Top Banner
Outline The Mimetic Finite Difference Method Gianmarco Manzini 1 Istituto di Matematica Applicata e Tecnologie Informatiche (IMATI) C.N.R., Pavia, Italy FVCA5 - June 08-13, 2008 Aussois, France Manzini, G. The Mimetic Finite Difference Method
66

The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Jun 16, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Outline

The Mimetic Finite Difference Method

Gianmarco Manzini1

Istituto di Matematica Applicata e Tecnologie Informatiche(IMATI) C.N.R., Pavia, Italy

FVCA5 - June 08-13, 2008 Aussois, France

Manzini, G. The Mimetic Finite Difference Method

Page 2: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Outline

Outline

1 MFD method for Darcy’s problemFormal constructionMimetic conservation equationMimetic constitutive equation

2 Theoretical results and applicationsA priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

3 Summary

Manzini, G. The Mimetic Finite Difference Method

Page 3: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Outline

Outline

1 MFD method for Darcy’s problemFormal constructionMimetic conservation equationMimetic constitutive equation

2 Theoretical results and applicationsA priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

3 Summary

Manzini, G. The Mimetic Finite Difference Method

Page 4: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Outline

Outline

1 MFD method for Darcy’s problemFormal constructionMimetic conservation equationMimetic constitutive equation

2 Theoretical results and applicationsA priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

3 Summary

Manzini, G. The Mimetic Finite Difference Method

Page 5: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

“Mimetic (mathematics)”From Wikipedia, the free encyclopedia

(i) The goal of numerical analysis is toapproximate the continuum, soinstead of solving a partialdifferential equation one aims insolve a discrete version of thecontinuum problem.

(ii) A numerical method is called mimetic when it mimics (orimitates) some properties of the continuum vector calculus.

An example: a mixed finite element method applied to Darcyflows strictly conserves the mass of the flowing fluid.

Manzini, G. The Mimetic Finite Difference Method

Page 6: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Some literature. . .

Mimetic schemes were first proposed in the early eighties:

Samarskii-Tishkin-Favorskii-Shashkov, OperationalFinite-Difference Schemes, Differential Equations, 1981;

many papers were published after this one. . .

Some recent joint work from Los Alamos-Pavia:

Brezzi-Lipnikov-Shashkov,SINUM,2005 (a priori estimates)Brezzi-Lipnikov-Simoncini, M3AS, 2005 (a family of MFDs). . .

Extensions:

Cangiani-M. CMAME, 2008 (post-processing)Beirao da Veiga-M., NME, 2008 (mesh adaptivity). . .

Manzini, G. The Mimetic Finite Difference Method

Page 7: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

. . . people and topics (in Pavia)

Main features:family of schemes based on mixed formulation;grids formed by elements of general shape (polygons,polyhedra);

people currently working in Pavia:Beirao da Veiga, Boffi, Brezzi, Buffa, Cangiani, M.,A. Russo, . . .

some topics under investigation:diffusion and convection-diffusion modelsa posteriori estimates and mesh adaptivityelectromagnetismStokes equations

2-D software implementation

Manzini, G. The Mimetic Finite Difference Method

Page 8: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Outline

1 MFD method for Darcy’s problemFormal constructionMimetic conservation equationMimetic constitutive equation

2 Theoretical results and applicationsA priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

3 Summary

Manzini, G. The Mimetic Finite Difference Method

Page 9: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Linear diffusion in mixed form

Consider

div (−K∇p) = b, Ω ⊂ IRd , d = 2, 3

+boundary conditions

Let−→F be the flux vector variable:

−→F = −K∇p constitutive equation

div−→F = b conservation equation

(1)

Model problem:

solve (1) for p and−→F with suitable boundary conditions

Manzini, G. The Mimetic Finite Difference Method

Page 10: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Formally

FIRST,

(let Th be a family of partitions of Ω formed by polygonalelements, h being the mesh size);

(i) degrees of freedom for− scalar fields −→ discrete scalars , Qh;− vector fields −→ discrete vectors , Xh;

Qh and Xh are not functions, but vectors of numbers!

(ii) “discrete” operators:− the discrete divergence DIVh : Xh → Qh;− the discrete flux (or gradient) Gh : Qh → Xh;

satisfying a duality relationship (discrete Gauss-Green formula).

Manzini, G. The Mimetic Finite Difference Method

Page 11: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Formally

FIRST,

(let Th be a family of partitions of Ω formed by polygonalelements, h being the mesh size);

(i) degrees of freedom for− scalar fields −→ discrete scalars , Qh;− vector fields −→ discrete vectors , Xh;

Qh and Xh are not functions, but vectors of numbers!

(ii) “discrete” operators:− the discrete divergence DIVh : Xh → Qh;− the discrete flux (or gradient) Gh : Qh → Xh;

satisfying a duality relationship (discrete Gauss-Green formula).

Manzini, G. The Mimetic Finite Difference Method

Page 12: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Formally

FIRST,

(let Th be a family of partitions of Ω formed by polygonalelements, h being the mesh size);

(i) degrees of freedom for− scalar fields −→ discrete scalars , Qh;− vector fields −→ discrete vectors , Xh;

Qh and Xh are not functions, but vectors of numbers!

(ii) “discrete” operators:− the discrete divergence DIVh : Xh → Qh;− the discrete flux (or gradient) Gh : Qh → Xh;

satisfying a duality relationship (discrete Gauss-Green formula).

Manzini, G. The Mimetic Finite Difference Method

Page 13: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Formally

THEN,

mimic the continuous differential equations by using discreteoperators acting on the discrete scalar and flux unknownsph ∈ Qh and Fh ∈ Xh:

constitutive equation:

−→F = −K∇p −→ Fh = Ghph

conservation equation:

div−→F = b −→ DIVhFh = bI

(where bI is a suitable interpolation of b in Qh)Manzini, G. The Mimetic Finite Difference Method

Page 14: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Qh, degrees of freedom for scalar fields

Ω, Th

EqE

• q ∈ Qh means q =˘

qE¯

E∈Th

(equivalent to a piecewise

constant function)

• dim(Qh) = number of elements

of the mesh.

• ”interpolation” operator:

(pI)E =1|E |

Z

Ep dV .

Manzini, G. The Mimetic Finite Difference Method

Page 15: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Qh, degrees of freedom for scalar fields

Ω, Th

EqE

• q ∈ Qh means q =˘

qE¯

E∈Th

(equivalent to a piecewise

constant function)

• dim(Qh) = number of elements

of the mesh.

• ”interpolation” operator:

(pI)E =1|E |

Z

Ep dV .

Manzini, G. The Mimetic Finite Difference Method

Page 16: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Qh, degrees of freedom for scalar fields

Ω, Th

EqE

• q ∈ Qh means q =˘

qE¯

E∈Th

(equivalent to a piecewise

constant function)

• dim(Qh) = number of elements

of the mesh.

• ”interpolation” operator:

(pI)E =1|E |

Z

Ep dV .

Manzini, G. The Mimetic Finite Difference Method

Page 17: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Xh, degrees of freedom for vector fields

Ω, Th

E

E ′

e

• G ∈ Xh means G =˘

GeE

¯

e is an edge of E

• GeE + Ge

E′ = 0 ∀e ⊆ E ∩ E ′

dim(Xh) = number of edges

of the mesh.

• ”interpolation” operator:`−→

F I´e

E=

1|e|

Z

e

−→n eE ·

−→F dV

−→n eE

E

Manzini, G. The Mimetic Finite Difference Method

Page 18: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Xh, degrees of freedom for vector fields

Ω, Th

E

E ′

e

• G ∈ Xh means G =˘

GeE

¯

e is an edge of E

• GeE + Ge

E′ = 0 ∀e ⊆ E ∩ E ′

dim(Xh) = number of edges

of the mesh.

• ”interpolation” operator:`−→

F I´e

E=

1|e|

Z

e

−→n eE ·

−→F dV

−→n eE

E

Manzini, G. The Mimetic Finite Difference Method

Page 19: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Xh, degrees of freedom for vector fields

Ω, Th

E

E ′

e

• G ∈ Xh means G =˘

GeE

¯

e is an edge of E

• GeE + Ge

E′ = 0 ∀e ⊆ E ∩ E ′

dim(Xh) = number of edges

of the mesh.

• ”interpolation” operator:`−→

F I´e

E=

1|e|

Z

e

−→n eE ·

−→F dV

−→n eE

E

Manzini, G. The Mimetic Finite Difference Method

Page 20: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Outline

1 MFD method for Darcy’s problemFormal constructionMimetic conservation equationMimetic constitutive equation

2 Theoretical results and applicationsA priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

3 Summary

Manzini, G. The Mimetic Finite Difference Method

Page 21: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Discrete divergence operator DIVh : Xh → Qh

Let−→G be a true vector field ; take the cell average of div

−→G

over E and use Gauss Theorem:

1|E |

Ediv

−→G dV =

1|E |

∂E

−→n E ·−→G dS =

1|E |

e∈∂E

|e|(−→

GI)e

E

Let G ∈ Xh; the discrete divergence of G in Qh is definedelement by element as the constant value

(DIVhG)E =

1|E |

e∈∂E

|e|GeE

Manzini, G. The Mimetic Finite Difference Method

Page 22: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Discrete divergence operator DIVh : Xh → Qh

Let−→G be a true vector field ; take the cell average of div

−→G

over E and use Gauss Theorem:

1|E |

Ediv

−→G dV =

1|E |

∂E

−→n E ·−→G dS =

1|E |

e∈∂E

|e|(−→

GI)e

E

Let G ∈ Xh; the discrete divergence of G in Qh is definedelement by element as the constant value

(DIVhG)E =

1|E |

e∈∂E

|e|GeE

Manzini, G. The Mimetic Finite Difference Method

Page 23: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

The mimetic conservation equation: DIVhFh = bI

Take the cell average of the conservation equation:

div−→F = b −→

1|E |

Ediv

−→F dV =

1|E |

Eb dV = bI |E

and define the flux Fh as the solution to

(DIVhFh)E = bI |E ≡

1|E |

Ediv

−→F dV

using the inner product[p, q

]Qh

:=∑

E |E | pEqE =

Ω

p q dV ,

variational form:[DIVhFh, q

]Qh

=[bI , q

]Qh

∀q ∈ Qh.

Manzini, G. The Mimetic Finite Difference Method

Page 24: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

The mimetic conservation equation: DIVhFh = bI

Take the cell average of the conservation equation:

div−→F = b −→

1|E |

Ediv

−→F dV =

1|E |

Eb dV = bI |E

and define the flux Fh as the solution to

(DIVhFh)E = bI |E ≡

1|E |

Ediv

−→F dV

using the inner product[p, q

]Qh

:=∑

E |E | pEqE =

Ω

p q dV ,

variational form:[DIVhFh, q

]Qh

=[bI , q

]Qh

∀q ∈ Qh.

Manzini, G. The Mimetic Finite Difference Method

Page 25: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Outline

1 MFD method for Darcy’s problemFormal constructionMimetic conservation equationMimetic constitutive equation

2 Theoretical results and applicationsA priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

3 Summary

Manzini, G. The Mimetic Finite Difference Method

Page 26: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

The mimetic constitutive equation: Fh = Ghph

Now, we discretize the constitutive equation :

−→F = −K∇p

Note that the conservation equation

1|E |

e∈∂E

|e| (Fh)eE = (bI)E ∀E ∈ Th

holds for• many finite volume schemes;• the RT0−P0 mixed finite element method

. . . So let us first have a look at these approaches.

Manzini, G. The Mimetic Finite Difference Method

Page 27: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

The mimetic constitutive equation: Fh = Ghph

Now, we discretize the constitutive equation :

−→F = −K∇p

Note that the conservation equation

1|E |

e∈∂E

|e| (Fh)eE = (bI)E ∀E ∈ Th

holds for• many finite volume schemes;• the RT0−P0 mixed finite element method

. . . So let us first have a look at these approaches.

Manzini, G. The Mimetic Finite Difference Method

Page 28: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Finite volume discretization

We use a direct formula for the flux:

−→F = −K∇p (with K = κI)

K

L

A

B

−→n AB

−−→n AB ·

−→F ≈κ

pK − pL∣∣−→x K −−→x L∣∣

K

L

A

B

−−→F ≈κ

(pK − pL∣∣−→x K −

−→x L∣∣−→n AB

γAB+

pB − pA∣∣−→x B −−→x A∣∣−→n KL

γKL

)

Manzini, G. The Mimetic Finite Difference Method

Page 29: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Mixed finite elements discretization

In mixed finite element the constitutive equation is discretized byusing an explicit representation of the flux field from the fluxdegrees of freedom inside each element.

Let E be a triangle and take the Raviart-Thomas space:

RT0(E) :=

−→v (x , y) =

β

)+ γ

(xy

)(x , y) ∈ E

.

Reconstruct RE (G) inside E by using the degrees of freedomGe

E and the canonical basis functions of RT0(E).

Manzini, G. The Mimetic Finite Difference Method

Page 30: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Mixed finite elements discretization

In mixed finite element the constitutive equation is discretized byusing an explicit representation of the flux field from the fluxdegrees of freedom inside each element.

Let E be a triangle and take the Raviart-Thomas space:

RT0(E) :=

−→v (x , y) =

β

)+ γ

(xy

)(x , y) ∈ E

.

Reconstruct RE (G) inside E by using the degrees of freedomGe

E and the canonical basis functions of RT0(E).

Manzini, G. The Mimetic Finite Difference Method

Page 31: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Mixed finite elements discretization

The Raviart-Thomas field RE (G) preserves:

1. the degrees of freedom: −→n eE · RE

(−→G)

= GeE

2. the elemental divergence: divRE(G)

= DIVh,EG

3. constant vector fields: P0-compatible;let G

−→c = (−→c )I with −→c constant inside E ; then,

RE(G

−→c ) =−→c .

Manzini, G. The Mimetic Finite Difference Method

Page 32: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Mixed finite elements discretization

The Raviart-Thomas field RE (G) preserves:

1. the degrees of freedom: −→n eE · RE

(−→G)

= GeE

2. the elemental divergence: divRE(G)

= DIVh,EG

3. constant vector fields: P0-compatible;let G

−→c = (−→c )I with −→c constant inside E ; then,

RE(G

−→c ) =−→c .

Manzini, G. The Mimetic Finite Difference Method

Page 33: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Mixed finite elements discretization

The Raviart-Thomas field RE (G) preserves:

1. the degrees of freedom: −→n eE · RE

(−→G)

= GeE

2. the elemental divergence: divRE(G)

= DIVh,EG

3. constant vector fields: P0-compatible;let G

−→c = (−→c )I with −→c constant inside E ; then,

RE(G

−→c ) =−→c .

Manzini, G. The Mimetic Finite Difference Method

Page 34: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Mixed finite elements discretization

Given Fh, G in Xh (degrees of freedom):

1. reconstruct RE (Fh), RE (G) inside each element E ;

2. define the “RT0 inner product ”:

(Fh, G

)RT0

:=∑

E

EK−1RE (Fh) · RE (G) dV

3. rewrite the RT0 − P0 variational form of K−1−→F = −∇pas:

(Fh, G

)RT0

=∑

E

Eph divRE (G) dV ∀G ∈ Xh

Manzini, G. The Mimetic Finite Difference Method

Page 35: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Mixed finite elements discretization

Given Fh, G in Xh (degrees of freedom):

1. reconstruct RE (Fh), RE (G) inside each element E ;

2. define the “RT0 inner product ”:

(Fh, G

)RT0

:=∑

E

EK−1RE (Fh) · RE (G) dV

3. rewrite the RT0 − P0 variational form of K−1−→F = −∇pas:

(Fh, G

)RT0

=∑

E

Eph divRE (G) dV ∀G ∈ Xh

Manzini, G. The Mimetic Finite Difference Method

Page 36: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Mixed finite elements discretization

Given Fh, G in Xh (degrees of freedom):

1. reconstruct RE (Fh), RE (G) inside each element E ;

2. define the “RT0 inner product ”:

(Fh, G

)RT0

:=∑

E

EK−1RE (Fh) · RE (G) dV

3. rewrite the RT0 − P0 variational form of K−1−→F = −∇pas:

(Fh, G

)RT0

=∑

E

Eph divRE (G) dV ∀G ∈ Xh

Manzini, G. The Mimetic Finite Difference Method

Page 37: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

MFD: mimicking Mixed Finite Elements

FIRST, let RE(·)

be a reconstruction for E with the propertiesof mixed finite elements:

1. the degrees of freedom: −→n eE · RE

(−→G)

= GeE ;

2. the elemental divergence: divRE(G)

= DIVh,EG;

3. constant vector fields: P0-compatible;let G

−→c = (−→c )I with −→c constant inside E ; then,

RE(G

−→c ) =−→c .

We can build many operators: we do not have uniqueness!

Manzini, G. The Mimetic Finite Difference Method

Page 38: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

MFD: mimicking Mixed Finite Elements

FIRST, let RE(·)

be a reconstruction for E with the propertiesof mixed finite elements:

1. the degrees of freedom: −→n eE · RE

(−→G)

= GeE ;

2. the elemental divergence: divRE(G)

= DIVh,EG;

3. constant vector fields: P0-compatible;let G

−→c = (−→c )I with −→c constant inside E ; then,

RE(G

−→c ) =−→c .

We can build many operators: we do not have uniqueness!

Manzini, G. The Mimetic Finite Difference Method

Page 39: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

MFD: mimicking Mixed Finite Elements

FIRST, let RE(·)

be a reconstruction for E with the propertiesof mixed finite elements:

1. the degrees of freedom: −→n eE · RE

(−→G)

= GeE ;

2. the elemental divergence: divRE(G)

= DIVh,EG;

3. constant vector fields: P0-compatible;let G

−→c = (−→c )I with −→c constant inside E ; then,

RE(G

−→c ) =−→c .

We can build many operators: we do not have uniqueness!

Manzini, G. The Mimetic Finite Difference Method

Page 40: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

MFD: mimicking Mixed Finite Elements

FIRST, let RE(·)

be a reconstruction for E with the propertiesof mixed finite elements:

1. the degrees of freedom: −→n eE · RE

(−→G)

= GeE ;

2. the elemental divergence: divRE(G)

= DIVh,EG;

3. constant vector fields: P0-compatible;let G

−→c = (−→c )I with −→c constant inside E ; then,

RE(G

−→c ) =−→c .

We can build many operators: we do not have uniqueness!

Manzini, G. The Mimetic Finite Difference Method

Page 41: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

MFD: mimicking Mixed Finite Elements

THEN, given Fh, G in Xh (degrees of freedom):

1. reconstruct RE (Fh), RE (G) inside each element E ;

2. define the mimetic inner product:

[Fh, G

]Xh

:=∑

E

EK−1RE (Fh) · RE (G) dV

3. mimetic discretization of K−1−→F = −∇p:

[Fh, G

]Xh

=∑

E

EphdivRE (G)dV =

[ph,DIVhG

]Qh

∀G ∈ Xh

Manzini, G. The Mimetic Finite Difference Method

Page 42: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

MFD: mimicking Mixed Finite Elements

THEN, given Fh, G in Xh (degrees of freedom):

1. reconstruct RE (Fh), RE (G) inside each element E ;

2. define the mimetic inner product:

[Fh, G

]Xh

:=∑

E

EK−1RE (Fh) · RE (G) dV

3. mimetic discretization of K−1−→F = −∇p:

[Fh, G

]Xh

=∑

E

EphdivRE (G)dV =

[ph,DIVhG

]Qh

∀G ∈ Xh

Manzini, G. The Mimetic Finite Difference Method

Page 43: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

MFD: mimicking Mixed Finite Elements

THEN, given Fh, G in Xh (degrees of freedom):

1. reconstruct RE (Fh), RE (G) inside each element E ;

2. define the mimetic inner product:

[Fh, G

]Xh

:=∑

E

EK−1RE (Fh) · RE (G) dV

3. mimetic discretization of K−1−→F = −∇p:

[Fh, G

]Xh

=∑

E

EphdivRE (G)dV =

[ph,DIVhG

]Qh

∀G ∈ Xh

Manzini, G. The Mimetic Finite Difference Method

Page 44: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

The Mimetic Finite Difference Method

Scheme formulation:[Fh, G

]Xh

−[ph,DIVhG

]Qh

= 0 ∀G ∈ Xh[DIVhFh, q

]Qh

=[bI, q

]Qh

∀q ∈ Qh.

• Substitute Fh = Ghph in the first equation:[Ghph, G

]Xh

=[ph,DIVhG

]Qh

∀G ∈ Xh

to get the MFD discretization :

K−1−→F = −∇p −→ Fh = Ghph in Xh

Manzini, G. The Mimetic Finite Difference Method

Page 45: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

The Mimetic Finite Difference Method

Scheme formulation:[Fh, G

]Xh

−[ph,DIVhG

]Qh

= 0 ∀G ∈ Xh[DIVhFh, q

]Qh

=[bI, q

]Qh

∀q ∈ Qh.

• Substitute Fh = Ghph in the first equation:[Ghph, G

]Xh

=[ph,DIVhG

]Qh

∀G ∈ Xh

to get the MFD discretization :

K−1−→F = −∇p −→ Fh = Ghph in Xh

Manzini, G. The Mimetic Finite Difference Method

Page 46: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Features

Let R(·) = RE (·) be a lifting operator such that RE (·) isP0-compatible on E .

1. R(Xh) ⊂ H(div,Ω); hence R(Xh) − P0 is a conformingmixed discretization that generalizes RT0 − P0;

2. we can use elements of very general shapes, evennon-convex (but at least star-shaped) elements areadmissible;

3. the implementation and analysis of the MFD method aresimilar to those of the Mixed Finite Element method.

Manzini, G. The Mimetic Finite Difference Method

Page 47: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Formal constructionMimetic conservation equationMimetic constitutive equation

Mimetic scalar product for the flux

The scalar product for fluxes is given by assembling “elemental”scalar products, each one of which can be represented by asymmetric positive definite (SPD) matrix:

EK−1RE (Fh) · RE (G) dV −→ ME = RE

K−1E

|E |RT

E + ME

RE(·)

is not unique −→ family of matrices

ME contains free positive parameters and ensures that ME

is an SPD matrix;

the formulas for RE , ME depend on the shape of E and canbe derived without the explicit knowledge of RE

().

Manzini, G. The Mimetic Finite Difference Method

Page 48: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

A priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

Outline

1 MFD method for Darcy’s problemFormal constructionMimetic conservation equationMimetic constitutive equation

2 Theoretical results and applicationsA priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

3 Summary

Manzini, G. The Mimetic Finite Difference Method

Page 49: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

A priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

A priori error estimates for Darcy’s equation[Brezzi-Lipnikov-Shashkov, SINUM 2005]

General assumptions:• Ω polygonal or polyhedral with Lipschitz continuous boundary;• Th is a partition satisfying some mesh regularity assumptions;• the scalar product

[·, ·]

Xhsatisfies local consistency and stability;

1. If p ∈ H2(Ω) then

∣∣∣∣∣∣−→F I − Fh∣∣∣∣∣∣

Xh≤ Ch

∣∣∣∣p∣∣∣∣

H2(Ω)

where∣∣∣∣∣∣ ·∣∣∣∣∣∣2

Xh=[·, ·]

Xh.

Manzini, G. The Mimetic Finite Difference Method

Page 50: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

A priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

A priori error estimates for Darcy’s equation[Brezzi-Lipnikov-Shashkov, SINUM 2005]

2. if p ∈ H2(Ω) then∣∣∣∣∣∣pI − ph

∣∣∣∣∣∣Qh

≤ Ch∣∣∣∣p∣∣∣∣

H2(Ω)

3. superconvergence: if p∈H2(Ω), b∈H1(Ω), and Ω is convex :

∣∣∣∣∣∣pI − ph

∣∣∣∣∣∣Qh

≤ Ch2(∣∣∣∣p

∣∣∣∣H2(Ω)

+∣∣∣∣b∣∣∣∣

H1(Ω)

)

Manzini, G. The Mimetic Finite Difference Method

Page 51: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

A priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

A priori error estimates for Darcy’s equation[Brezzi-Lipnikov-Shashkov, SINUM 2005]

2. if p ∈ H2(Ω) then∣∣∣∣∣∣pI − ph

∣∣∣∣∣∣Qh

≤ Ch∣∣∣∣p∣∣∣∣

H2(Ω)

3. superconvergence: if p∈H2(Ω), b∈H1(Ω), and Ω is convex :

∣∣∣∣∣∣pI − ph

∣∣∣∣∣∣Qh

≤ Ch2(∣∣∣∣p

∣∣∣∣H2(Ω)

+∣∣∣∣b∣∣∣∣

H1(Ω)

)

Manzini, G. The Mimetic Finite Difference Method

Page 52: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

A priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

Outline

1 MFD method for Darcy’s problemFormal constructionMimetic conservation equationMimetic constitutive equation

2 Theoretical results and applicationsA priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

3 Summary

Manzini, G. The Mimetic Finite Difference Method

Page 53: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

A priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

Post-processing of solution[Cangiani-M. CMAME 2008]

Let −→v be a vector field on E . Then,

−→vInterpolate−→

−→v I Reconstruct−→

−→v ∗ ∈(P0(E)

)d

where the elemental reconstructed vector is given by:∫

E

−→v ∗ · ∇q =[−→v I, (KE∇q)I

]E ∀q ∈ P1(E).

In effect,−→v ∗ = RT

E−→v I

where RE is the matrix used in the definition of the elementalscalar product; so, easy to implement and very cheap .

Manzini, G. The Mimetic Finite Difference Method

Page 54: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

A priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

Post-processing of solution[Cangiani-M. CMAME 2008, L. Beirao da Veiga Numer. Math. 2008]

1. Reconstruct the elemental gradient :

Fh|EReconstruct

−→−→F ∗

h|ECalculate−→ ∇Ep∗

h = −K−1E

−→F ∗

h;

2. reconstruct the piecewise linear pressure field as

ph|∗

E (−→x ) := pE + ∇E p∗

h · (−→x −

−→x E ), ∀−→x ∈ E

(−→x E center of gravity of E)

Under the hypothesis yielding scalar super-convergence:∣∣∣∣p − p∗

h

∣∣∣∣L2(Ω)

+ h∣∣∣∣∣∣p − p∗

h

∣∣∣∣∣∣1,h ≤ Ch2

(∣∣∣∣p∣∣∣∣

H2(Ω)+∣∣∣∣b∣∣∣∣

H1(Ω)

)

with∣∣∣∣∣∣q∣∣∣∣∣∣2

1,h=∑

E

∣∣∣∣∇q∣∣∣∣2

L2(E)+∑

e

h−1e

∣∣∣∣[[q]]∣∣∣∣2

e.

Manzini, G. The Mimetic Finite Difference Method

Page 55: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

A priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

Outline

1 MFD method for Darcy’s problemFormal constructionMimetic conservation equationMimetic constitutive equation

2 Theoretical results and applicationsA priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

3 Summary

Manzini, G. The Mimetic Finite Difference Method

Page 56: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

A priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

An a posteriori error estimator for MFDs[L. Beirao da Veiga, Numer. Math. 2008]

p∗

h , post-processed pressure; [[q]]e jump of q across edge e.

error estimator: η2 :=∑

E ηE2 and

ηE2 :=

∣∣∣∣∣∣Fh + (KE∇p∗

h)I∣∣∣∣∣∣2

E+

12

e∈∂E

h−1e

∣∣∣∣ [[p∗

h ]]e∣∣∣∣2

L2(e)

target error: err2 =∑

E errE2 with

errE2 :=

∣∣∣∣−→F −R(Fh)∣∣∣∣2

L2(E)+ h2

E

∣∣∣∣div (−→F −R(Fh))

∣∣∣∣2L2(E)

+∣∣∣∣∣∣p − p∗

h

∣∣∣∣∣∣1,E

and∣∣∣∣∣∣q∣∣∣∣∣∣2

1,E=∣∣∣∣∇q

∣∣∣∣2L2(E)

+∑

e∈∂E

h−1e

∣∣∣∣ [[q]]e∣∣∣∣2

L2(e)

efficiency: cηE ≤ errE ;

reliability: err ≤ Cη;.

Manzini, G. The Mimetic Finite Difference Method

Page 57: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

A priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

An a posteriori error estimator for MFDs[L. Beirao da Veiga, Numer. Math. 2008]

p∗

h , post-processed pressure; [[q]]e jump of q across edge e.

error estimator: η2 :=∑

E ηE2 and

ηE2 :=

∣∣∣∣∣∣Fh + (KE∇p∗

h)I∣∣∣∣∣∣2

E+

12

e∈∂E

h−1e

∣∣∣∣ [[p∗

h ]]e∣∣∣∣2

L2(e)

target error: err2 =∑

E errE2 with

errE2 :=

∣∣∣∣−→F −R(Fh)∣∣∣∣2

L2(E)+ h2

E

∣∣∣∣div (−→F −R(Fh))

∣∣∣∣2L2(E)

+∣∣∣∣∣∣p − p∗

h

∣∣∣∣∣∣1,E

and∣∣∣∣∣∣q∣∣∣∣∣∣2

1,E=∣∣∣∣∇q

∣∣∣∣2L2(E)

+∑

e∈∂E

h−1e

∣∣∣∣ [[q]]e∣∣∣∣2

L2(e)

efficiency: cηE ≤ errE ;

reliability: err ≤ Cη;.

Manzini, G. The Mimetic Finite Difference Method

Page 58: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

A priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

Some experiments on mesh adaptivity[L. Beirao da Veiga & M., IJNME, 2008]

The indicator ηE allows us to select elements needing refinement:

1. calculate local error estimates ηE ;

2. mark for refinement those elements such that ηE ≥ tol ηmax ;

3. subdivide the marked elements as follows:

No need for special treatment of hanging nodes!

Manzini, G. The Mimetic Finite Difference Method

Page 59: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

A priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

Mesh adaptivityL-shaped domain, K = II, p(r , θ) = r2/3 sin(2θ/3)

102

103

104

105

10610

-3

10-2

10-1

100

After 3 refinements η(), err(•) vs #elements

Manzini, G. The Mimetic Finite Difference Method

Page 60: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

A priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

Outline

1 MFD method for Darcy’s problemFormal constructionMimetic conservation equationMimetic constitutive equation

2 Theoretical results and applicationsA priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

3 Summary

Manzini, G. The Mimetic Finite Difference Method

Page 61: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

A priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

Convection-Diffusion-Reaction Equation(In collaboration with A. Cangiani and A. Russo)

• Problem:−→F = −(K∇ p +

−→β p) in Ω

div−→F + c p = b in Ω

p = 0 on ∂Ω

with

• β, K and c smooth fields plus usual coercivity conditions,

• Ω ⊂ IR2 is a polygonal domain.

Manzini, G. The Mimetic Finite Difference Method

Page 62: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

A priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

Convection-Diffusion-Reaction EquationScheme formulation

discretization of convection-reaction terms

convection:∫

Ω

K−1−→β p · R(G)

dV −→∑

E pE[(−→β )I, G

]E

reaction:∫

Ω

c p q dV −→[cIph, q

]Qh

Scheme formulation[Fh, G

]Xh

−[p,DIVhG

]Qh

+∑

E pE[(−→β )I , G

]E = 0 ∀G ∈ Xh

[DIVhFh, q

]Qh

+[cIph, q

]Qh

=[b, q

]Qh

∀q ∈ Qh

Manzini, G. The Mimetic Finite Difference Method

Page 63: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

A priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

Convection-Diffusion-Reaction Equation

a priori estimate for the diffusive regime:

∣∣∣∣−→F −R(Fh)∣∣∣∣

H(div,Ω)+∣∣∣∣p − ph

∣∣∣∣L2(Ω)

≤ Ch(∣∣∣∣p

∣∣∣∣H1(Ω)

+ h∣∣∣∣p∣∣∣∣

H2(Ω)+∣∣∣∣b − bI

∣∣∣∣L2(Ω)

),

(with−→β ∈ W 2,∞(Ω), c ∈ W 1,∞(Ω), and coercivity assumptions)

superconvergence for pressure cell averages under sameassumptions of the pure elliptic problem and

−→β ∈ R(Xh):

∣∣∣∣∣∣pI − ph

∣∣∣∣∣∣Qh

≤ Ch2(∣∣∣∣p

∣∣∣∣H2(Ω)

+∣∣∣∣b∣∣∣∣

H1(Ω)

)

Manzini, G. The Mimetic Finite Difference Method

Page 64: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

A priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

Convection-Diffusion-Reaction EquationConvergence results

p(x , y) = sin(2π x) sin(2π y)

+x2 + y2 + 1,

−→β = (1, 3)T ,

c(x , y) = x y2

n h L2-error Rate Hdiv -error Rate1 9.135 10−2 9.134 10−2 −− 1.823 10−1 −−

2 4.654 10−2 4.630 10−2 1.007 8.572 10−2 1.1183 2.346 10−2 2.315 10−2 1.012 4.168 10−2 1.0524 1.175 10−2 1.164 10−2 0.995 2.039 10−2 1.0345 5.880 10−3 5.841 10−3 0.995 1.007 10−2 1.0186 2.940 10−3 2.927 10−3 0.996 5.027 10−3 1.002

Manzini, G. The Mimetic Finite Difference Method

Page 65: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

A priori estimatesPost-processing of solutionAn error estimator and mesh adaptivityConvection-Diffusion-Reaction Equation

Convection-Diffusion-Reaction EquationSuperconvergence results

p(x , y) = sin(2π x) sin(2π y)

+x2 + y2 + 1,

−→β = (1, 3)T ,

c(x , y) = x y2

n h Qh-error Rate1 9.135 10−2 3.069 10−2 −−

2 4.654 10−2 1.078 10−2 1.5513 2.346 10−2 2.807 10−3 1.9644 1.175 10−2 7.483 10−4 1.9135 5.880 10−3 1.904 10−4 1.9756 2.940 10−3 4.796 10−5 1.989

Manzini, G. The Mimetic Finite Difference Method

Page 66: The Mimetic Finite Difference Methodarturo.imati.cnr.it/~marco/resources/Slides/talk-MFD-FVCA-2008.pdf · The Mimetic Finite Difference Method Gianmarco Manzini1 Istituto di Matematica

Mimetic FormulationTheoretical results and applications

Summary

Summary

The MFD method for second-order elliptic problems

mimics properties of continuous operators; e.g. DIVh, Gh

satisfy discrete Green-like formulas ;

works on element of very general shape;

shows a strong connection with the lowest-order mixedfinite element method RT0 − P0, helpful in establishing thetheoretical foundation.

Manzini, G. The Mimetic Finite Difference Method