Top Banner
The Higgs boson Marina Cobal University of Udine
36

The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Jul 08, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

The Higgs boson

Marina Cobal University of Udine

Page 2: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Suggested books

F.Halzen, A.D.Martin, “Quarks & Leptons: An Introductory Course in Modern Particle Physics”, Wiley 1984   Cap.14,15

W.E.Burcham,M.Jobes, “Nuclear and Particle Physics”, Longman 1995   Cap.13

R.K.Ellis, W.J.Stirling, B.R.Webber “QCD and Collider Physics”, Cambridge U.P. 1996   Cap. 8, 10, 11

Other useful text (more advanced level) L.B.Okun, “Leptoni e Quarks”, Ed. Riuniti 1986

  Cap.19,20 F.Mandl, G.Shaw, “Quantum Field Theory”, Wiley 1984

  Cap. 11,12,13 J.F.Donoghue,E.Golowich,B.R.Holstein “Dynamics of the Standard Model”,

Cambridge U.P. 1992   Cap.15

Page 3: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

The starting point for the construction of the Standard Model is a Lagrangian of free or auto-interacting fields, which is invariant

under a certain group of global symmetries.

The Lagrangian is invariant for transformations like:

U is a symmetric matrix, Tα (hermitians) are the generators of the group G of global simmetry.

If G is a group of the SU(N) type, then we will have N2 -1 hermitian generators with hermitians generators (a traccia nulla).

Introduction

Page 4: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

The interaction terms and the fields of the gauge bosons are introduced by making the G group symmetry local:

U(θ) → U( θ(x) ) = exp( ig Tα θ(x) )

The symmetry of the Lagrangian is saved by introducing the covariant

derivative, which means applying the substitution:

It is possible to introduce a kinetic term for the gauge fields which

turns out to be of the type:

The expression of the Lagrangian which contains the matter and the gauge boson fields will be therefore:

Page 5: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Such a Lagrangian cannot contain mass terms in the gauge fileds, which would violate the gauge symmetry!

FµνFµν, includes cubic and quartic terms of gauge fields auto-interaction.

In particular, in the SM construction we can consider the following symmetry groups:

U(1) → 1 generator (QED, γ)

SU(2) → 3 generators (electroweak sector, W,Z)

SU(3) → 8 generators (QCD, gluons)

If we consider the electroweak sector of the Standard Model, the symmetry group G is given by;

Page 6: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

It is possible to give mass to the gauge boson through the Higgs mechanism. Lets consider the field doublet:

With the Lagrangian given by:

The V potential is;

The µ2 value is important, as can be seen from the shape of the V potential. All the

states which give

Are a minimum for the V potential

Page 7: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

A phase transformation( U(1) ) connects all the status of mimimum for the V potential.

If we choose the status of minimum, then such a symmetry is broken The global lagrangian saves its gauge symmetry !

In particular, it is possible to choose a gauge, in which the vacuum status is: :

The Higgs fied can be written as:

H(x) is a real field

The second degree of freedom has been absorbed in the choice of the gauge. It shows up again in the transformations of the

gauge fields.

Page 8: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Substituting the expression of the Higgs field in V(φ) we get:

There are:

1)  Higgs mass term: 2λv2

2)  Auto-interaction terms (H3 e H4)

Terms for the Potential

Page 9: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Starting from this expression:

Doing the calculations , one arrives at the conclusions

•  The W and Z get a mass equal to

From the measurement of the GF constant one obtains the value of v:

Kinetic terms

Page 10: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

The coupling between Higgs and the gauge bosons is:

And turns out to be proportional to the gauge bosons’ masses!

Kinetic terms

Page 11: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

In the Standard Model Lagrangian, the mass terms for fermions would violate the gauge symmetry.

Also in this case the Higgs mechanism is used by introducing a Yukawa coupling of the type

gf [ (ψLH) ψ R + h.c.]

One gets that the fermion masses are: mf= gf v/√2 and so even in this case the coupling is proportional to the fermion masses.

Mass terms for fermions

Page 12: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

In the Standard Model all the Higgs couplings are fixed. The only free parameter is:

Feynmann rules

Page 13: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Solving the equation of the group renormalization for the coupling constant λ which appears in the Higgs Lagrangian,

one obtains

Limits on the boson Higgs mass

Page 14: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

A lower limit can be obtained if λ(µ)≥0 in the energy range where we think the theory is reliable.

Limits on the boson Higgs mass

Page 15: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

An upper limit is obtained by requiring that the theory is a perturbative one – and therefore λ(µ) ≈1 – for all the values of

µ<Λ (Λ theory scale)

Limits on the boson Higgs mass

Page 16: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Let’s consider the scattering of longitudinally polarized Z bosons:

Requiring that the unitarity limit of the perturbative development is valid , it turns out that (amplitude in S-wave):

This limit becomes stronger if we conider also the scattering of other bosons (800 GeV).

Limits on the boson Higgs mass

Page 17: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Some electroweak observables are sensitive to parameters like mt and mH. High precision measureemnts of these observables, allow to gain

some information on mt and mH even without a direct measurement!!

For example, MW is dependent from and from mH through the existence of higher order diagrams.

Indirect measurements

Page 18: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Using the precision measurement (LEP & Tevatron) is interesting to consider the following plot:

These results seem to indicate the presence of a light Higgs boson, compatible with what is predicted by the Standard Model.

Page 19: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

The indication of a light Higgs becomes even stronger if we consider the results of a fit on all the observable parameters of the Standard

Model in the electroweak sector.

Page 20: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Higgs Production at e+e- Colliders

Page 21: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Higgs Production at Hadron Colliders

gg Fusion

W/Z Fusion

H-radiation

10x >

> (~= at low mass)

Page 22: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Higgs Decay Modes H mass Dom. proc <130 GeV H->bb (ff) >130 GeV H->V*V #

Γ(H) ~10MeV

<GeV

#: V*V: one real and one virtual Vector Boson: W*W or Z*Z

>180 GeV H->VV tt-channel not very relevant

m(H)>500 -> Γ ~ m

~10MeV

H->γγ: rare decays, but clean signature

Page 23: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Higgs at LEP

  LEP1 sensitive to:

e+e- -> (H0 -> bb) (Z0->νν)

e+e- -> (H0 -> bb) (Z0->l+l-) (l: e or µ)

  LEP2 additionally involved decay modes e+e- -> (H0 -> bb) (Z0->qq)

e+e- -> (H0 -> ττ) (Z0->qq)

e+e- -> (H0 -> qq) (Z0->ττ)

ETmiss ! leptonic !

BR*

* @ m(H) = 115 GeV

17%

6%

60%

10% Background!

Page 24: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Higgs @ LEP -> 3 sigma @ 115 GeV!

Q = L(s+b)/L(b)

BG (simulated) S (simulated)

1-sigma (BG) 2-sigma (BG)

BUT:

Combined data only 1.7 sigma 95% CL of Higgs mass lower bound of 114 GeV

Page 25: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Higgs @ Tevatron

Page 26: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Constrains on Higgs mass

m(H)>114 GeV (LEP II) m(H)<166 GeV (LEP II)

Results from precision electroweak measurements:

M(H) = 85 (+39) (-28) GeV

Page 27: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

• Bunch-crossing frequency = 40 MHz •  Interaction frequency~109 Hz @ L = 1034 cm-2 s-1

•  Collected events≈100 Hz (Rejection factor: 107)

σtot = 80 mb

109 interactions/sec

Higgs 10-2 - 10-1 Hz

Top 10 Hz

W 2 Khz

Page 28: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Higgs @ LHC

Cross-sections 10 to 100 x larger at the LHC (depending on Higgs mass)

Page 29: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Gluon Fusion

Vector Boson Fusion

Higgs Strahlung

ttH

Page 30: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Higgs @ LHC M(H)<120 GeV Signal x-secion*BR

0.36pb BG x-secion (ttbb)

60pb

Dominant decay channel: H-bb (but only usable in

associated production mode) Good b-tagging needed t-tagging to reduce bck

M(H)<140 GeV

2 forward jets Higgs decay products in

central region

3.4 sigma @ 30 fb-1

-> ~ 40 fb-1 needed for discovery

Page 31: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Higgs @ LHC

M(H)<150 GeV

X-section * BR 50 fb, But very clean signature

EM Calorimetry efficiency Crucial (ATLAS vs CMS

performance)

M(H)>130 GeV X-section * BR 5.7 fb, very clean signature

Page 32: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Higgs @ LHC: Discovery potential

Page 33: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Irreducible background coming from the processes: gg,qq →γγ.

The signal can be observed on the continuum background only if the experimental resolution

on Mγγ is very good (1%)

Page 34: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

How can one claim a discovery ? Suppose a new narrow particle X → γγ is produced:

Signal significance :

B

S

NN =S NS= number of signal events

NB= number of background events in peak region

√NB ≡ error on number of background events S > 5 : signal is larger than 5 times error on background. Probability that background fluctuates up by more

than 5σ : 10-7 → discovery

peak width due to detector resolution

mγγ

Page 35: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Two critical parameters to maximise S: •  detector resolution:

if σm increases by e.g. two, then need to enlarge peak region by two.

→ NB increases by ~ 2 (assuming background flat)

NS unchanged

⇒ S =NS/√NB decreases by √2

⇒ S ≈1 /√σm detector with better resolution has larger probability to find

a signal

Note: only valid if ΓH << σm. If Higgs is broad detector resolution is not relevant.

ΓH ~ mH3 ΓH ~ MeV (~100 GeV) mH =100 (600) GeV

•  integrated luminosity : NS ~ L NB ~ L ⇒ S ~ √L

Page 36: The Higgs boson - Uniudcobal/Lezione_XIV_trieste.pdf · Limits on the boson Higgs mass . Some electroweak observables are sensitive to parameters like m t and m H. High precision

Irreducible background coming from the process:

qq → ZZ*→4leptons Irreducible background:

tt →bbWW (semileptonic decay of the b)

Zbb