Top Banner
The Mu3e Experiment Dirk Wiedner, Heidelberg On Behalf of the Mu3e Proto-Collaboration 31 th March 2014 31th March 2014 Dirk Wiedner, Mu3e collaboration 1
150

The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Aug 24, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

The Mu3e Experiment

Dirk Wiedner, Heidelberg

On Behalf of the Mu3e Proto-Collaboration

31th March 2014

31th March 2014Dirk Wiedner, Mu3e collaboration 1

Page 2: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Overview

• Physics Motivation

• Mu3e Experiment

• Timing detectors

• HV-MAPS

• Summary

2Dirk Wiedner, Mu3e collaboration 31th March 2014

Page 3: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Physics Motivation

31th March 2014Dirk Wiedner, Mu3e collaboration 3

Standard model:

• No lepton flavor violation

Lepton flavor violation?

Page 4: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Physics Motivation

31th March 2014Dirk Wiedner, Mu3e collaboration 4

Standard model:

• No lepton flavor violation

Lepton flavor violation?

Page 5: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Physics Motivation

31th March 2014Dirk Wiedner, Mu3e collaboration 5

Standard model:

• No lepton flavor violation, but:

o Neutrino mixing

o Branching ratio <10-54 →unobservable

Lepton flavor violation: μ+→e+e-e+

Page 6: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

The Mu3e Signal

31th March 2014Dirk Wiedner, Mu3e collaboration 6

• μ+→e+e-e+ rare in SM

• Enhanced in:

o Super-symmetry

o Grand unified models

o Left-right symmetric

models

o Extended Higgs sector

o Large extra dimensions

Page 7: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

The Mu3e Signal

31th March 2014Dirk Wiedner, Mu3e collaboration 7

• μ+→e+e-e+ rare in SM

• Enhanced in:

o Super-symmetry

o Grand unified models

o Left-right symmetric

models

o Extended Higgs sector

o Large extra dimensions

Rare decay (BR<10-12, SINDRUM)

• For BR O(10-16) >1016 muon decays

High decay rates O(109 muon/s)

Page 8: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

The Mu3e Signal

31th March 2014Dirk Wiedner, Mu3e collaboration 8

→Maximum electron

energy 53 MeV

Page 9: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

The Mu3e Signal

31th March 2014Dirk Wiedner, Mu3e collaboration 9

→Maximum electron

energy 53 MeV

Page 10: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

The Mu3e Background

31th March 2014Dirk Wiedner, Mu3e collaboration 10

• Combinatorial background

o μ+→e+νν & μ+→e+νν & e+e-

o many possible combinations

Good time and

Good vertex resolution

required

Page 11: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

The Mu3e Background

31th March 2014Dirk Wiedner, Mu3e collaboration 11

• μ+→e+e-e+νν

o Missing energy (ν)

Good momentum resolution

(R. M. Djilkibaev, R. V. Konoplich,Phys.Rev. D79 (2009) 073004)

Page 12: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

The Mu3e Background

31th March 2014Dirk Wiedner, Mu3e collaboration 12

• μ+→e+e-e+νν

o Missing energy (ν)

Good momentum resolution

(R. M. Djilkibaev, R. V. Konoplich,Phys.Rev. D79 (2009) 073004)

Page 13: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Challenges

31th March 2014Dirk Wiedner, Mu3e collaboration 13

Page 14: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Challenges• High rates

• Good timing resolution

• Good vertex resolution

• Excellent momentum resolution

Extremely low material budget

31th March 2014Dirk Wiedner, Mu3e collaboration 14

Page 15: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Challenges• High rates: 109 μ/s

• Good timing resolution: 100 ps

• Good vertex resolution: ~200 μm

• Excellent momentum resolution: ~ 0.5 MeV/c2

Extremely low material budget:

1x10-3 X0 (Si-Tracker Layer)

HV-MAPS spectrometer

50 μm thin sensors

B ~1 T field

+ Timing detectors

31th March 2014Dirk Wiedner, Mu3e collaboration 15

Page 16: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

The Mu3e Experiment

• Target double hollow cone

• Silicon pixel tracker

• Scintillating fiber tracker

• Tile detector

31th March 2014Dirk Wiedner, Mu3e collaboration 16

• Muon beam O(109/s)

• Helium atmosphere

• 1 T B-field

Page 17: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

The Mu3e Experiment

31th March 2014Dirk Wiedner, Mu3e collaboration 17

• Target double hollow cone

• Silicon pixel tracker

• Scintillating fiber tracker

• Tile detector

• Muon beam O(109/s)

• Helium atmosphere

• 1 T B-field

Phase Ia

Page 18: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

The Mu3e Experiment

31th March 2014Dirk Wiedner, Mu3e collaboration 18

• Target double hollow cone

• Silicon pixel tracker

• Scintillating fiber tracker

• Tile detector

• Muon beam O(109/s)

• Helium atmosphere

• 1 T B-field

Page 19: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

The Mu3e Experiment

31th March 2014Dirk Wiedner, Mu3e collaboration 19

• Target double hollow cone

• Silicon pixel tracker

• Scintillating fiber tracker

• Tile detector

• Muon beam O(109/s)

• Helium atmosphere

• 1 T B-field

Page 20: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

The Mu3e Experiment

31th March 2014Dirk Wiedner, Mu3e collaboration 20

• Target double hollow cone

• Silicon pixel tracker

• Scintillating fiber tracker

• Tile detector

• Muon beam O(109/s)

• Helium atmosphere

• 1 T B-field

Phase Ib

Page 21: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

The Mu3e Experiment

31th March 2014Dirk Wiedner, Mu3e collaboration 21

• Target double hollow cone

• Silicon pixel tracker

• Scintillating fiber tracker

• Tile detector

• Muon beam O(109/s)

• Helium atmosphere

• 1 T B-field

Phase II

Page 22: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

The Mu3e Experiment

31th March 2014Dirk Wiedner, Mu3e collaboration 22

• Target double hollow cone

• Silicon pixel tracker

• Scintillating fiber tracker

• Tile detector

• Muon beam O(109/s)

• Helium atmosphere

• 1 T B-field

Page 23: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

PSI μ-Beam

31th March 2014Dirk Wiedner, Mu3e collaboration 23

Paul Scherrer Institute Switzerland:

• 2.2 mA of 590 MeV/c protons

• Phase I: o Surface muons from target E

o Up to a few 108 μ/s

• Phase II: o New beam line at the neutron

source:

• High intensity Muon Beam

o Several 109 μ/s possible

>1016 muon decays per year

BR 10-16 (90% CL)

Page 24: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Timing Detectors

31th March 2014Dirk Wiedner, Mu3e collaboration 24

50 ns

Page 25: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Timing Detectors

31th March 2014Dirk Wiedner, Mu3e collaboration 25

0.1 ns

Page 26: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Timing Detectors

31th March 2014Dirk Wiedner, Mu3e collaboration 26

• Fiber detector

o Before outer pixel layers

o 250 μm scintillating fibers

o SiPMs

o 1 ns resolution

• Tile detector

o After recurl pixel layers

o 8.5 x 7.5 x 5 mm3

o SiPMs

o 100 ps resolution

Page 27: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Fiber Tracker

31th March 2014Dirk Wiedner, Mu3e collaboration 27

• Fiber ribbon modules

o 16 mm wide

o 360 mm long

o 3 layers fibers of 250 μm

dia.

o 3 STiC readout chipsScintillating fiber ribbons

Page 28: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Fiber Tracker

31th March 2014Dirk Wiedner, Mu3e collaboration 28

• Total fiber Tracker:

o 24 ribbon-modules

o 72 read-out chips

o 4536 fibers

Scintillating fiber ribbons

Page 29: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Fiber Tracker

31th March 2014Dirk Wiedner, Mu3e collaboration 29

• Prototype ribbons built:

o 3 layers

o 16 mm wide

o 360 mm long

• CAD in progress

Scintillating fiber ribbons

Page 30: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Details …staggered layers

254 μm

44

0 μ

m

Thickness:• theoretical ~ 700 mm• measured ~ 750 mm< 1 g of glue / ribbon

70

0 μ

m

horizontal gap between fibers ~ 4 μm

250 μm

31th March 2014Dirk Wiedner, Mu3e collaboration 30

Alternative:Square shape fibers

Page 31: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Fiber Winding Tool

fiber

U channel

More R&D to optimize the construction of the ribbons

~ 40 cm

16 mm

31th March 2014Dirk Wiedner, Mu3e collaboration 31

Page 32: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Readout of FibersSi-PMs (MPPCs) at both fiber ends

SciFi array readout fiber by fiber

Monolithic device • Custom design ongoing with Hamamatsu

• 6 32 independent readout cells

• 50 μm 50 μm pixels grouped in

• 0.4 mm 0.4 mm cells with 0.1 mm spacing

• Common bias for each cell (~0.5 V)Example of Hamamatsu

Si-PM array

S12642-0404 sensor

4 4 ch. (3 3 mm2)

16 mm, 32 cells3 m

m, 6

ce

lls

31th March 2014Dirk Wiedner, Mu3e collaboration 32

Page 33: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Readout of FibersSi-PMs (MPPCs) at both fiber ends

SciFi array readout fiber by fiber

lowest possible occupancy

no “optical” cross talk

can also be used for tracking ?

increased # of readout channels (2 192)

few photons / fiber (cell)

Example of Hamamatsu

Si-PM array

S12642-0404 sensor

4 4 ch. (3 3 mm2)

16 mm, 32 cells3 m

m, 6

ce

lls

31th March 2014Dirk Wiedner, Mu3e collaboration 33

Page 34: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Single Fiber Readout

Fibers glued with photo-device geometry

500 μm center to center

Si-PM array directly coupled to fibers

“fan-out” between straight section and socket

Estimated rate ~ 200 kHz

for 2016 run

31th March 2014Dirk Wiedner, Mu3e collaboration 34

Alternative:LHCb type detector

Page 35: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Readout Electronics

31th March 2014Dirk Wiedner, Mu3e collaboration

• STiC ASIC (KIP)

• Fulfills SciFi requirements

o Compact design

• Installation very close to Si-PM arrays

o 64 channels

• 6 chips / Si-PM array

• Assuming STIC can sustain ~10 MHz hit-rate

• Performance to be tested

o In particular for low photon yield

35

Page 36: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

ADC Spectra

pedestal

pedestal

(inefficiency !)

1 photon

• Equidistant peaks

• Reproducible shape

• Efficiency > 98 % (2 or more photons)

• Consistent with light propagation simulations

• Distance between peaks amplification

charge integrating ADC

31th March 2014Dirk Wiedner, Mu3e collaboration 36

Page 37: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

EfficiencySi-PM2Si-PM1

Near Mid Far

Small efficiency drop for

source far from Si-PM

Vs. photons in opposite

detector

Detection efficiency

of Si-PM1 increases

With # photons in Si-PM2

t.b.d. with 360 mm ribbons

threshold

2 ph. el.

(Si-PM2)

31th March 2014Dirk Wiedner, Mu3e collaboration 37

Page 38: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Time ResolutionDt = TSi-PM1 – TSi-PM2

σΔt ≈ 800 ps

with at least 3 g detected

(~95 % efficient)

σMT ≈ 400 ps ≥ 3 g

reproducible results

• Time resolution does not show 1 / n behavior:

improve on timing algorithm!

• Si-PM transit time spread ~100 ps has almost no effect

• Real issue: time in all ~9k channels to few 100 ps

31th March 2014Dirk Wiedner, Mu3e collaboration 38

Page 39: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

CalibrationCalibrate in situ:

Alignment, energy (thresholds), timing

Energy:

Use ADC spectra

Distance between peaks

Amplification

Set discriminator thresholds (> ng)

Timing:

• use the decay m+ e+ e- e+ n n

• 3 prongs produced at the same time

• For 107 m decays / s in one day

• 107 decays assuming 33% eff.

en

mn

pulse shape integralusing the DRS4

2g

integral (a. u.)

31th March 2014Dirk Wiedner, Mu3e collaboration 39

Page 40: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Tile Detector

31th March 2014Dirk Wiedner, Mu3e collaboration 40

• Scintillating tiles

o 8.5 x 7.5 x 5 mm3

• 12 Tile Modules per

station

o 192 tiles/module

o Attached to end rings

• SiPMs attached to tiles

o Front end PCBs below

o Readout through STiC

Sketch of Tile detector station

Page 41: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Tile Detector

31th March 2014Dirk Wiedner, Mu3e collaboration 41

• Scintillating tiles

o 8.5 x 7.5 x 5 mm3

• 12 Tile Modules per

station

o 192 tiles/module

o Attached to end rings

• SiPMs attached to tiles

o Front end PCBs below

o Readout through STiC

CAD of Tile Detector integration

Page 42: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Tile Detector

31th March 2014Dirk Wiedner, Mu3e collaboration 42

• Scintillating tiles

o 8.5 x 7.5 x 5 mm3

• 12 Tile Modules per

station

o 192 tiles/module

o Attached to end rings

• SiPMs attached to tiles

o Front end PCBs below

o Readout through STiC

Tile detector 4 x 4 prototype

Page 43: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

STiC Readout• Developed at KIP for EndoTOFPET-US

o Optimized for ToF applications

• Key features: o Digital timing & energy information

o 64 channels (version 3.0)

o 50 ps TDC bins

o SiPM bias tuning

o SiPM tail cancelation possibility (version 3.0)

o Currently ≈ 1 MHz hit rate / chip

o Up to ≈ 20 MHz in future version

• Version 2.0 successfully operated in test-beam

31th March 2014Dirk Wiedner, Mu3e collaboration 43

STiC 3.0

STiC 2.0

Page 44: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

STiC Readout• Developed at KIP for EndoTOFPET-US

o Optimized for ToF applications

• Key features: o Digital timing & energy information

o 64 channels (version 3.0)

o 50 ps TDC bins

o SiPM bias tuning

o SiPM tail cancelation possibility (version 3.0)

o Currently ≈ 1 MHz hit rate / chip

o Up to ≈ 20 MHz in future version

• Version 2.0 successfully operated in test-beam

31th March 2014Dirk Wiedner, Mu3e collaboration 44

STiC 3.0

STiC 2.0

Page 45: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

DRS5-Chip Readout

• Developed at PSI – successor to DRS4

• Currently in development

• Key features:

o Sampling speed up to 10 GSPS

o Bandwidth > 3 GHz

o 8 (16?) channels

o Dead-time less readout mode

o Up to 5 MHz hit rate

• DRS4 successfully operated in test-beam

31th March 2014Dirk Wiedner, Mu3e collaboration 45

AlternativeTo STiC

Page 46: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

STiC Test Beam

31th March 2014Dirk Wiedner, Mu3e collaboration 46

Page 47: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

STiC Test Beam

31th March 2014Dirk Wiedner, Mu3e collaboration 47

Page 48: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

STiC Test Beam

31th March 2014Dirk Wiedner, Mu3e collaboration 48

Page 49: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Time Resolution

31th March 2014Dirk Wiedner, Mu3e collaboration 49

• Coincidence between 2 tiles in a row

• Time resolution ≈ 70 ps

• Time-walk effect ≈ 5 % (4 ps)

• Only small dependence on chip settings

150 ps

64 ps70 ps

Page 50: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Efficiency

31th March 2014Dirk Wiedner, Mu3e collaboration 50

• Require hit in first & last column

• Look for hit in middle channel

• Efficiency > 99.5%

• Bad time values for ≈ 40% of hitso Known bug in STiC 2.0

o Will be fixed in STiC 3.0

Page 51: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Pixel Sensors

31th March 2014Dirk Wiedner, Mu3e collaboration 51

Page 52: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

HV-MAPS

31th March 2014Dirk Wiedner, Mu3e collaboration 52

• High Voltage Monolithic Active Pixel Sensors

• Pixel sensors

• HV-CMOS technology

• N-well in p-substrate

• Reversely biased

by Ivan PericI. Peric, A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology Nucl.Instrum.Meth., 2007, A582, 876

Page 53: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

HV-MAPS

31th March 2014Dirk Wiedner, Mu3e collaboration 53

• High Voltage Monolithic Active Pixel Sensors

• Pixel sensors

• HV-CMOS technology

• N-well in p-substrate

• Reversely biased ~60V

o Depletion layer

o Charge collection via drift

Fast <10 ns charge collection

o Thinning to < 50 μm possible

by Ivan PericI. Peric, A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology Nucl.Instrum.Meth., 2007, A582, 876

Page 54: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

HV-MAPS

31th March 2014Dirk Wiedner, Mu3e collaboration 54

• High Voltage Monolithic Active Pixel Sensors

• Pixel sensors

• HV-CMOS technology

• N-well in p-substrate

• Reversely biased ~60V

o Depletion layer

o Charge collection via drift

Fast <10 ns charge collection

o Thinning to < 50 μm possible

• Integrated readout electronics

by Ivan PericI. Peric, A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology Nucl.Instrum.Meth., 2007, A582, 876

Page 55: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Chip Prototypes

31th March 2014Dirk Wiedner, Mu3e collaboration 55

• 180 nm HV-CMOS

• Pixel matrix:

o 40 x 32 pixels

o 92 x 80 μm2 each

• Ivan Perić ZITI

o Analog part

• Smaller pixel capacitance

• Temperature tolerance

o Digital part

• Mostly ready

MuPix4

Page 56: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Chip Prototypes

31th March 2014Dirk Wiedner, Mu3e collaboration 56

• 180 nm HV-CMOS

• Pixel matrix:

o 40 x 32 pixels

o 103 x 80 μm2 each

• Ivan Perić ZITI

o Analog part

• Smaller pixel capacitance

• Temperature tolerance

o Digital part

• Mostly ready

MuPix6

Page 57: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

HV-MAPSTest Results

31th March 2014Dirk Wiedner, Mu3e collaboration 57

Page 58: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Test beams

31th March 2014Dirk Wiedner, Mu3e collaboration 58

• Five test beam

campaigns in 13/14:

o March DESY

o June DESY

o September PSI

o October DESY

o February ’14 DESY

Page 59: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Setup February Test-Beam

31th March 2014Dirk Wiedner, Mu3e collaboration 59

• DESY, February 2014

• Beam-line T22

o up to 6 GeV electrons

• Aconite telescope

• MuPix4 prototype

• Readout setup from

Ivan Perić

Page 60: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Efficiencies

31th March 2014Dirk Wiedner, Mu3e collaboration 60

• >99.5% efficiency

o 5 GeV electrons

o 45° angle

o Individual pixel thresholds

Threshold tune from

pixel efficiencies in

previous test beam

MuPix4 Efficiency

Page 61: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Threshold Scansfor 0° to 45°

31th March 2014Dirk Wiedner, Mu3e collaboration 61

MuPix 4

Page 62: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Sub-Pixel Efficiencies

31th March 2014Dirk Wiedner, Mu3e collaboration 62

• Chip folded back to

4 x 4 pixel area

• Resolution limited

• Overall high

efficiency

• No pixel substructure

(within resolution)

Page 63: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Digital Readout Feature

31th March 2014Dirk Wiedner, Mu3e collaboration 63

• Artifact from readout

protocol:

o Pixel RAM-cells reset

before readout

Bug effects only row

address and time stamp

50% of pixels effected

Pixel efficiency also

good for affected rows

Bug fixed for MuPix6EfficiencyOnly hits with full address

Page 64: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Spatial Resolution

31th March 2014Dirk Wiedner, Mu3e collaboration 64

• Pixel size 80 μm x 92 μm

• Measured track residuals:

o RMS x = 28 μm

o RMS y = 29 μm

Pixel Residuals

Page 65: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Time Stamps

31th March 2014Dirk Wiedner, Mu3e collaboration 65

• MuPix4 prototype

• External grey counter

o At 100 MHz

• Time stamp recorded by

MuPix4 sensor

o For each pixel

• Time resolution O(17 ns)

o Non-negligible setup

contribution

Time Resolution of Pixels

[10ns]

Page 66: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Signal to Noise

31th March 2014Dirk Wiedner, Mu3e collaboration 66

• MuPix4 prototype

• Signal o Test-pulse

o Calibrated to 90Sr source

o At 70°C in oven

o HV = -70V

• Noise o Taken from S-curve

o Error function fit

o X-checked with

• Threshold scan

• Close to baseline

S/N = 36.8

Page 67: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Temperature Dependence

31th March 2014Dirk Wiedner, Mu3e collaboration 67

• MuPix4 prototype

• Latency measurement

o LED pulse to…

o Pixel discriminator output

• Setup in Oven

o Temperature between

23°C and 70°C

Very little temperature

dependence

O(10ns) in latency

Within resolution of setup

Page 68: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Thinned Sensors

31th March 2014Dirk Wiedner, Mu3e collaboration 68

• Single dies thinned:

o MuPix2 thinned to < 80μm

o MuPix3 thinned to < 90μm

• Good performance of

thin chips

o In lab

o In particle beam

MuPix3 thinned < 90μm

Page 69: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Thinned Sensors

31th March 2014Dirk Wiedner, Mu3e collaboration 69

• Single dies thinned:

o MuPix2 thinned to < 80μm

o MuPix3 thinned to < 90μm

• Good performance of

thin chips

o In lab

o In particle beam

• Similar Time over

Threshold (ToT)

o PSI test-beam

o PiM1 beam-line

o 193 MeV π+

Reference

Thin < 90μm

Time Over Threshold

Page 70: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Projected Sensitivity

2/5/2013Dirk Wiedner, Mu3e collaboration 70

Page 71: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Institutes• Mu3e-collaboration:

oDPNC Geneva University

oPaul Scherrer Institute

oParticle Physics ETH Zürich

oPhysics Institute Zürich University

oPhysics Institute Heidelberg University

o ZITI Mannheim

oKIP Heidelberg

31th March 2014Dirk Wiedner, Mu3e collaboration 71

Page 72: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Summary

72

• Mu3e searches for lepton flavor violation

• > 1016 μ-decays → BR < 10-16 (90% CL)

• Two SiPM based timing systems

• Silicon tracker with ~275M pixel

• HV-MAPS 50 μm thin

• Prototypes look encouraging

Dirk Wiedner, Mu3e collaboration 31th March 2014

Page 73: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Backup Slides

31th March 2014Dirk Wiedner, Mu3e collaboration 73

Page 74: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

MotivationBackup

31th March 2014Dirk Wiedner, Mu3e collaboration 74

Page 75: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Mu3e vs. MEG

31th March 2014Dirk Wiedner, Mu3e collaboration 75

Page 76: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Momentum Resolution

31th March 2014Dirk Wiedner, Mu3e collaboration 76

• Multiple scattering

only

• Current design:

o 50 µm silicon

o 50 µm Kapton

o Helium gas cooling

o 3 layer fiber tracker

Page 77: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

SciFiBackup

31th March 2014Dirk Wiedner, Mu3e collaboration 77

Page 78: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Readout of FibersSi-PMs (MPPCs) at both fiber ends

SciFi column readout with Si-PM arrays

• 64 channel monolithic device (custom design)

• ~250 micron effective “pitch”

• 50 mm 50 mm pixels

• Grouped in 0.25 mm 1 mm vertical columns

• Common bias voltage

LHCb type

detector

31th March 2014Dirk Wiedner, Mu3e collaboration 78

Page 79: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Readout of FibersSi-PMs (MPPCs) at both fiber ends

SciFi column readout with Si-PM arrays

Reduced # of readout channels (2 64)

Easy, direct coupling

Higher occupancy

“Optical” cross talk

LHCb type

detector

31th March 2014Dirk Wiedner, Mu3e collaboration 79

Page 80: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

SciFi Column Readout

light travels preferentially

in the cladding

and exits the fiber

at large angles

“optical” cross talk

between Si-PM columns

31th March 2014Dirk Wiedner, Mu3e collaboration 80

Page 81: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Crossing Angles

occupancy :

ideal case : 100 kHz (PHASE I)

(1500 ch / 1.5 108 m decays / s)

total # tracks 2.5 larger

on average 2.5 Si-PM “columns” hit

estimated rate > 500 kHz

azimuthal angle polar angle

Si-PM columns hit

by crossing particles (e+)

31th March 2014Dirk Wiedner, Mu3e collaboration 81

Page 82: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

“Triggering”

0 g both ends

(“normalization”

for 105 m decays)

1 g both ends

3 g both ends 2 g both ends

# of fibers hit by a particle crossing the SciFi array (simulation)

as a function of detected photons at each fiber end

(assume 25% P. D. E. in simulations)

simulations (P.D.E. = 25%) to be confirmed by test beam measurements

31th March 2014Dirk Wiedner, Mu3e collaboration 82

Page 83: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Test Set-UpTests with collimated b source (Sr)

b electrons cross the ribbon at 900

Complete the studies

by testing prototypes in a beam

→ February DESY Test Beam

8 mm wide 200 mm long

3 layer SciFI ribbon

Readout with 3 3 mm2 Si-PMs

Si-PMs glued on SciFi ribbon

Trigger scintillator:

• 6 6 mm2 square bar

• Readout with same Si-PMs

Fast (~1 ns) transistor based

amplifiers developed at UniGE

31th March 2014Dirk Wiedner, Mu3e collaboration 83

Page 84: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Timing• Time difference Dt between Si-PM1 and Si-PM2

• Rise-time compensated discriminators

Dt

different colors :

different # of

detected photons

(see next slides)

Time resolution s of each Si-PM : Dt / 2

Time resolution of Mean Time : σMT = s / 2 = Dt / 2

For same s, i.e. similar # of detected photons on each side

Mean time does not depend on impact position

31th March 2014Dirk Wiedner, Mu3e collaboration 84

Page 85: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Alternative Design with Square Fibers

2 staggered layers of 500 mm square double cladding scint. fibers from Saint Gobain

BCF12: lpeak ~435nm, tdecay~3.2ns, Latt ~ 2.7 m

BCF20: lpeak ~492nm, tdecay~2.7ns, Latt > 3.5 m

32 fibers/layer

Single fiber Al coating (minimum / negligible “optical” cross-talk)

To reduce thickness and occupancy thinner fibers would be required

16 mm

1 mm

31th March 2014Dirk Wiedner, Mu3e collaboration 85

Page 86: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Testing Square FibersFiber test setup developed at PSI

500 mm square fiber b sourcesingle fiber

σt = (t2 -t4)/√2 ~ 485 ps

timing performance

cross talk < 1%

Cross talk:By sputtering 30 nm Al coating

on the fiber

cross talk < 1% was achieved

31th March 2014Dirk Wiedner, Mu3e collaboration 86

Page 87: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Conclusions SciFi• Timing requirements (resolution < 1 ns) fulfilled

• in lab with b source (resolution < 500 ps)

• Good agreement between simulations and measurements • light propagation

• Further characterizations ongoing or planned

• b source and beam:

• test of single fiber readout with commercially available Si-PMs

• cross talk between fibers

• rate capabilities

• readout electronics

• Further studies under way to optimize construction of detector

• About 6 months to complete detector studies

6 more months to finalize design

construction of detector about 6 months

31th March 2014Dirk Wiedner, Mu3e collaboration 87

Page 88: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

HV-MAPSBackup

31th March 2014Dirk Wiedner, Mu3e collaboration 88

Page 89: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Chip Prototypes

31th March 2014Dirk Wiedner, Mu3e collaboration 89

• 180 nm HV-CMOS

• Pixel matrix:

o 40 x 32 pixels

o 92 x 80 μm2 each

• Ivan Perić ZITI

o Analog part almost final

o Digital part under

development

o Bug in pixel on/off

MuPix3

Page 90: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Chip Prototypes

31th March 2014Dirk Wiedner, Mu3e collaboration 90

• 180 nm HV-CMOS

• Pixel matrix:

o 40 x 32 pixels

o 92 x 80 μm2 each

• Ivan Perić ZITI

o Analog part almost final

o Digital part under

development

o Bug in pixel on/off

MuPix3

Page 91: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Prototype OverviewPrototype Active Area Functionality Bugs Improvements

MuPix1 1.77 mm2 Sensor + analog Comparator “ringing”

First MuPix prototype

MuPix2 1.77 mm2 Sensor + analog Temperaturedependence

No ringing

MuPix3 9.42 mm2 Sensor, analog, dig. bad pixel on/off,

First part of dig.readout

MuPix4 9,42 mm2 Sensor, analog, dig. Zero time-stamp and row address for 50% of pixels

First working digital readout, first timestamp, temperature stable

MuPix6 10.55 mm2 Sensor, analog, dig. ? Removed zero time-stamp and address bug

31th March 2014Dirk Wiedner, Mu3e collaboration 91

Page 92: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Sensor + Analog + Digital

31th March 2014Dirk Wiedner, Mu3e collaboration 92

Page 93: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Sensor + Analog + Digital

31th March 2014Dirk Wiedner, Mu3e collaboration 93

Page 94: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

MechanicsBackup

31th March 2014Dirk Wiedner, Mu3e collaboration 94

Page 95: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Si-Layer Rad Length

31th March 2014Dirk Wiedner, Mu3e collaboration 95

• Radiation length per layero 2x 25 μm Kapton

• X0= 0.175‰

o 15 μm thick aluminum traces (50% coverage)

• X0= 0.0842‰

o 50 μm Si MAPS

• X0= 0.534‰

o 10 μm adhesive

• X0= 0.0286‰

• Sum: 0.822‰ (x4 layers)o For Θmin = 22.9◦

o X0= 2.11‰

layer 1

layer 2layer 3

layer 4

Back Curl layers

Page 96: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Thinning

31th March 2014Dirk Wiedner, Mu3e collaboration 96

• 50 μm Si-wafers

o Commercially available

o HV-CMOS 50 μm (AMS)

• Single die thinning

o For chip sensitivity studies

o < 50 μm desirable

o 80 μm achieved

Page 97: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Tools

31th March 2014Dirk Wiedner, Mu3e collaboration 97

• Kapton-Frame tools:

o Sensor on Flex print

• Gluing groove

• Vacuum lift

o Tools are tested with

• 25 μm Kapton foil

• 50 μm glass

Page 98: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

UltralightSilicon Pixel Tracker

Construction

31th March 2014Dirk Wiedner, Mu3e collaboration 98

Page 99: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Mu3e Silicon Detector

31th March 2014Dirk Wiedner, Mu3e collaboration 99

• Conical target

• Inner double layer

o 12 and 18 sides of 1 x 12 cm

• Outer double layer

o 24 and 28 sides of 2 x 36 cm

• Re-curl layers

o 24 and 28 sides of 2x 72 cm

o Both sides (x2)

Page 100: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Mu3e Silicon Detector

31th March 2014Dirk Wiedner, Mu3e collaboration 100

• Conical target

• Inner double layer

o 12 and 18 sides of 1 x 12 cm

• Outer double layer

o 24 and 28 sides of 2 x 36 cm

• Re-curl layers

o 24 and 28 sides of 2x 72 cm

o Both sides (x2)

Page 101: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Mu3e Silicon Detector

31th March 2014Dirk Wiedner, Mu3e collaboration 101

• Conical target

• Inner double layer

o 12 and 18 sides of 1 x 12 cm

• Outer double layer

o 24 and 28 sides of 2 x 36 cm

• Re-curl layers

o 24 and 28 sides of 2x 72 cm

o Both sides (x2)

Page 102: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Mu3e Silicon Detector

31th March 2014Dirk Wiedner, Mu3e collaboration 102

• Conical target

• Inner double layer

o 12 and 18 sides of 1 x 12 cm

• Outer double layer

o 24 and 28 sides of 2 x 36 cm

• Re-curl layers

o 24 and 28 sides of 2x 72 cm

o Both sides (x2)

180 inner sensors4680 outer sensors 274 752 000 pixel

Page 103: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Sandwich Design

31th March 2014Dirk Wiedner, Mu3e collaboration 103

• HV-MAPS

o Thinned to 50 μm

o Sensors 1 x 2 cm2 or 2 x 2 cm2

• Kapton™ flex print

o 25 μm Kapton™

o 12.5 μm Alu traces

• Kapton™ Frame Modules

o 25 μm foil

o Self supporting

• Alu end wheels

o Support for all detectors<0.1% of X0

Page 104: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Thinned Pixel Sensors

31th March 2014Dirk Wiedner, Mu3e collaboration 104

• HV-MAPS*

o Thinned to 50 μm

o Sensors 1 x 2 cm2 or 2 x 2 cm2

• Kapton™ flex print

o 25 μm Kapton™

o 12.5 μm Alu traces

• Kapton™ Frame Modules

o 25 μm foil

o Self supporting

• Alu end wheels

o Support for all detectors

MuPix3 thinned to < 90μm

Page 105: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Kapton™ Flex Print

31th March 2014Dirk Wiedner, Mu3e collaboration 105

• HV-MAPS

o Thinned to 50 μm

o Sensors 1 x 2 cm2 or 2 x 2 cm2

• Kapton™ flex print

o 25 μm Kapton™

o 12.5 μm Alu traces

• Kapton™ Frame Modules

o 25 μm foil

o Self supporting

• Alu end wheels

o Support for all detectorsLaser-cut flex print prototype

Page 106: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Pixel Modules

31th March 2014Dirk Wiedner, Mu3e collaboration 106

• HV-MAPS

o Thinned to 50 μm

o Sensors 1 x 2 cm2 or 2 x 2 cm2

• Kapton™ flex print

o 25 μm Kapton™

o 12.5 μm Alu traces

• Kapton™ Frame Modules

o 25 μm foil

o Self supporting

• Alu end wheels

o Support for all detectors

CAD of Kapton™ frames

Page 107: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Overall Design

31th March 2014Dirk Wiedner, Mu3e collaboration 107

• HV-MAPS

o Thinned to 50 μm

o Sensors 1 x 2 cm2 or 2 x 2 cm2

• Kapton™ flex print

o 25 μm Kapton™

o 12.5 μm Alu traces

• Kapton™ Frame Modules

o 25 μm foil

o Self supporting

• Alu end wheels

o Support for all detectors

CAD of Kapton™ frames

• Two halves for layers 1+2• 6 modules in layer 3• 7 modules in layer 4

Page 108: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Inner Layers

31th March 2014Dirk Wiedner, Mu3e collaboration 108

• HV-MAPS

o Thinned to 50 μm

o Sensors 1 x 2 cm2 or 2 x 2 cm2

• Kapton™ flex print

o 25 μm Kapton™

o 12.5 μm Alu traces

• Kapton™ Frame Modules

o 25 μm foil

o Self supporting

• Alu end wheels

o Support for all detectors Vertex Prototypewith 100 μm Glass

Page 109: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Outer Module

31th March 2014Dirk Wiedner, Mu3e collaboration 109

• HV-MAPS

o Thinned to 50 μm

o Sensors 1 x 2 cm2 or 2 x 2 cm2

• Kapton™ flex print

o 25 μm Kapton™

o 12.5 μm Alu traces

• Kapton™ Frame Modules

o 25 μm foil

o Self supporting

• Alu end wheels

o Support for all detectors Layer 3 Prototype in Assembling Framewith 50 μm Glass

Page 110: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Detector Frame

31th March 2014Dirk Wiedner, Mu3e collaboration 110

• HV-MAPS

o Thinned to 50 μm

o Sensors 1 x 2 cm2 or 2 x 2 cm2

• Kapton™ flex print

o 25 μm Kapton™

o 12.5 μm Alu traces

• Kapton™ Frame Modules

o 25 μm foil

o Self supporting

• Alu end wheels

o Support for all detectors Layer 3 Prototype in Assembling Framewith 50 μm Glass

Page 111: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

CoolingBackup

31th March 2014Dirk Wiedner, Mu3e collaboration 111

Page 112: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Liquid Cooling

31th March 2014Dirk Wiedner, Mu3e collaboration 112

• Beam pipe cooling

o With cooling liquid

o 5°C temperature

o Significant flow possible

o … using grooves in pipe

• For electronics

o FPGAs and

o Power regulators

o Mounted to cooling

plates

• Total power several kW

Page 113: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

He Cooling

31th March 2014Dirk Wiedner, Mu3e collaboration 113

• Gaseous He cooling

o Low multiple Coulomb

scattering

o He more effective than air

• Global flow inside

Magnet volume

• Local flow for Tracker

o Distribution to Frame

• V-shapes

• Outer surface

He

He

150mW/cm2 x 19080cm2

= 2.86 KW

Page 114: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

He Cooling

31th March 2014Dirk Wiedner, Mu3e collaboration 114

• Gaseous He cooling

o Low multiple Coulomb

scattering

o He more effective than air

• Global flow inside

Magnet volume

• Local flow for Tracker

o Distribution to Frame

• V-shapes

• Outer surfaceTemperatures between

20°C to 70°C ok.

Page 115: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

He Cooling

31th March 2014Dirk Wiedner, Mu3e collaboration 115

• Gaseous He cooling

o Low multiple Coulomb

scattering

o He more effective than air

• Global flow inside

Magnet volume

• Local flow for Tracker

o Distribution to Frame

• V-shapes

• Outer surface

Page 116: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

He Cooling

31th March 2014Dirk Wiedner, Mu3e collaboration 116

• Gaseous He cooling

o Low multiple Coulomb

scattering

o He more effective than air

• Global flow inside

Magnet volume

• Local flow for Tracker

o Distribution to Frame

• V-shapes

• Outer surface

Page 117: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

He Cooling

31th March 2014Dirk Wiedner, Mu3e collaboration 117

• Gaseous He cooling

o Low multiple Coulomb

scattering

o He more effective than air

• Global flow inside

Magnet volume

• Local flow for Tracker

o Distribution to Frame

• V-shapes

• Outer surface

Kapton™ Frame

V-shapeCooling outlets

Page 118: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Comparison SimulationHe and Air

He Air

31th March 2014Dirk Wiedner, Mu3e collaboration 118

v = 4.0 m s

Page 119: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Tests

31th March 2014Dirk Wiedner, Mu3e collaboration 119

• Full scale prototypeo Layer 3+4 of silicon tracker

o Ohmic heating (150mW/cm2)

o 561.6 W for layer 3 +4

o … of Aluminum-Kapton™

• Cooling with external fan o Air at several m/s

• Temperature sensors attached to foilo LabView readout

• First results promisingo ΔT < 60°K

Page 120: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Tests

31th March 2014Dirk Wiedner, Mu3e collaboration 120

• Full scale prototypeo Layer 3+4 of silicon tracker

o Ohmic heating (150mW/cm2)

o 561.6 W for layer 3 +4

o … of Aluminum-Kapton™

• Cooling with external fan o Air at several m/s

• Temperature sensors attached to foilo LabView readout

• First results promisingo ΔT < 60°K

Page 121: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Tests

31th March 2014Dirk Wiedner, Mu3e collaboration 121

Page 122: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Test Results

31th March 2014Dirk Wiedner, Mu3e collaboration 122

• Full scale prototypeo Layer 3+4 of silicon tracker

o Ohmic heating (150mW/cm2)

o 561.6 W for layer 3 +4

o … of Aluminum-Kapton™

• Cooling with external fan o Air at several m/s

• Temperature sensors attached to foilo LabView readout

• First results promisingo ΔT < 60°K

No sign of vibration in air

Page 123: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

ComparisonSimulation and Tests

31th March 2014Dirk Wiedner, Mu3e collaboration 123

Page 124: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Simulationwith V-shape cooling

31th March 2014Dirk Wiedner, Mu3e collaboration 124

• Configuration:o Main helium flux: v = 0.5m/so Flux in Nozzle: v = 5 m/s

• In V-shape against main flux

• Next to V-shape against main flux

31.42 mL/s per nozzle

6.786 L/s for 3. Layer

• Results:o Tmax ≈ 42°C

o Tmax close to end of tube

o T raises at last third of tube

→ Extra Improvement using V-shapes as cooling channels

Page 125: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Simulationwith V-shape cooling

31th March 2014Dirk Wiedner, Mu3e collaboration 125

• Configuration:o Main helium flux: v = 0.5m/so Flux in Nozzle: v = 5 m/s

• In V-shape against main flux

• Next to V-shape against main flux

31.42 mL/s per nozzle

6.786 L/s for 3. Layer

• Results:o Tmax ≈ 42°C

o Tmax close to end of tube

o T raises at last third of tube

→ Extra Improvement using V-shapes as cooling channels

Page 126: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

DAQBackup

31th March 2014Dirk Wiedner, Mu3e collaboration 126

Page 127: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Pixel Readout Scheme

31th March 2014Dirk Wiedner, Mu3e collaboration 127

• Pixel logico Pixel address (8 bit)

o Frame number (4 bit)

o 50 ns frames

• Column logico Pixel data

o Column address

o Coarse time

• Frame logico Super Frame

o Contains 16 x 50 ns readout frames

o + Sensor header

• Readout buffer

• Serializer and fast link(s)

Pixel address

Pixel Logic

Column Logic

Frame logicReadout buffer

Serializer

Fine time

Coarsetime

Columnaddress

Page 128: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Pixel Readout Scheme

31th March 2014Dirk Wiedner, Mu3e collaboration 128

• Pixel logico Pixel address (8 bit)

o Frame number (4 bit)

o 50 ns frames

• Column logico Pixel data

o Column address

o Coarse time

• Frame logico Super Frame

o Contains 16 x 50 ns readout frames

o + Sensor header

• Readout buffer

• Serializer and fast link(s)

Pixel address

Pixel Logic

Column Logic

Frame logicReadout buffer

Serializer

8 bit

Fine time

4 bit

12 bitCoarse

time

Columnaddress

Page 129: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Pixel Readout Scheme

31th March 2014Dirk Wiedner, Mu3e collaboration 129

• Pixel logico Pixel address (8 bit)

o Frame number (4 bit)

o 50 ns frames

• Column logico Pixel data

o Column address

o Coarse time

• Frame logico Super Frame

o Contains 16 x 50 ns readout frames

o + Sensor header

• Readout buffer

• Serializer and fast link(s)

Pixel address

Pixel Logic

Column Logic

Frame logicReadout buffer

Serializer

8 bit

Fine time

4 bit

12 bitCoarse

time

Columnaddress

4 bit8 bit

24 bit

Page 130: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Pixel Readout Scheme

31th March 2014Dirk Wiedner, Mu3e collaboration 130

• Pixel logico Pixel address (8 bit)

o Frame number (4 bit)

o 50 ns frames

• Column logico Pixel data

o Column address

o Coarse time

• Frame logico Contains 16 x 50 ns

readout frames

o + Sensor header

Super Frame

• Readout buffer

• Serializer and fast link(s)

Pixel address

Pixel Logic

Column Logic

Frame logicReadout buffer

Serializer

8 bit

Fine time

4 bit

12 bitCoarse

time

Columnaddress

24 bit

3 x serial @ 800 Mb/s

4 bit8 bit

Page 131: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Front End FPGAs

31th March 2014Dirk Wiedner, Mu3e collaboration 131

• FPGAs on detector

o 90 (+96) pieces

• Receive sensor data

o 45 LVDS inputs

• 5 Gbit/s outputs

o 8 optical links

o … to counting house

• Switching data

between readout

boards farms A-D

Front end FPGA

800 Mbit/sLVDS in

x 45

5 Gbit/s optical

Readout board

A

Pixel Sensor

Readout board

B

Readout board

C

Readout board

D

Page 132: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Front End FPGAs

31th March 2014Dirk Wiedner, Mu3e collaboration 132

• FPGAs on detector

o 90 (+96) pieces

• Receive sensor data

o 45 LVDS inputs

• 5 Gbit/s outputs

o 8 optical links

o … to counting house

• Switching data

between readout

boards farms A-D

Front end FPGA

800 Mbit/sLVDS in

x 45

5 Gbit/s optical

Readout board

A

Pixel Sensor

Readout board

B

Readout board

C

Readout board

D

Page 133: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Front End FPGAs

31th March 2014Dirk Wiedner, Mu3e collaboration 133

• FPGAs on detector

o 90 (+96) pieces

• Receive sensor data

o 45 LVDS inputs

• 5 Gbit/s outputs

o 8 optical links

o … to counting house

• Switching data

between readout

boards farms A-D

Front end FPGA

800 Mbit/sLVDS in

x 45

5 Gbit/s optical

Readout board

A

Pixel Sensor

Readout board

B

Readout board

C

Readout board

D

Page 134: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Front End FPGAs

31th March 2014Dirk Wiedner, Mu3e collaboration 134

• FPGAs on detector

o 90 (+96) pieces

• Receive sensor data

o 45 LVDS inputs

• 5 Gbit/s outputs

o 8 optical links

o … to counting house

• Switching data

between readout

boards farms A-D

Front end FPGA

800 Mbit/sLVDS in

x 45

5 Gbit/s optical

Readout board

A

Pixel Sensor

Readout board

B

Readout board

C

Readout board

D

Page 135: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Front end

FPGA

Readout Board

31th March 2014Dirk Wiedner, Mu3e collaboration 135

• FPGA readout boards

o 4 per sub-detector

• 5 Gbit/s optical inputs

o 16-28 inputs

• 10 Gbit/s optical output

o 12 outputs to PCs

• Switching network

o A-D sub-farms

o One output per PC

Readout board

5 Gbit/s Optical

x28

PC

10 Gbit/s Optical

PC

Sub-farm A

Front end

FPGA

Front end

FPGA

Front end

FPGA

PCx12

Page 136: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Readout Board

31th March 2014Dirk Wiedner, Mu3e collaboration 136

• FPGA readout boards

o 4 per sub-detector

• 5 Gbit/s optical inputs

o 16-28 inputs

• 10 Gbit/s optical output

o 12 outputs to PCs

• Switching network

o A-D sub-farms

o One output per PC

Front end

FPGA

Readout board

5 Gbit/s Optical

x28

PC

10 Gbit/s Optical

PC

Front end

FPGA

Front end

FPGA

Front end

FPGA

PC

Sub-farm A

x12

Page 137: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Data Acquisition

31th March 2014Dirk Wiedner, Mu3e collaboration 137

Page 138: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Trigger-less DAQ

31th March 2014Dirk Wiedner, Mu3e collaboration 138

• Front end links o Pixel sensor to on-detector

FPGA

• 400 – 800 Mbit/s

• LVDS

o Timing detector readout

• Optical links from detectoro Front end FPGAs

o … to readout boards

o 5 Gbit/s

• Optical links in counting roomo Off-detector read out boards

o …to PC Farm

Page 139: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Trigger-less DAQ

31th March 2014Dirk Wiedner, Mu3e collaboration 139

• Front end links o Pixel sensor to on-detector

FPGA

• 400 – 800 Mbit/s

• LVDS

o Timing detector readout

• Optical links from detectoro Front end FPGAs

o … to readout boards

o 5 Gbit/s

• Optical links in counting roomo Off-detector read out boards

o …to PC Farm

Pixel Sensor

Silicon FPGAs

x90

Readout board

x12

PCx48

Page 140: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Trigger-less DAQ

31th March 2014Dirk Wiedner, Mu3e collaboration 140

• Front end links o Pixel sensor to on-detector

FPGA

• 400 – 800 Mbit/s

• LVDS

o Timing detector readout

• Optical links from detectoro Front end FPGAs

o … to readout boards

o 5 Gbit/s

• Optical links in counting roomo Off-detector read out boards

o …to PC Farm

Pixel Sensor

Fiber Tile Pixel Sensor

Fiber Tile Pixel Sensor

Fiber Tile Pixel Sensor

Fiber Tile

Silicon FPGAs

x90

FiberFPGAs

x48

TileFPGAs

x48

Readout board

x16

Readout board

x8

Readout board

x8

x6156 x1134 x1152

PCx48

O(8Tbit/s)

Page 141: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Tile

Trigger-less DAQ

31th March 2014Dirk Wiedner, Mu3e collaboration 141

• Front end links o Pixel sensor to on-detector

FPGA

• 400 – 800 Mbit/s

• LVDS

o Timing detector readout

• Optical links from detectoro Front end FPGAs

o … to readout boards

o 5 Gbit/s

• Optical links in counting roomo Off-detector read out boards

o …to PC Farm

Pixel Sensor

Fiber Pixel Sensor

Fiber Tile Pixel Sensor

Fiber Tile Pixel Sensor

Fiber Tile

Silicon FPGAs

x90

FiberFPGAs

x48

TileFPGAs

x48

Readout board

x16

Readout board

x8

Readout board

x8

PCx48

x360

Page 142: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Trigger-less DAQ

31th March 2014Dirk Wiedner, Mu3e collaboration 142

• Front end links o Pixel sensor to on-detector

FPGA

• 400 – 800 Mbit/s

• LVDS

o Timing detector readout

• Optical links from detectoro Front end FPGAs

o … to readout boards

o 5 Gbit/s

• Optical links in counting roomo Off-detector read out boards

o …to PC Farm

Pixel Sensor

Fiber Tile Pixel Sensor

Fiber Tile Pixel Sensor

Fiber Tile Pixel Sensor

Fiber Tile

Silicon FPGAs

x90

FiberFPGAs

x48

TileFPGAs

x48

Readout board

x16

Readout board

x8

Readout board

x8

PCx48

x360 x192 x192O(4Tbit/s)

Page 143: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Trigger-less DAQ

31th March 2014Dirk Wiedner, Mu3e collaboration 143

• Front end links o Pixel sensor to on-detector

FPGA

• 400 – 800 Mbit/s

• LVDS

o Timing detector readout

• Optical links from detectoro Front end FPGAs

o … to readout boards

o 5 Gbit/s

• Optical links in counting roomo Off-detector read out boards

o …to PC Farm

Pixel Sensor

Fiber Tile Pixel Sensor

Fiber TilePixel Sensor

Fiber TilePixel Sensor

Fiber Tile

Silicon FPGAs

x90

FiberFPGAs

x48

TileFPGAs

x48

Readout board

x16

Readout board

x8

Readout board

x8

PCx48

x192

x96x96

O(4Tbit/s)

Page 144: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

GPU-PC

31th March 2014Dirk Wiedner, Mu3e collaboration 144

• PC with GPU

• 10 Gbit/s Fiber input

o 8 inputs from sub-detectors

• Data filtering

o Timing Filter on FPGA

o Track filter on GPU

o Data to tape < 100 MB/s

GPU computer

Page 145: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

GPU-PC

31th March 2014Dirk Wiedner, Mu3e collaboration 145

• PC with GPU

• 10 Gbit/s Fiber input

o 8 inputs from sub-detectors

• Data filtering

o Timing Filter on FPGA

o Track filter on GPU

o Data to tape < 100 MB/s

FPGA PCIe board

GPU computer

Optical mezzanine connectors

Page 146: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Timing Filter

31th March 2014Dirk Wiedner, Mu3e collaboration 146

• Entire event on PCIe FPGA

• Tile and Fiber data

o Easy to match

o Look for three tracks

• Reject data without three hits

o … inside time interval

1

3

2

Underdiscussion

Page 147: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Timing Filter

31th March 2014Dirk Wiedner, Mu3e collaboration 147

• Entire event on PCIe FPGA

• Tile and Fiber data

o Easy to match

o Look for three tracks

• Reject data without three hits

o … inside time interval

1

3

2

Underdiscussion

Page 148: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Vertex Filter

31th March 2014Dirk Wiedner, Mu3e collaboration 148

• Entire event on GPU

• Large target

o Large spread of muons

o Easy vertex separation

• Reject data without three tracks

o … inside area interval on target

1

3

2

Page 149: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Vertex Filter

31th March 2014Dirk Wiedner, Mu3e collaboration 149

• Entire event on GPU

• Large target

o Large spread of muons

o Easy vertex separation

• Reject data without three tracks

o … inside area interval on target

1

3

2

Page 150: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 31th March 2014 50 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad

Schedule

31th March 2014Dirk Wiedner, Mu3e collaboration 150

• 2012 Letter of intent to PSI, tracker prototype, technical design, technical design report

• 2013 Detector R&D

• 2014 Detector construction

• 2015 Installation and commissioning at PSI

• 2016 Data taking at up to a few 108 μ/s

• 2017+ Construction of new beam-line at PSI

• 2019++ Data taking at up to 3·109 μ/s