Top Banner
The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre University of Auckland, NZ BMSW 2008, Bangalore, India
26

The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

Jan 03, 2016

Download

Documents

carly-harvey

BMSW 2008, Bangalore, India. The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre University of Auckland, NZ. Genes. mRNA. Proteins Lipids Carbohydrates. Cell structure -function. Tissue structure -function. Organ structure -function. Clinical medicine. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

The IUPS Physiome ProjectAuckland Bioengineering Institute

& Maurice Wilkins CentreUniversity of Auckland, NZ

BMSW 2008, Bangalore, India

Page 2: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

1. IUPS Physiome Project

Genes Cellstructure-function

Tissue structure-function

Clinicalmedicine

Organ structure-function

ProteinsLipids

Carbohydrat

es

mRNA

25,000genes

100,000+proteins

12 organsystems

1body

200+ celltypes

4 tissuetypes

Physiome Project

Genome/Transcriptome/Metabolome/Proteome

Hunter, PJ and Borg, TK. Integration from proteins to organs: The Physiome Project. Nature Reviews Molec & Cell Biol. 4:237-243, 2003

Page 3: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

The Challenge: spatial and temporal scales

The diversity of experimental models• bacterial models structural biology• murine models functional genomics• large animal models physiology• human clinical MRI, CT, etcRequires a hierarchy of inter-related models

pathwaymodels

ODEsstochasticmodels

PDEs (continuum models)

gene reg.networks

MD/CG models

• 1 m person• 1 mm electrical length scale of cardiac tissue• 1 m cardiac sarcomere spacing• 1 nm pore diameter in a membrane protein

Space

109

• 109 s (70 yrs) human lifetime• 106 s (10 days) protein turnover• 103 s (1 hour) digest food• 1 s heart beat• 1 ms ion channel HH gating• 1 s Brownian motion

Time

1015

Page 4: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

Heart Physiome

Cardiac Structure

Page 5: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

Element fields:undeformed coords X,Y,Z (or ) deformed coords x,y,zfibre & sheet orientationselectrical potentialconcentration fields for Ca2+, O2 , etc

Element withHermite basis

Large deformation elasticity theoryFinite element method

1

2

3

u , u , u , etc

material coordinates

Equations: Integral formulation - Galerkin method - Gaussian quadCosta KD, Hunter PJ, Wayne JS, Waldman LK, Guccione JM & McCulloch AD. ASME J. Biomech. Eng. 118:464-472, 1996

Nash MP and Hunter PJ. J. Elasticity. 61(1-3):113-141, 2001

Page 6: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

pole

Axialtension

Axial strain

sheet axis

fibre axis

sheet normal Pole-zero constitutive law:

W = k11e112

+ k22e222

+ ….

(a11-e11)2 (a22-e22)

2

Epi

Transmural confocal image of rat myocardium

Endo

fibre

sheet

normal

Constitutive Relations

Page 7: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

Denis Noble

Myocardiac Activation

m

mm

CI

dtdV

Action potential duration is critical

Probable clones

T-type calcium current

ITO2 (Ca-activated)

ICl or IKp

IKur or IKq

IK ATP/ACh

If (pacemaker)

Kv4.x

Kv1.5CFTR, TWIK

hCNGKir3.1/3.4, Kir6.x/SUR

Membrane ion channels

CACH1CL-type calcium current

NCXNa-Ca exchange

HERG + MiRP-1IKr

KvLQT1 + minKIKs

Kir2.xIK1 (inward rectifier)

ITO1 (4-AP-sensitive)

CellML

V

time

Ou

tward

cu

rren

t

SCN5A + subunitsSodium current

Inward current pushes the voltage up

Page 8: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

Tomlinson KA, Pullan AJ & Hunter PJ. SIAM J Applied Maths. 63(1):324–350, 2002

Activation sequence

Karl Tomlinson

Page 9: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

Cell to tissue couplingGiven:• initial geometry • boundary conditions

Update grid point extension ratios

2 Solve cell eqtns for T, z …

3

Update T at Gauss pts4

5 For time dep. cell model, iterate to convergence at each time step

Buist ML, Sands GB, Hunter PJ and Pullan AJ. Annals BME 31:577-588, 2003

Boundary forces

Solve tissue mechanics for deformed mesh

1

X X

XX

Page 10: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

Electro-mechanics in ventricular tissue

Nickerson, Smith & Hunter. New developments in a strongly coupled cardiac electromechanical model. Europace, 7, S118-S127, 2005

Page 11: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

Smith NP, Pullan AJ & Hunter PJ. SIAM J Appl Maths 62:990-1018, 2002

Coronary flow & energetics

Nic Smith

Page 12: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

Cardiovascular system Respiratory system Musculo-skeletal system Digestive system Skin (integument) Urinary system Lymphoid system Female reproductive

system Special sense organs Central nervous system Endocrine system Male reproductive

system

Organ system Physiome Projects

Page 13: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

Merryn Tawhai

Lung physiomeAuckland, Iowa & Oxford

airways

blood vessels

diaphragm

alveoli

gas exchange

Eric HoffmanU Iowa

Page 14: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

Kumar Mithraratn

e

JustinFernande

z

Musculo-skeletal physiome

Page 15: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

Digestive system physiome

Andrew Pullan

Auckland, Singapore, Nevada & Vanderbilt

Martin Buist

Page 16: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

Genome

Muscle tissueNerve tissueConnective tissueEpithelial tissue

Circulatory system Respiratory systemMusculo-skeletal systemSkin (integument)Digestive systemCentral nervous system Endocrine systemLymphoid systemMale reproductive system Female reproductive system Special sense organs

Organism (7)

OrganSystem(6)

Organ (5)

Tissue (4)

Cell (3)

Molecule (2)

Atom (1)

GenBankEMBL, DDBJ

TIGR

dbESTdSTS

PIR SwissProt

Prosite

PDBSCOPs

OMIN, Medline PubMed

SNPbase, …

DNA

RNA

Protein

Structure

TissueML

FieldML

C C

H H

H H

AnatML

CellML

Physiome MLs, tools & databases

Page 17: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

Strategy:

1. Develop MLs for encoding models2. Develop libraries of open source tools

4. Implement collaborative project environments

5. Implement workflows based on web services

3. Develop model repositories based on MLs

Page 18: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

FieldML & Cmgui

Page 19: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

CellML models include information about :

• model structure how the parts of a model are related to one another

• mathematics (MathML)equations describing the underlying processes

• metadata (RDF)additional information about the model that allows scientists to search for specific models or model components in a database or other repository

CellML (www.cellml.org)

PoulNielsen

Page 20: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

Model repository (www.cellml.org/models)

Page 21: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre
Page 22: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

(a) Model components & metadata

(b) MathML editor

(d) Simulation software

(c) Graphical display

CellML Tools (www.cellml.org/tools)

Cmgui

Page 23: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

SummaryThe Physiome project is about:• Models that capture patient-specific geometry (link to clinical imaging)• Multi-physics models based on biophysical mechanisms (can use power of physical constraints) • Constitute laws based on tissue microstructure (only way to deal with spatial variation)• Multi-scale models that link to proteins (can link to disease & drug action)

We need:• Open source software• Markup language standards for encoding models• Web accessible model databases• HPC & grid-enabled tools for collaboration

Page 24: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

Acknowledgements:Funding: Heart Foundation of NZ

Health Research Council of NZ Royal Society NZ Marsden FundFdn for Research, Science &

TechnologyMaurice Wilkins Centre CoRE NIH, NSFWellcome Trust, UKEPSRC eScience Integrative Biology

projectEU FP6

Colleagues in the Auckland Bioengineering Institute (ABI) & the Maurice Wilkins Centre (MWC)

Colleagues in Oxford: Denis Noble, David Paterson, Peter Kohl

& many other colleagues around the world

& …

Page 25: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

Our graduate students & postdocs

Page 26: The IUPS Physiome Project Auckland Bioengineering Institute & Maurice Wilkins Centre

www.physiomeproject.org

www.bioeng.auckland.ac.nz

www.cellml.org