Top Banner
The Neglected Midfoot: New Research Guiding Clinical Exam and Intervention American Physical Therapy Association Combined Sections Meeting February 17-20, 2016 Anaheim, CA Orthopaedic Section Foot and Ankle Special Interest Group Frank DiLiberto PT, PhD, OCS, FAAOMPT Assistant Professor, Department of Physical Therapy Rosalind Franklin University of Medicine & Science North Chicago, IL 60064 Mary K. Hastings, PT, DPT, MSCI, ATC Associate Professor, Program in Physical Therapy and Department of Orthopaedics Washington University School of Medicine St. Louis MO 63108 Smita Rao PT, PhD Associate Professor, Department of Physical Therapy New York University New York, NY 10010 Christopher G. Neville, PT, PhD Associate Professor, Department of PT Education Upstate Medical University Syracuse, NY 13210 Ruth L. Chimenti, PT, DPT, PhD Postdoctoral Fellow, Department of Biomedical Engineering University of Rochester Rochester, NY 14627 The authors have no affiliations with any organization/ entity with a financial or non-financial interest in the material presented
32

The Neglected Midfoot: New Research Guiding Clinical Exam ......Kelly LA, Cresswell AG, Racinais S, Whiteley R, Lichtwark G. Intrinsic foot muscles have the capacity to control deformation

Feb 09, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • The Neglected Midfoot: New Research Guiding Clinical Exam and Intervention

    American Physical Therapy Association Combined Sections Meeting February 17-20, 2016 Anaheim, CA
 Orthopaedic Section
 Foot and Ankle Special Interest Group

    Frank DiLiberto PT, PhD, OCS, FAAOMPT Assistant Professor, Department of Physical Therapy
 Rosalind Franklin University of Medicine & Science
 North Chicago, IL 60064 Mary K. Hastings, PT, DPT, MSCI, ATC
 Associate Professor, Program in Physical Therapy and Department of Orthopaedics
 Washington University School of Medicine
 St. Louis MO 63108 Smita Rao PT, PhD Associate Professor, Department of Physical Therapy New York University New York, NY 10010 Christopher G. Neville, PT, PhD Associate Professor, Department of PT Education Upstate Medical University Syracuse, NY 13210 Ruth L. Chimenti, PT, DPT, PhD Postdoctoral Fellow, Department of Biomedical Engineering University of Rochester Rochester, NY 14627 The authors have no affiliations with any organization/ entity with a financial or non-financial interest in the material presented

  • Course Learning Objectives:

    1. Review current evidence on normal midfoot kinematics and kinetics that occur during daily activities

    2. Recognize the signs of failure of key muscles and/or ligaments that are needed to support the midfoot

    3. Identify the key predictors of a disruption in medial column alignment and foot function

    4. Identify the different potential effects of external supports on changing midfoot mechanics

    5. Recognize limitations of weight-bearing clinical tests when midfoot function is impaired

  • Review of Normal Midfoot Function Frank DiLiberto PT, PhD, OCS, FAAOMPT Assistant Professor, Department of Physical Therapy
 Rosalind Franklin University of Medicine & Science How is midfoot function studied? In-vivo Surface Markers Some concern with directly tracking all of the midfoot bones (Nester et al., 2007b) Three (or more) segment modeling

    Tibia Rearfoot (calcaneus/talus) Forefoot (metatarsals)

    Multi-segment Biomechanics Rearfoot to Tibia Motion and Power Multi-segment Biomechanics

    Forefoot to Rearfoot Motion and Power Allows for inference of midfoot biomechanics

    We Will Review…..

    Kinematics during walking Forefoot with respect to Rearfoot (ROM°)

    Kinetics during walking and stair ascent

    Midfoot peak power Study Design & Sample

    Observational Cohort Study

  • Kinematic and Kinetic Foot Model Kinematic Model

    5 Segments: Tibia, calcaneus, metatarsals (1st, 3rd and 5th) Angular displacement (ROM)

    Forefoot with respect to Rearfoot Kinetic Model

    3 Segments: Forefoot, Rearfoot, Tibia Midfoot Power

    Rate of torque production Results: Sagittal Plane Kinematics
(DF / PF ROM°) Transverse Plane Kinematics
(ADD / ABD ROM°) Midfoot Power Across Activity Review and Summary

    Muscle performance at the midfoot contributes power for push off Increases with increases in demand of activity

    For normal midfoot function we need….

    Extensibility and strength of non-contractile tissues (Jennings et al., 2008; Carvaggi et al., 2010)

    Joint capsules, ligaments, tendons

    Mobility of joint surfaces (Blackwood et al., 2005; Nester et al., 2007a; Okita et al., 2014)

    Tarsal and tarsometatarsal joints

    Muscle performance (Nikki et al., 2001; Kelly et al., 2014; Kelly et al., 2015)

    Intrinsic and extrinsic muscles What happens when mechanisms behind midfoot function are compromised?

  • What can we do about it? References Nester C, Liu AM, Ward E, Howard D, Cocheba D, Derrick T, et al. In vitro study of foot kinematics using a dynamic walking cadaver model. Journal of Biomechanics 2007;40:1927–1937 Nester C, Jones RK, Liu A, Howard D, Lundberg A, Arndt A, et al. Foot kinematics during walking measured using bone and surface mounted markers. Journal of Biomechanics. 2007;40:3412-23. DiLiberto FE, Tome J, Baumhauer JF, Quinn JR, Houck J, Nawoczenski DA. Multi-joint foot kinetics during walking in people with Diabetes Mellitus and peripheral neuropathy. Journal ofBiomechanics. 2015; 48:3679–3684. Tome J, Nawoczenski DA, Flemister S, Houck J. Comparison of foot kinematics between subjects with posterior tibialis tendon dysfunction and healthy controls. Journal of Orthopaedic and Sports Physical Therapy. 2006;36:635-44. Dixon PC, Bohm H, Doderlein L. Ankle and midfoot kinetics during normal gait: A multi-segment approach. Journal of Biomechanics. 2012;45:1011-6. Jennings MM, Christensen JC. The Effects of Sectioning the Spring Ligament on Rearfoot Stability and Posterior Tibial Tendon Efficiency. The Journal of Foot and Ankle Surgery. 2008;47:219-24. Caravaggi P, Pataky T, Gunther M, Savage R, Crompton R. Dynamics of longitudinal arch support in relation to walking speed: contribution of the plantar aponeurosis. Journal of Anatomy. 2010;217:254-61. Blackwood CB, Yuen TJ, Sangeorzan BJ, Ledoux WR. The Midtarsal Joint Locking Mechanism. Foot & Ankle International. 2005;26:1074-80 Okita N, Meyers SA, Challis JH, Sharkey NA. Midtarsal joint locking: New perspectives on an old paradigm. Journal of Orthopaedic Research. 2014;32:110-5. Niki H, Ching RP, Kiser P, Sangeorzan BJ. The effect of posterior tibial tendon dysfunction on hindfoot kinematics. Foot & Ankle International. 2001;22:292-300. Kelly LA, Cresswell AG, Racinais S, Whiteley R, Lichtwark G. Intrinsic foot muscles have the capacity to control deformation of the longitudinal arch. Journal of the Royal Society Interface. 2014;11:1-9. Kelly LA LG, Cresswell AG. Active regulation of longitudinal arch compression and recoil during walking and running. Journal of the Royal Society Interface. 2015;12.

  • How Diabetes Mellitus affects multi-segment foot motion and midfoot power

    Frank DiLiberto PT, PhD, OCS, FAAOMPT Assistant Professor Department of Physical Therapy Rosalind Franklin University of Medicine & Science Diabetes Mellitus Poor Blood Glucose Control Peripheral Neuropathy Reduced or Variable Activity Elevated Plantar Pressure

    Peripheral Neuropathy and Foot Biomechanics

    Peripheral neuropathy Decreases tissue extensibility Decreased functional ROM Atrophied and fatty muscles Decreased muscle performance …Deformity

    Purpose: In people with Diabetes and Peripheral Neuropathy….

    Assess individual metatarsal and forefoot ROM during terminal stance

    Assess ankle and midfoot muscle performance Power (Rate of torque production)

    Relate midfoot power to plantar pressure

    Study Design & Sample

    Case (DMPN) – Control (MC) DMPN group without history of ulceration

  • Kinematic and Kinetic Foot Model Kinematic Model 5 Segments: Tibia, calcaneus, metatarsals (1st, 3rd and 5th) Angular displacement and velocity

    Forefoot and metatarsals Kinetic Model 3 Segments: Forefoot, Rearfoot, Tibia Power and Total Power: Rearfoot and Midfoot

    Kinetic Measurements

    Power Negative = power absorption eccentric muscle activity Positive = power generation concentric muscle activity

    Pressure Measurements Forefoot mask (55-80%)

    Pressure Time Integral Peak pressure across time

    Results – Sagittal Plane Kinematics
 (Total DF / PF ROM°) Transverse Plane Kinematics
(Total Abd / Add ROM°) Rearfoot Power Midfoot Power Negative Total Power Ratio Pressure and Power

  • Discussion

    People with DMPN without deformity or ulceration history

    Limited ROM at multiple metatarsals Likely related to tissue extensibility and muscle control

    Abnormal power profile at both the RF and MF Likely related to muscle contractility and activation

    Abnormal power profile at both the RF and MF Decreased + power Impaired concentric contraction Excessive – power Poor eccentric control Increased – TP Ratio Increased loading on MF passive structures ….Deformity? Increased forefoot pressure ….Tissue Breakdown?

    Future Research DM vs. DMPN vs. DMPN + ulcer history Evaluate:

    Decline of kinetic function MF negative total power

    Determine the appropriate time point for clinical intervention….

    What structures and mechanisms should we be targeting?

  • Acknowledgements Jill Quinn RN, PhD Din Chen PhD Jeff Houck PT, PhD Josh Tome, MS Judy Baumhauer MD, MPH Deborah Nawoczenski PT, PhD University of Rochester Medical Center - Strong Health Network

    Orthopaedic Foot and Ankle Institute Highland Family Medicine and Diabetes Health Source Rochester Internal Medicine Associates

    University of Rochester School of Nursing and Department of Orthopaedics

    Funding Source

    University of Rochester, School of Nursing Dean’s Fellowship University of Rochester, Department of Orthopaedics, Louis A.

    Goldstein Award

     

  • Predictors of Midfoot Deformity in People with Diabetes Mellitus

    Mary Hastings, PT, DPT, MSCI, ATC

    Associate Professor Washington University in St. Louis, MO

    Program in Physical Therapy Funding Sources • National Institutes of Health:

    • K12 HD055931: Comprehensive Opportunities for Rehabilitation Research and Training

    • KL2 TR000450 and UL1 TR000448: Postdoctoral Program • Washington University Program in Physical Therapy, St. Louis,

    MO USA

    Prevalence of Diabetes

    Foot Deformity Cascade

    Medial Column Deformity in Diabetes • Thought to be

    • Confined to a Charcot event • Driven by bone deterioration • Once treated stable over time

    • However • Medial column deformity progressed over time • Indication of progression in uninvolved foot too

  • Factors that Impact Medial Column Alignment and Function

    • Intrinsic Foot Muscle • Plantar fascia • Extrinsic foot muscle/tendon

    Participant Characteristics • DMPN (DMPN, n=23)

    • Diabetes mellitus • Peripheral neuropathy

    • unable to feel 5.07 Semmes-Weinstein monofilament on at least one plantar location

    • Spectrum of medial column foot alignment

    • Controls (n=12) • No Diabetes or peripheral neuropathy • No medial column foot deformity • Age and weight matched

    Purpose • To determine the ability of measures of foot and leg muscle, tendon,

    fascial integrity and function to predict • Medial column alignment and Medial column function…

    Methods: Medial Column Function • Plantarflexion excursion of the forefoot relative to the hindfoot

    • Kinematics of the single-limb heel rise • Segments

    • Hindfoot • Forefoot

    • 4 sets of 5 reps • Averaged 3 with highest plantarflexor torque

  • Methods: Intrinsic Foot Muscle • Magnetic Resonance Images

    • Intrinsic foot muscle and fat • Total volumes from talonavicular to tarsometatarsal

    (Cheuy 2013a, Cheuy 2013b) • MR specifics

    • Transverse • 0.36 mm x 0.36 mm x 3.5 mm, no inter-slice gap • T1 weighted • Pulse repetition time=5360 msec • Echo Time=38 msec • Image Matrix 384 x 384

    Methods: Plantar Fascia Function Change in Meary’s Angle

    • Toe flat to toe extended position-60° (Hastings 2011, Gelber 2014)

    Methods: Extrinsic Foot Muscle/Tendon • MRI: Tendon volumes

    • Posterior tibialis • Flexor digitorum longus • Ratio: Posterior Tibialis/Flexor digitorum longus • Total: 9 slices proximal to talocrural joint

    • MR specifics • Transverse • 0.36 mm x 0.36 mm x 3.5 mm, no inter-slice gap • T1 weighted • Pulse repetition time=5050 msec, Echo Time=38 msec • Image Matrix 256 x 256

    Methods: Extrinsic Foot Muscle/Tendon • Plantarflexor Torque

    • Biodex • 60°/sec • Warm up

  • • 3 trials • Average 2 highest trials

    Data Analysis: • Group Differences

    • Chi-square • T-test

    • Correlations • Predictor variables for model

    • Multiple Regression • Predicting

    • Foot alignment-Meary’s • Foot function-Forefoot relative to hindfoot plantarflexion excursion

    Results: Demographics • Participants

    • Around 60 yo, more male than female, and obese class II

    Results: Variables to be Predicted • Meary’s Angle

    • Large range of angles • Forefoot on hindfoot plantarflexion excursion

    • DMPN group has limited ability to plantarflex the forefoot on the hindfoot

    Results: Intrinsic Foot Volumes • DMPN have decreased muscle volume and increased fat

    compared to controls

    Results: Tendon and Fascial Volumes • No difference in tendon or plantar fascia volume between

    those with DMPN and controls

    Results: Plantarflexor Torque (Nm) • DMPN have reduced plantarflexor torque

  • Alignment Predictors in DMPN • Meary’s Predictors

    • Ratio Posterior tibialis/Flexor digitorum longus Tendon Volume (18%) • Intrinsic muscle volume (16%) • Total variance explained=44%

    Function Predictors in DMPN • Forefoot on hindfoot excursion predictors

    • Plantarflexor Peak Torque (24%) • Intrinsic Fat Volume (19%) • Total variance explained=44%

    • Plantar fascia function • correlation with function (r=.34) • Not a significant predictor

    Conclusions • DMPN

    • Leg and foot muscle/tendon function deterioration • Muscle and tendon deterioration associated with

    • Deformity • Function

    Limitations…leading to future research • Small sample size for a big question • Cross sectional study for a longitudinal/progressive question • Incomplete model: bone shape, ligament integrity • Can neuropathic muscle be strengthened?

  • References1-22:   (1)   International Diabetes Federation. The Global Burden. IDF Diabetes Atlas. 6 ed. Brussels: International 

    Diabetes Federation; 2013. p. 29‐2. 

      (2)   Hastings M, Johnson JE: Strube M, Hildebolt C, Bohnert K, Prior F, Sinacore DR. Progressive Foot Deformity Evident in Neuropathic (Charcot) Arthorpathy at One and Two Years. J Bone Joint Surg Am 2013;95(13):1206‐13. 

      (3)   Hastings M, Sinacore D, Woodburn J et al. Kinetics and kinematics after the Bridle procedure for treatment of traumatic foot drop. Clin Biomech 2013;28(5):555‐61. 

      (4)   Cheuy VA, Hastings MK, Commean PK, Ward SR, Mueller MJ. Intrinsic foot muscle deterioration is associated with metatarsophalangeal joint angle in people with diabetes and neuropathy. Clin Biomech (Bristol , Avon ) 2013 November;28(9‐10):1055‐60. 

      (5)   Cheuy VA, Commean PK, Hastings MK, Mueller MJ. Reliability and validity of a MR‐based volumetric analysis of the intrinsic foot muscles. J Magn Reson Imaging 2013 November;38(5):1083‐93. 

      (6)   Hastings MK, Woodburn J, Mueller MJ et al. Radiographic‐directed local coordinate systems critical in kinematic analysis of walking in diabetes‐related medial column foot deformity. Gait & Posture 2014;40(1):128‐33. 

      (7)   Hastings MK, Woodburn J, Mueller MJ, Strube MJ, Johnson JE, Sinacore DR. Kinematics and kinetics of single‐limb heel rise in diabetes related medial column foot deformity. Clin Biomech (Bristol , Avon ) 2014 August 27;29(9):1016‐22. 

      (8)   Gelber JR, Sinacore DR, Strube MJ et al. Windlass Mechanism in Individuals With Diabetes Mellitus, Peripheral Neuropathy, and Low Medial Longitudinal Arch Height. Foot Ankle Int 2014 June 10;35(8):816‐24. 

      (9)   Bittel DC, Bittel AJ, Tuttle LJ et al. Adipose tissue content, muscle performance and physical function in obese adults with type 2 diabetes mellitus and peripheral neuropathy. J Diabetes Complications 2015 March;29(2):250‐7. 

      (10)   Headlee DL, Leonard JL, Hart JM, Ingersoll CD, Hertel J. Fatigue of the plantar intrinsic foot muscles increases navicular drop. Journal of Electromyography & Kinesiology 2008 June;18(3):420‐5. 

      (11)   van Schie CHM, Vermigli C, Carrington AL, Boulton A. Muscle Weakness and Foot Deformities in Diabetes: Relationship to neuropathy and foot ulceration in Caucasian diabetic men. Diabetes Care 2004 July 1;27(7):1668‐73. 

      (12)   Robertson DD, Mueller MJ, Smith KE, Commean PK, Pilgram T, Johnson JE. Structural changes in the forefoot of individuals with diabetes and a prior plantar ulcer. J Bone Joint Surg Am 2002 August;84‐A(8):1395‐404. 

  •   (13)   Bus SA, Yang QX, Wang JH, Smith MB, Wunderlich R, Cavanagh PR. Intrinsic Muscle Atrophy and Toe Deformity in the Diabetic Neuropathic Foot: A magnetic resonance imaging study. Diabetes Care 2002 August 1;25(8):1444‐50. 

      (14)   Bus SA, Maas M, Michels RP, Levi M. Role of intrinsic muscle atrophy in the etiology of claw toe deformity in diabetic neuropathy may not be as straightforward as widely believed. Diabetes Care 2009 June;32(6):1063‐7. 

      (15)   Arangio GA, Chen C, Kim W. Effect of cutting the plantar fascia on mechanical properties of the foot. Clinical Orthopaedics & Related Research 1997 June;(339):227‐31. 

      (16)   Bolton NR, Smith KE, Pilgram TK, Mueller MJ, Bae KT. Computed tomography to visualize and quantify the plantar aponeurosis and flexor hallucis longus tendon in the diabetic foot. Clin Biomech (Bristol , Avon ) 2005 June;20(5):540‐6. 

      (17)   D'Ambrogi E, Giacomozzi C, Macellari V, Uccioli L. Abnormal foot function in diabetic patients: the altered onset of Windlass mechanism. Diabet Med 2005 December;22(12):1713‐9. 

      (18)   Giacomozzi C, D'Ambrogi E, Uccioli L, Macellari V. Does the thickening of Achilles tendon and plantar fascia contribute to the alteration of diabetic foot loading? Clin Biomech 2005 June;20(5):532‐9. 

      (19)   Chuter V, Payne C. Limited joint mobility and plantar fascia function in Charcot's neuroarthropathy. Diabet Med 2001 July;18(7):558‐61. 

      (20)   Hilton TN, Tuttle LJ, Bohnert KL, Mueller MJ, Sinacore DR. Excessive Adipose Tissue Infiltration in Skeletal Muscle in Individuals With Obesity, Diabetes Mellitus, and Peripheral Neuropathy: Association With Performance and Function. Physical Therapy 2008 November;88(11):1336‐44. 

      (21)   Tuttle LJ, Sinacore DR, Mueller MJ. Intermuscular adipose tissue is muscle specific and associated with poor functional performance. Journal of Aging Research 2012;2012:172957. 

      (22)   Commean PK, Tuttle LJ, Hastings MK, Strube MJ, Mueller MJ. Magnetic resonance imaging measurement reproducibility for calf muscle and adipose tissue volume. J Magn Reson Imaging 2011 December;34(6):1285‐94. 

     

  • Midfoot Arthritis:
 Impairments to Intervention Smita Rao, PT, PhD Associate Professor Department of Physical Therapy New York University Background

    • Arthritis: One of the leading causes of disability (MWWR, 2006) • Midfoot Arthritis: High potential for chronic secondary disability

    Incidence and Prevalence • Athletic population • Minor twisting injuries • Motor vehicle trauma • Chronic overload – high heels Operative Management

    • Surgical management - challenging • Complications following surgery

    • Non-union, broken screws and wound problems • May necessitate further surgery involving revision, arthrodesis,

    hardware removal .

    Non-operative Management • Primary aim of Treatment

    - Provide pain relief • Steel shanked shoes

    • Poor compliance • Custom-molded three- quarter insert (3Q)

    • Most common recommendation • Patients continue to report pain Alternative

  • Purpose • Assess impairments contributing to symptoms

    • Segmental foot motion • Regional loading

    • Assess the effect of 4 week intervention using the FL on symptoms

    • Segmental foot motion • Regional loading

    Subjects

    • Clinical: • Pain on dorsum, localized to TMT region • Aggravated by walking • Stair descent

    • Radiographic: • Joint space reduction • Osteophytes • ‘Dorsal bossing’

    Functional Outcomes

    • Foot Function Index – Revised (FFI-R) • Pain • Stiffness • Disability • Activity Limitation • Psychosocial Issues (Budiman-Mak, E et al, 2006)

    • Psychometric properties • Reliability, Convergent validity, Criterion validity • Responsiveness (SooHoo et al. 2006, Budiman-Mak, E et al, 2006)

    Results: Foot Function Index – Revised (Rao et al. J Biomech 2009)

  • Kinematics: Data Acquisition • 5 segment kinematic foot model. • Sensors placed over respective segments • Secured with skin tape • Anatomically based local co-ordinate systems for each segment • Reference trial: Subtalar Neutral (Tome et al. 2004, Houck et al. 2008) Kinematics: Results New Insights:
 Group x Activity Interaction • 1st metatarsal plantarflexion ROM (p = 0.02) • Calcaneal eversion ROM (p < 0.01) • At baseline, patients with MFA show a stiffening strategy. • Instability, evident only in high demand activities. Plantar Loading: Data acquisition

    • Data Acquisition • Barefoot • EMEDTM

    • Data Analysis • 6 “masks” • Heel, Medial and Lateral Midfoot, Medial and Lateral Forefoot, Great

    Toe • Dependent Variables: Average Pressure - mean of the highest pressures

    sustained within each mask and expressed in kilopascals (kPa).

    Plantar Loading: Results New Insights: 
 Cluster Analysis – Adequacy Index 
 and Bivariate Scatter plot • K-means clustering identified two subgroups:

    • Cluster 1 (higher medial midfoot average pressure (n=20)) • Cluster 2 (lower medial midfoot average (n=10))

  • Conclusions: • Independently or in combination, these patterns of loading and motion may

    contribute to articular stress and thus provoke symptoms. Mechanisms underlying Pain Relief Results – Baseline to 4 weeks

    Significant symptomatic improvement after 4 week intervention with the FL (Rao et al, APMR 2009) Kinematic results: FL compared to Shoe In Shoe Plantar Loading Changes Decreased midfoot loading with FL, compared to 3Q. No difference between FL and shoe. (Rao S. et al., J Orthop Sports Phys Ther 2009) Mechanisms underlying Symptomatic Relief • Accompanied by decreased 1st MTP ROM (compared to shoe), decreased

    medial midfoot loading, (compared to 3Q) (Rao S, et al. Arch Phys Med Rehab, 2010)

    Limitations and Caveats • Larger sample sizes, longer term follow-up and clinical trial design indicated

    • Homogenous sample = interesting, in and of itself, but may not be

    generalizeable to men (different BMI range) and activity demands.

  • Current Interests: • Cumulative Stress in Individuals with Foot Pain

    (Rao et al Arthritis Care and Research (accepted)) • Pain mechanisms in Individuals with Foot Pain

    • Widespread mechanical hyperalgesia • Efficacy of soft tissue mobilization

    • Reduction of hyperalgesia • Restoration of plantar load distribution and muscle activation during walking

    Acknowledgements

    Rheumatology Research Foundation AOFAS Research Grant Arthritis Foundation Chapter Grant and Post-doctoral Fellowship Deborah A Nawoczenski, PT, PhD Judith F Baumhauer, MD, MPH Jeff Houck, PT, PhD Josh Tome, MS Howard Hillstrom, PhD Kenneth Mroczek, MD

  • Loss of dynamic midfoot support from Tibialis Posterior Tendon Dysfunction: Biomechanical effects and treatment options

    Christopher Neville, PT, PhD Associate Professor Upstate Medical University Physical Therapy Education Syracuse, NY 13210 [email protected] Midfoot Support…

    Tibialis Posterior Tendinopathy Role of Tibialis Posterior Spring Ligament and Sagittal Plane Collapse

    • Correction of flatfoot deformity unloads soft tissue structures (spring ligament)

    Flatfoot Deformity Walking Flatfoot Deformity during Heel rise Tibialis Posterior Tendinopathy Clinical Strength Measure Lower Arch EMG: • Self-Adhesive (Ag/AgCl) electrodes were placed on the skin overlying the

    belly of the PL • Indwelling fine-wire electrode were placed into the TP muscle under

    ultrasound guidance • Stimulation (Grass - square pulse stimulator) with intensities to produce a

    strong contraction

  • Purpose

    To determine the effect of a longer foot plate design and ankle articulation on foot kinematics and ankle power in subjects with stage II PTTD.

    Methods:

    Sample Kinematic Model Ankle Kinetics

    Analysis:

    • Repeated Measures ANOVA Model

    • Condition (5 levels) • Off-the-shelf • Custom standard • Custom articulated • Custom extended • Shoe Only

    • Phase (4 levels) • LR, MS, TS, PS

    • Model repeated for each DV (MLA, FF Abd/ Add, HF Ev/Inv, Ankle Power)

    Results…

    Frontal Plane Hindfoot Motion

    Ankle Power

  • Discussion…. Summary Kinematics • Custom Devices are achieving control of flatfoot deformity with:

    • hindfoot inversion • ankle articulation design – may facilitate muscle control

    • forefoot plantarflexion (raising MLA) • forefoot adduction (standard design and extended design with

    extended showing promise of greater control) • Does correction of flatfoot kinematics relate to improved function? Summary Kinetics • Articulated Ankle Design

    • Preserves Push-off power at the end of stance • Solid Ankle Design

    • Limits ankle power with no greater control of kinematics

  • Impact of midfoot motion on clinical tests: Single limb heel rise & Lunge test

    Ruth Chimenti, DPT, PhD Postdoctoral Fellow University of Iowa Department of Physical Therapy & Rehabilitation Science Why the midfoot?

    • Clinical tests of rearfoot strength (e.g. single limb heel rise) and flexibility (e.g. lunge test)

    • Impact of midfoot… – How can “rearfoot clinical tests” be used to assess midfoot

    function?

    – How could the midfoot mask and/or exacerbate clinical findings at the rearfoot?

    – How would midfoot pathology alter your treatment strategy? Current use of Heel Rise Test

    Assess plantar flexor strength and endurance

    Part of diagnostic criteria for establishing stage of posterior tibial tendon dysfunction (PTTD) (Johnson & Strom, 1989; Gluck, Heckman, Parekh, 2010)

    Purpose

    Examine kinematics of a unilateral heel rise between: • Stage II PTTD • Older Controls • Younger Controls

  • Hypotheses

    • People with PTTD compared to controls (young and old) will demonstrate:

    ↓ Heel rise height ↓ Ankle plantar flexion ↓ 1st Metatarsal plantar flexion ↓ Rearfoot inversion

    Participants Laboratory Performance Measures Normalized Heel Height

    Change in vertical position of calcaneal marker as a % of truncated foot length

    Forefoot

    1st Met PF with relation to the Calcaneus Rearfoot

    Calcaneal PF with relation to the tibia Calcaneal INV with relation to the tibia Heel Rise Height

    • Significant differences in heel rise height between all groups Forefoot and Rearfoot ROM Clinical Implications for Rearfoot

    • Single limb heel rise performance (height, forefoot & rearfoot excursions) is affected by age and PTTD

  • Heel Rise Height

    • PTTD = 7.7 ± 1.9 cm • Old = 10.5 ± 1.6 cm • Young = 12.0 ± 1.6 cm

    Clinical Implications for Midfoot

    • Successful performance of the single limb heel rise depends on forefoot and rearfoot excursion

    • Restore medial column and rearfoot plantar flexion during functional tasks, e.g. walking and stair climbing

    • Patients with PTTD have the potential to raise the medial longitudinal arch under lower load

    • 50% achieved 1st metatarsal PF during bilateral heel rise (Houck, Neville, Tome, Flemister, 2009)

    • 30% achieved 1st metatarsal PF during unilateral heel rise Lunge test in patients with insertional achilles tendinopathy Current use of the Lunge test

    • Limited ankle dorsiflexion commonly targeted in rehabilitation

    • Advantages of the lunge test: – Weight-bearing test indicative of function – Time efficient – Minimal equipment – Reliable (Bennell et al, 1998; Chisholm et al, 2012;

    Jones, 2005; Munteanu et al, 2009)

  • • Limitations of the lunge test: – Assumes foot is a rigid structure

    • Calcaneal plantar flexion (Chizewski & Chiu, 2012) • Lowering of medial longitudinal arch (Jung et al, 2009)

    – May be less valid for persons with foot pathology

    • Insertional achilles tendinopathy (IAT) – 5% of general population has had achilles tendinopathy (Kujala,

    Sarna, & Kaprio, 2005)

    – 1/3 cases at insertion (Karjalainen et al, 1999)

    • Lunge used for – Assessment of DF (lunge test) – Intervention (weight-bearing calf stretch)

    • Unknown – Contributions of forefoot vs rearfoot – Effect of rearfoot pathology

    Purposes

    • Compare single-segment (representing a clinical lunge test measure) versus multi-segment contributions to lunge test dorsiflexion

    • Determine if differences are present in patients with chronic insertional achilles tendinopathy

  • Participants Methods Results Discussion

    – Lunge test represents: • Rearfoot DF (Single-segment model ~5°>than calcaneal DF) • Rearfoot eversion Consider medial rearfoot posting • 1st metatarsal DF

    – IAT group had limited DF compared to controls • Impairment detected by single-segment and multi-segment

    models

    • Midfoot motion strongly correlated with single-segment DF in IAT

    – For examination and interventions support arch/medial side of foot

    Why the midfoot?

    Midfoot function is needed for rearfoot function Weakness with single limb heel rise may be exaggerated Limited ankle dorsiflexion with lunge test may be masked

    Single limb heel rise and lunge position can load (strengthen or stretch) the plantar flexors

    But may also be overload the midfoot and passive support structures

  • Acknowledgements • University of Rochester Medical Center

    – Jeff Houck, PT, PhD – Debbie Nawoczenski, PT, PhD – A. Samuel Flemister, MD – Sproull Fellowship

    • Faculty and students at Ithaca College – Josh Tome, MS – Annmarie Forenza, DPT – Elizabeth Previte, DPT – Cody Hillin, MS, MD – Amy Smith, PT – Caitlin Pautz, PT

    • Funding from Foundation for Physical Therapy

  • References Bennell KL, Talbot RC, Wajswelner H, Techovanich W, Kelly DH, Hall AJ. Intra-rater and inter-rater reliability of a weight-bearing lunge measure of ankle dorsiflexion. Australian journal of physiotherapy. 1998;44:175-80. Chisholm MD, Birmingham TB, Brown J, Macdermid J, Chesworth BM. Reliability and validity of a weight-bearing measure of ankle dorsiflexion range of motion. Physiother Can. 2012;64:347-55. Chizewski MG, Chiu LZ. Contribution of calcaneal and leg segment rotations to ankle joint dorsiflexion in a weight-bearing task. Gait Posture. 2012;36:85-9. Gluck GS, Heckman DS, Parekh SG. Tendon Disorders of the Foot and Ankle, Part 3: The Posterior Tibial Tendon. Am J Sports Med. 2010; 38:2133-2144. Houck J, Neville C, Tome J, Flemister A. Foot kinematics during a bilateral heel rise test in participants with stage II posterior tibial tendon dysfunction. J Orthop Sports Phys Ther. 2009; 39(8): 593-603. Johnson KA, Strom DE. Tibialis posterior tendon dysfunction. Clin Orthop Relat Res. 1989; 239:196-166. Karjalainen, P.T., et al., MR imaging of overuse injuries of the Achilles tendon. AJR.American journal of roentgenology, 2000. 175(1): p. 251-260. Kujala, U.M., S. Sarna, and J. Kaprio, Cumulative incidence of achilles tendon rupture and tendinopathy in male former elite athletes. Clinical journal of sport medicine : official journal of the Canadian Academy of Sport Medicine, 2005. 15(3): p. 133-135. Kulig K, Popovich JM, Noceti-Dewit LM, Reischl SF, Kim D. Women with posterior tibial tendon dysfunction have diminished ankle and hip muscle performance. J Orthop Sports Phys Ther;. 2011; 41(9):687-694). Munteanu SE, Strawhorn AB, Landorf KB, Bird AR, Murley GS. A weightbearing technique for the measurement of ankle joint dorsiflexion with the knee extended is reliable. Journal of science and medicine in sport / Sports Medicine Australia. 2009;12:54-9.

  • Clinical Implications

    Examination

    Deformity assessment: • Clinical measures of alignment

    • Navicular height • medial longitudinal arch angle …well correlated with radiographic measures

    Foot and calf muscle function • Single limb heel rise

    Ankle and midfoot range of motion • Lunge test

    Interventions for active structures Intrinsic muscles Extrinsic muscles

    Interventions for passive structures

    Orthotics Bracing

    Panel discussion

    Challenges/ Opportunities