Top Banner
O.G. Polischuk 1 , A.S. Barabash 2 , P. Belli 3,4 , R. Bernabei 3,4 , F. Cappella 5,6 , V. Caracciolo 7 , R. Cerulli 3,4 , D.M. Chernyak 1,8 , F.A. Danevich 1,9 , S. d’Angelo 3,4,+ , A. Incicchitti 5,6 , D.V. Kasperovych 1 , V.V. Kobychev 1 , S.I. Konovalov 2 , M. Laubenstein 7 , V.M. Mokina 1,5 , D.V. Poda 1,9 , V.N. Shlegel 10 , V.I. Tretyak 1 , V.I. Umatov 2 , Ya.V. Vasiliev 10 Investigation of 2 decay of 116 Cd with the help of enriched 116 CdWO 4 crystal scintillators 1 Institute for Nuclear Research, Kyiv, Ukraine 2 Institute of Theoretical and Experimental Physics, Moscow, Russia 3 Dipartimento di Fisica, Universita di Roma “Tor Vergata”, Rome, Italy 4 INFN sezione di Roma “Tor Vergata”, Rome, Italy 5 INFN, sezione di Roma, Rome, Italy 6 Dipartimento di Fisica, Universita di Roma “La Sapienza”, Rome, Italy 7 INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy 8 Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU), The University of Tokyo, Japan 9 Centre de Sciences Nucleaires et de Sciences de la Matiere, Orsay, France 10 Nikolaev Institute of Inorganic Chemistry, Novosibirsk, Russia + deceased MEDEX’17 Conference Prague (Czech Republic) May 29 June 2, 2017
27

the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

Jun 09, 2019

Download

Documents

duongnga
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

O.G. Polischuk 1, A.S. Barabash2, P. Belli3,4, R. Bernabei3,4, F. Cappella5,6, V. Caracciolo7, R. Cerulli3,4, D.M. Chernyak1,8, F.A. Danevich1,9, S. d’Angelo3,4,+, A. Incicchitti5,6,

D.V. Kasperovych1, V.V. Kobychev1, S.I. Konovalov2, M. Laubenstein7, V.M. Mokina1,5,

D.V. Poda1,9, V.N. Shlegel10, V.I. Tretyak1, V.I. Umatov2, Ya.V. Vasiliev10

Investigation of 2 decay of 116Cd with

the help of enriched 116CdWO4 crystal

scintillators

1 Institute for Nuclear Research, Kyiv, Ukraine 2 Institute of Theoretical and Experimental Physics, Moscow, Russia 3 Dipartimento di Fisica, Universita di Roma “Tor Vergata”, Rome, Italy 4 INFN sezione di Roma “Tor Vergata”, Rome, Italy 5 INFN, sezione di Roma, Rome, Italy 6 Dipartimento di Fisica, Universita di Roma “La Sapienza”, Rome, Italy 7 INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy 8 Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU), The University of Tokyo, Japan 9 Centre de Sciences Nucleaires et de Sciences de la Matiere, Orsay, France 10 Nikolaev Institute of Inorganic Chemistry, Novosibirsk, Russia

+ deceased MEDEX’17 Conference

Prague (Czech Republic) May 29 –June 2, 2017

Page 2: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

Detection of 02 decay allows to test: -nature of neutrino (Dirac or Majorana particle);

- scale of the neutrino mass and hierarchy, conservation of

lepton charge;

- lepton number non-conservation

- existence of Majorons and right-handed currents in the

weak interaction;

- many other effects beyond the standard model

2 processes

2

2 2β (А, Z) → (A, Z + 2) + 2e– + 2 (allowed in SM)

0 2β (А, Z) → (A, Z + 2) + 2e– (forbidden in SM, L=2)

Over 75 years of experimental searches 22 decay was observed only for 11 nuclei in the

direct, geochemical and radiochemical experiments (48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128Te, 130Te, 150Nd, 136Xe and 238U)

with half-lives in the range ~ 1018–1024 years e1+e2 energy spectra for different 2 modes E

ner

gy

Page 3: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

• good scintillation properties

• “source = detector approach” (~100% efficiency)

• low levels of internal contamination

• particle discrimination ability ( background)

CdWO4 were successfully used in low-background

experiments on search for 2 decay of Cd and W [1], as well as for the study of rare [2] and [3] decays

[1] ZPA 355(1996)433, EPJA 36(2008)167, PRC 93(2016)045502;

[2] PRC 67(2003)014310;

[3] PAN 59(1996)1, PRC 76(2007)064603

One of the most promising isotopes

to search for 02 decay

• Q2β = 2813.44(13) keV

• = 7.5% • promising theoretical calculation

• possible isotopic enrichment in large amount

116Cd m = 0.05 eV

J.D. Vergados et al., RPP 75(2012)106301

The most sensitive 02 experiments (90% C.L.):

- Solotvina, Phys. Rev. C 68 (2003) 035501 – T1/2 > 1.7 × 1023 yr - NEMO-3, Phys. Rev. D 95(2017)012007 – T1/2 > 1.0 × 1023 yr

CdWO4 crystals

3

Page 4: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

4

Good optical and scintillation properties of the crystal

were obtained thanks to the deep purification of 116Cd

and W, and the advantage of the low-thermal-gradient Czochralski technique to grow the crystal [1]

Boule of enriched 116CdWO4 crystal (82% of 116Cd). The

conic part of the boule is the beginning of the crystal

growth.

Yield of the crystal boule is 87% of the initial powder

Losses (the total production cycle) < 3%

[1] JINST 6(2011)P08011

586 g 589 g 326 g

116CdWO4 crystal scintillator

The optical transmission curve of 116CdWO4 before and after annealing

Attenuation length is 31 cm at 480

nm (maximum of scintillation emission spectrum)

Page 5: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

2 crystals of 116CdWO4, 1.162 kg in DAMA/R&D

Experiment started in 2011

Experiment AURORA Laboratori Nazionali del Gran Sasso,

Italy (3600 m w.e)

5

CdWO4

40 cm

Upgrade - March 2014 Bg to ≈ 0.1 counts/ (yr×kg×keV) at 2.7−2.9 MeV (over 25037 h)

Page 6: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

Shape indicator (SI) versus energy for the

background exposure (25037 h 1.162 kg)

6

Pulse shape discrimination (PSD), 25037 h

,

Raw data

Bi-Po

SI = f(tk) × P(tk)/ f(tk)

f(tk) – digitized amplitude at the time tk

P(t) = [ f(t)− f(t)]/[ f (t)+ f (t)],

f(t), f(t) – pulse shapes of and ()

Page 7: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

7

0.6-1.3 MeV

2D histogram: shape indicator versus front

edge for the background measurements

Selection of 212Bi-212Po events by front-edge analysis

21470 h

Example of 212Bi - 212Po events

212Bi

212Po

Page 8: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

The background counting rate @ 2.7–2.9 MeV was reduced to the level of

0.12(3) cnts/(keV×kg×yr) thanks to the front-edge analysis

Activity of 228Th (in Bq/kg), 25037 h

Crystal 1 17(2)

Crystal 2 27(2)

Decay of 228Th: T1/2 1.9(1) yr

Table Of Isotopes [1]: T1/2 = 1.9 yr

1)

2)

3)

Activity of 228Th from PSD and front-edge analysis:

8 [1] Firestone R. B. et al., Table of Isotopes 1996, and 1998 CD-ROM Update

Page 9: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

Activity 228Th, Bq/kg

PSD T-A

Crystal 1 17(2) 17(1)

Crystal 2 26(2) 27(1)

Alpha peaks of 224Ra, 220Rn and 216Po selected by the time-

amplitude analysis from the data accumulated during 25037 h

with the 116CdWO4 detector No. 1. The obtained half-lives of 220Rn (52+7 −6 s) and 216Po (0.133+0.016 −0.014 s) are in agreement

with the table values (55.6 s and 0.145 s, respectively [TOI]).

Time-amplitude analysis

9

M.J. Koskelo et al.,

Radioact. Radiochem. 7(1996)18

A – amplitude of Gauss

– center of Gauss

– standard deviation T determines both the characteristics of

the tailing and its joining point with the

Gaussian

Page 10: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

Radioactive contaminations of 116CdWO4 crystal scintillators

(and elements of the set-up)

Chain Nuclide Activity,

mBq/kg

232Th 232Th 0.61(2)

228Th 0.22(3)

238U 238U 0.59(7)

234Th 0.64(7)

230Th 0.11(2)

226Ra 0.01

210Pb 0.6(1)

40K 0.20(1)

110mAg <0.06

Total activity of two crystals = 2.27 mBq/kg

10

Nuclide Activity,

mBq/kg

PMT 226Ra <0.9×103

228Ra 0.12(5)×103

228Th 0.83(2)×102

40K <13×103

Copper U 0.11(2)

Th 0.06(1)

40K 0.27(6)

Light guides U 0.20(2)

Th 0.10(1)

40K 1.3(3)

Page 11: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

02 g.s. 1757

Response of the 116CdWO4 detector to 2 processes in 116Cd

simulated by EGS4

22 g.s. g.s.

11

02 g.s. g.s.

22 g.s. 1294

0M1 g.s. g.s.

0M2 g.s. g.s.

0M3 g.s. g.s. 22 g.s. 2027

Page 12: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

T1/2 = [2.69 ± 0.02(stat.) ± 0.14(syst.)] 1019 yr 12

Signal to bg ratio:

2.6 in [1.1–2.8] MeV

Two neutrino double beta decay of 116Cd (25037 h)

40K, 1460

208Tl, 2615

, 113mCd, 580

Page 13: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

Source Contribution,%

Rad. contamination

of 116CdWO4

crystals

65

BG models, MC, QF

[1,2]

15

PSD efficiency 10

Interval of the fit 7

Number of 116Cd

nuclei

3

Sources of the systematic errors

[1] PRC 76(2007)064603 [2] NIMA 696(2012)144

Interval of fit

Model of BG

Distribution

of T1/2 for 74

fits

2.69 1019 yr

13

Estimation of systematic errors

Page 14: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

Summary of the T1/2(22) results

.

[1] J. Phys. Soc. Japan 64(1995)339; [2] Phys. Lett. B 344(1995)72;

[3] Z. Phys. C 72(1996)239; [4] PRC 62(2000)045501;

[5] PRC 68(2003)035501; [6] AIP Conf. Proc. 1572(2013)110;

[7] PRC 81(2010)035501; [8] NPA 935(2015)52;

[9] PRD 95(2017)012007.

[*](corrected result of NEMO-2) 14

[*]

Page 15: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

1st event – (212Bi)

2nd events – (208Tl)

Optimization of

1.1) E (1070-1620 keV)

1.2) t (250-300 s)

For energy range 1070-1620 keV

and t = 300 s: S = 35159 events

tdead = 2930 h

15 15

Reduction of background in the region of interest

Selection events of 212Bi [Q = 6207.26(3) keV] 208Tl [Q = 4998.9(18) keV, T1/2 = 3.053(4) min] (by energy, SI and t between events).

Page 16: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

Selection of 212Bi-208Tl events (2.4-3.2 MeV):

212Bi

208Tl

T1/2~ 3.2(1) min*

16 * TOI: T1/2(208Tl) = 3.053 min

Page 17: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

() 208Tl

Output data

(21470 h)

DAQ-6 (25037 h)

() 208Tl

Output data

(7271 h)

DAQ-4 (8439 h)

40К

Background level 30% due to selection events of 212Bi [Q = 6207.26(3) keV] 208Tl [Q = 4998.9(18) keV, T1/2 = 3.053(4) min]

2.7 – 2.9 MeV (events/keV/yr):

(DAQ-4): 0.10 0.078 (DAQ-6): 0.12 0.072

Improving background at 02 region

17

Page 18: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

S = -3.7 10.6 counts limS = 13.9 counts

at 90% C.L [1]

T1/2 2.4 × 1023 yr

Fit in the energy

interval 2.5–3.2 MeV

gives an aria of the

02:

[1] G.J. Feldman and R. D. Cousins, Phys. Rev. D 57(1998)3873

[2] T.R. Rodriguez , G. Martinez-Pinedo, Phys. Rev. Lett. 105 (2010) 252503

[3] F. Simkovic F et al., Phys. Rev. C 87 (2013) 045501

[4] J. Hyvarinen, J. Suhonen, Phys. Rev. C 91 (2015) 024613

[5] J. Barea, J. Kotila, F. Iachello, Phys. Rev. C 91 (2015) 034304

Effective Majorana neutrino mass:

m < 1.1 – 1.6 eV [2-5]

18

Limit on 02 decay of 116Cd (28741 h)

02

2813 22

int.Th

ext.Th

Page 19: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

Results

19

Decay

mode

Transition T1/2, yr , present results T1/2, yr at 90% C.L.

0 g.s.- g.s. 2.4 1023 1.7 1023 [1]

0 g.s.- 21+(1294 keV) 6.2 1022 2.9 1022 [1]

0 g.s.- 01+(1757 keV) 6.3 1022 1.4 1022 [1]

0 g.s.- 02+(2027 keV) 4.5 1022 0.6 1022 [1]

0 g.s.- 22+(2112 keV) 3.6 1022 1.7 1020 [2] (at 68% C.L.)

0 g.s.- 23+(2225 keV) 4.1 1022 1.0 1020 [2] (at 68% C.L.)

0M1 g.s.- g.s. 1.1 1022 0.8 1022 [1]

0M2 g.s.- g.s. 2.1 1021 0.8 1021 [1]

0M3 g.s.- g.s. 0.9 1021 1.7 1021 [1]

2 g.s.- g.s. [2.69±0.02(stat.)±0.14(syst.)]1019 See slide 14

2 g.s.- 21+(1294 keV) 0.9 1021 2.3 1021 [3]

2 g.s.- 01+(1757 keV) 1.0 1021 2.0 1021 [3]

2 g.s.- 02+(2027 keV) 1.1 1021 2.0 1021 [3]

2 g.s.- 22+(2112 keV) 2.3 1021 1.7 1020 [2] (at 68% C.L.)

2 g.s.- 23+(2225 keV) 2.5 1021 1.0 1020 [2] (at 68% C.L.)

[1] PRC 68(2003)035501 [2] Phys.Lett.B 249(1990)186 [3] NPA 577(1994)493 19

Page 20: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

Nuclide Crystal Rest of melt

40K <1 27(11)

226Ra <0.005 64(4)

228Th 0.02 0.09 10(2)

Activity of 228Th 10(2)

We expect to reduce K, Th, U and Ra contamination by re-crystallization reduction of the

background by a factor 4 advancement the sensitivity up to ~ 51023 yr

Thorium expected to be reduced by a factor ~35 1 Bq/kg

0.02(1) 0.04(1) 0.09(1)*

228Th ~0.04 mBq/kg

228Th in the initial 116CdWO4 powder ~1.4 mBq/kg

rest of the melt after the crystal growth

20

Possibility to improve the radiopurity of 116CdWO4 by

re-crystallization

Page 21: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

116CdWO4 after re-crystallization Re-crystallized by the low-thermal-gradient Czochralski technique in a platinum crucible with 99.93% Pt purity level

286 g (88% of sample after re-crystallization) 195 g (60% of sample after re-crystallization)

The side surface of the sample was made

opaque by grinding paper to improve light

collection.

21

The passive shield of the DAMA/Crys set-up is

made of high purity materials: copper (11cm), lead

(10cm), cadmium (2mm), polyethylene (10cm).

Time of the measurements = 1623 h [1]

DAMA/Crys

[1] NIMA 833(2016)077

Page 22: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

The specific activity of 228Th decreased by ~10

times to the level of 0.010(3) mBq/kg, which is

the result of the strong segregation of thorium

in the CdWO4 crystal growth process.

Total activity ~3 times (4.44(4) → 1.62(4)mBq/kg) 22

116CdWO4 after

recrystallization

1623 h

2394 h

Page 23: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

* Experiment to search for double beta decay processes in 116Cd with the help of

enriched in 116Cd (to 82%) low background 116CdWO4 scintillation detectors (1.16

kg) is in progress at the Gran Sasso underground laboratory of INFN (Italy).

* The 22 half-life is T1/2 (22) = [2.69 ± 0.02(stat.) ± 0.14(syst.)] 1019 yr

(the most accurate value up to date)

* T1/2(02) 2.4 1023 yr m < (1.1 – 1.6) eV (the strongest limit for 116Cd)

* New improved limits are obtained for 02 decay of 116Cd to excited levels of 116Sn: limT1/2 ~ (4.16.3) 1022 yr

*The main background component, internal 228Th, can be reduced in 35 times by

re-crystallization sensitivity of the experiment T1/2 5 1023 yr

23

Conclusions

Page 24: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

Thank you for attention!

Page 25: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)
Page 26: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

26

2517 г

7129 г

Page 27: the help of enriched CdWO crystal scintillatorspeople.roma2.infn.it/~dama/pdf/polischuk_medex2017.pdfjrrgvflqwloodwlrqs urshuwlhv ´vrxufh = detector dssurdfkµ (~100% efficiency)

Limit on 02 decay of 116Cd to g.s. of 116Sn

Fit in 2.5–3.1 MeV with 2/n.d.f. = 1.13

T1/2 > 1.9 1023 yr @ 90% C.L. by [1]

[1] G.J. Feldman and R. D. Cousins, Phys. Rev. D 57(1998)3873

[2] J. Barea, J. Kotila, and F. Iachello Phys. Rev. Lett. 109(2012)042501

[3] J.D. Vergados, H.Ejiri and F.Simkovic Rep. Prog. Phys. 75(2012)106301

02

2813

22

210mAg

ext.Th

int.Th

33737 h

Effective Majorana neutrino mass

m ~ 1.7 eV [2]

m ~ 1.2 – 1.8 eV [3]

27