

u

∣∣2 +∣∣∣λν l2hu − λµφ2hd

∣∣∣2 +

∣∣∣∣λµφ2hu +1

2λdd2

∣∣∣∣2+ |λdhdd |2 + |2λµφhuhd |2 +

1

2g2

(|hu |2 − |hd |2 − |l |2 +

1

2|d |2

)2

drives thermal inflation lhu rolls away

lhu stabilizedwith

fixed phase

φ rolls away

hd forced outd held at origin

lhu returnswith

rotation

Page 163: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Potential

V = V0 + m2L|l |

2 −m2Hu|hu |2 + m2

Hd|hd |2 +

1

2

(m2

Q + m2d

)|d |2 − m2

φ|φ|2

+

[1

2Aνλν l

2h2u −

1

2Adλdhdd2 − Aµλµφ

2huhd + c.c.

]+∣∣λν lh2

u

∣∣2 +∣∣∣λν l2hu − λµφ2hd

∣∣∣2 +

∣∣∣∣λµφ2hu +1

2λdd2

∣∣∣∣2+ |λdhdd |2 + |2λµφhuhd |2 +

1

2g2

(|hu |2 − |hd |2 − |l |2 +

1

2|d |2

)2

drives thermal inflation lhu rolls away

lhu stabilizedwith

fixed phase

φ rolls away

hd forced outd held at origin

lhu returnswith

rotation

Page 164: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Potential

V = V0 + m2L|l |

2 −m2Hu|hu |2 + m2

Hd|hd |2 +

1

2

(m2

Q + m2d

)|d |2 − m2

φ|φ|2

+

[1

2Aνλν l

2h2u −

1

2Adλdhdd2 − Aµλµφ

2huhd + c.c.

]+∣∣λν lh2

u

∣∣2 +∣∣∣λν l2hu − λµφ2hd

∣∣∣2 +

∣∣∣∣λµφ2hu +1

2λdd2

∣∣∣∣2+ |λdhdd |2 + |2λµφhuhd |2 +

1

2g2

(|hu |2 − |hd |2 − |l |2 +

1

2|d |2

)2

drives thermal inflation lhu rolls away

lhu stabilizedwith

fixed phase

φ rolls away

hd forced outd held at origin

lhu returnswith

rotation

Page 165: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Potential

V = V0 + m2L|l |

2 −m2Hu|hu |2 + m2

Hd|hd |2 +

1

2

(m2

Q + m2d

)|d |2 − m2

φ|φ|2

+

[1

2Aνλν l

2h2u −

1

2Adλdhdd2 − Aµλµφ

2huhd + c.c.

]+∣∣λν lh2

u

∣∣2 +∣∣∣λν l2hu − λµφ2hd

∣∣∣2 +

∣∣∣∣λµφ2hu +1

2λdd2

∣∣∣∣2+ |λdhdd |2 + |2λµφhuhd |2 +

1

2g2

(|hu |2 − |hd |2 − |l |2 +

1

2|d |2

)2

drives thermal inflation lhu rolls away

lhu stabilizedwith

fixed phase

φ rolls away

hd forced out

d held at origin

lhu returnswith

rotation

Page 166: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Potential

V = V0 + m2L|l |

2 −m2Hu|hu |2 + m2

Hd|hd |2 +

1

2

(m2

Q + m2d

)|d |2 − m2

φ|φ|2

+

[1

2Aνλν l

2h2u −

1

2Adλdhdd2 − Aµλµφ

2huhd + c.c.

]+∣∣λν lh2

u

∣∣2 +∣∣∣λν l2hu − λµφ2hd

∣∣∣2 +

∣∣∣∣λµφ2hu +1

2λdd2

∣∣∣∣2+ |λdhdd |2 + |2λµφhuhd |2 +

1

2g2

(|hu |2 − |hd |2 − |l |2 +

1

2|d |2

)2

drives thermal inflation lhu rolls away

lhu stabilizedwith

fixed phase

φ rolls away

hd forced outd held at origin

lhu returnswith

rotation

Page 167: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Potential

V = V0 + m2L|l |

2 −m2Hu|hu |2 + m2

Hd|hd |2 +

1

2

(m2

Q + m2d

)|d |2 − m2

φ|φ|2

+

[1

2Aνλν l

2h2u −

1

2Adλdhdd2 − Aµλµφ

2huhd + c.c.

]+∣∣λν lh2

u

∣∣2 +∣∣∣λν l2hu − λµφ2hd

∣∣∣2 +

∣∣∣∣λµφ2hu +1

2λdd2

∣∣∣∣2+ |λdhdd |2 + |2λµφhuhd |2 +

1

2g2

(|hu |2 − |hd |2 − |l |2 +

1

2|d |2

)2

drives thermal inflation lhu rolls away

lhu stabilizedwith

fixed phase

φ rolls away

hd forced outd held at origin

lhu returnswith

rotation

Page 168: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Baryogenesis

MODULIDOMINATION

THERMALINFLATION

FLATONDOMINATION

RADIATIONDOMINATION

φ = 0

φ > 0

φ ∼ φ0

φ preheats

φ decays

huhd = 0

hd > 0 ⇒ d = e = 0

lhu = 0

lhu > 0

brought back into origin with rotation⇒ nL < 0

preheating and thermal friction⇒ NL conserved

l , hu , hd decayT > TEW ⇒ nL → nB

dilution ⇒ nB/s ∼ 10−10

nucleosynthesis

Page 169: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

inflationdensity perturbationsgravitational waves?

moduli, gravitinos, . . . disaster

thermal inflation gravitational waves

saxino decayQCD transition axion dark matter?

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

vacuum energy dominates acceleration

Page 170: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

inflationdensity perturbationsgravitational waves?

moduli, gravitinos, . . . disaster

thermal inflation gravitational wavesLHu → 0 matter/antimatter

saxino decayQCD transition axion dark matter?

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

vacuum energy dominates acceleration

Page 171: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Dark matter

A mixture of

Axino The axino is the lightest superparticle (LSP) and hence stable. It isgenerated by the decay of the saxino, and by the decay of the nextlightest superparticle (NLSP).

Axion As before, generated in coherent oscillations when the axionpotential turns on during the QCD phase transition, though may bediluted by the decay of the saxino.

thermal inflation

saxinomatter domination

radiationdominationaxinos axions

firstorder

phasetransition

decaydecay

NLSP

decay

QCD phase

transition

Page 172: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

Axino LHC signal

Next lightest superparticles (NLSPs) produced by the Large Hadron Collider (LHC)decay to axinos plus Standard Model particles

LHCNLSP

axino

SM102 m

Page 173: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

inflationdensity perturbationsgravitational waves?

moduli, gravitinos, . . . disaster

thermal inflation gravitational wavesLHu → 0 matter/antimatter

saxino decayQCD transition axion dark matter?

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

vacuum energy dominates acceleration

Page 174: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

inflationdensity perturbationsgravitational waves?

moduli, gravitinos, . . . disaster

thermal inflation gravitational wavesLHu → 0 matter/antimatter

saxino decay axino dark matterQCD transition axion dark matter

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

vacuum energy dominates acceleration

Page 175: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

inflationdensity perturbationsgravitational waves?

moduli, gravitinos, . . . disaster

thermal inflation gravitational wavesLHu → 0 matter/antimatter

saxino decay axino dark matterQCD transition axion dark matter

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

vacuum energy dominates acceleration

Page 176: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

A Minimal Supersymmetric Cosmological Model

W = λuQHu u + λdQHd d + λeLHd e +1

2λν (LHu)2 + λµφ

2 HuHd + λχφχχ

MSSM neutrino masses MSSM µ-term axion

thermal inflationbaryogenesis dark matter

Page 177: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

A Minimal Supersymmetric Cosmological Model

W = λuQHu u + λdQHd d + λeLHd e +1

2λν (LHu)2 + λµφ

2 HuHd + λχφχχ

MSSM neutrino masses MSSM µ-term axion

thermal inflation

baryogenesis dark matter

Page 178: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

A Minimal Supersymmetric Cosmological Model

W = λuQHu u + λdQHd d + λeLHd e +1

2λν (LHu)2 + λµφ

2 HuHd + λχφχχ

MSSM neutrino masses MSSM µ-term axion

thermal inflationbaryogenesis

dark matter

Page 179: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

A Minimal Supersymmetric Cosmological Model

W = λuQHu u + λdQHd d + λeLHd e +1

2λν (LHu)2 + λµφ

2 HuHd + λχφχχ

MSSM neutrino masses MSSM µ-term axion

thermal inflationbaryogenesis dark matter

Page 180: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

inflationdensity perturbationsgravitational waves?

right-handed neutrino decay matter/antimatter?

electroweak transition matter/antimatter?neutralino freeze out neutralino dark matter?

QCD transition axion dark matter?

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

vacuum energy dominates acceleration

Page 181: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

inflationdensity perturbationsgravitational waves?

right-handed neutrino decay matter/antimatter?

moduli, gravitinos, . . . disaster

electroweak transition matter/antimatter?neutralino freeze out neutralino dark matter?

QCD transition axion dark matter?

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

vacuum energy dominates acceleration

Page 182: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

inflationdensity perturbationsgravitational waves?

moduli, gravitinos, . . . disaster

thermal inflation

saxino decayQCD transition axion dark matter?

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

vacuum energy dominates acceleration

Page 183: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

inflationdensity perturbationsgravitational waves?

moduli, gravitinos, . . . disaster

thermal inflation gravitational waves

saxino decayQCD transition axion dark matter?

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

vacuum energy dominates acceleration

Page 184: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

inflationdensity perturbationsgravitational waves?

moduli, gravitinos, . . . disaster

thermal inflation gravitational wavesLHu → 0 matter/antimatter

saxino decayQCD transition axion dark matter?

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

vacuum energy dominates acceleration

Page 185: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

inflationdensity perturbationsgravitational waves?

moduli, gravitinos, . . . disaster

thermal inflation gravitational wavesLHu → 0 matter/antimatter

saxino decay axino dark matterQCD transition axion dark matter

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

vacuum energy dominates acceleration

Page 186: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

History of the observable universe

(density)1/4

time

mPl

1011 GeV

103 GeV

100 keV

10 K

tPl

10−28 s

10−13 s

10 min

1010 yr

inflationdensity perturbationsgravitational waves?

moduli, gravitinos, . . . disaster

thermal inflation gravitational wavesLHu → 0 matter/antimatter

saxino decay axino dark matterQCD transition axion dark matter

nucleosynthesis light elements

atom formation microwave backgroundgalaxy formation galaxies

vacuum energy dominates acceleration

Page 187: The Origin of Matter - profstewart.orgprofstewart.org/papers/matter.pdf · 2013-01-23 · The Origin of Matter The Standard Model Ordinary matter Quarks Neutrinos Higgs boson Beyond

The Origin of Matter

The Standard ModelOrdinary matterQuarksNeutrinosHiggs boson

Beyond the Standard ModelNeutrino massesSupersymmetryAxionsGravitinos and moduliParticle spectrum

Big Bang cosmologyThe hot Big BangPrimordial inflationMatter/antimatter asymmetryDark matterGravitinos and moduli

A theory for the origin of matterA Minimal Supersymmetric Cosmological ModelThermal inflationBaryogenesisDark matterHistory of the observable universe