Top Banner
The Heavy Ion Storage Ring TSR Manfred Grieser Max Planck Institut für Kernphysik, Heidelberg ISCC meeting, CERN, July 3 rd 2012
18

The Heavy Ion Storage Ring TSR - CERNisolde.web.cern.ch/sites/isolde.web.cern.ch/files/M_Grieser.pdf · Simulation for the heavy ion storage ring TSR acceptance ... •decoupling

Apr 22, 2018

Download

Documents

vuongtuyen
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Heavy Ion Storage Ring TSR - CERNisolde.web.cern.ch/sites/isolde.web.cern.ch/files/M_Grieser.pdf · Simulation for the heavy ion storage ring TSR acceptance ... •decoupling

The Heavy Ion Storage Ring TSRManfred Grieser

Max Planck Institut fuumlr Kernphysik Heidelberg

ISCC meeting CERN July 3rd 2012

heavy ion coolerstorage ring TSR

tandem

post accelerator high current injector

TSR

Pelletron

The accelerator facilities at MPIK

The heavy ion storage ring TSR

extractioninjection

ECOOL

resonator

experiment

With multiturn Injection filled transverse phase spaceSimulation for the heavy ion storage ring TSR

acceptance ellipseA=120 mmmiddotmrad

septum thickness

phase space injector beam(tandem)ε=15 mmmrad

intensity multiplication factor Mεsdot

==dA

IIMinj

0

I0 stored intensity Iinj injector intensityd- phase space dilution factor simulation d asymp2 rArr M asymp 40

injection timeasymp 70 turns

xrsquo [mrad]

Beam profile after multi turn injectionbeam 12C6+ E=733 MeV

2xv

2x

x

v21

vx e

2N)v(n σ

minus

σπ=

2vx

m21Tk

21

σsdot=sdot

velocity distribution

beam temperature xvσ with

sm106 4vx

sdotasympσ

rArr T asymp 5106 K

The electron cooler

gun

collector

ionsions

electrons electr

onsinteraction

soleonid

Transverse electron cooling

hot ionbeam

cold ion beam

examplehorizontal beam profile12C6+ (E=733 MeV)

measuring time 2s

rArr transversecooling timeT asymp 1s

for αex= 77and ne=153middot107 1cm3

ECOOL Stacking

measured I(t) for 35Cl17+ ions

principle

inj

emeff I

IM =

equilibrium intensity I0

Iinj-Injector intensity Meff- effective intensity

multiplication factor T- beam lifetimenr-injection rateTcool- electron cooling time

⎩⎨⎧

legt

=

sdotsdotsdot=

s20Ts15s20TT1

n

IMTnI

cool

coolcoolr

injeffr0

Iem effectiveintensityincrease withmultiturninjection

TIIn

dtdI

emr minus=

Cooling time Tcool of a multiturn injected ion beam

e

2

2cool nszlig

qAconstT sdotasymp ( 003ltszliglt016 )

inverse cooling time 1Tcool as a function of szlig

rArr for αex=96 and per =1 μperv

s3qAT 2cool sdotasymp 2

en βpropbecause

normalized to q2A and ne=108 cm-3

1T co

ol[1

s]

Ion Energy Pressure cooled uncooled cooled expl uncooled expl[MeV] [10-11 mbar] [s] [s] [s] [s]

p 21 4 220000 180000 RECHD+ 2 7 5 DIS7Li+ 13 6 48 41 ST 41 ST9Be+ 7 6 16 16 12 ST 12 ST12C6+ 73 6 7470 5519 REC 5630 MS28Si14+ 115 6 540 260 424 CAP 493 CAP32S16+ 196 5 450 554 REC 1200 CAP35Cl15+ 157 6 366 306 CAP 375 CAP35Cl17+ 202 6 318 366 402 REC 735 CAP56Fe22+ 250 5 77 90 REC 278 CAP58Ni25+ 342 5 60 89 REC 374 CAP63Cu26+ 510 6 122 166 REC 622 CAP74Ge28+ 365 5 45 59 REC 162 CAP80Se25+ 480 5 204 179 REC 384 CAP197Au51+ 710 5 23 51

Beam life-time T for some ions

60 h

Intensities for a few ions achieved with ECOOL stacking

2804929063Cu25+

10012251063Cu26+

1104536574Ge28+

10020448080Se25+

6006034258Ni25+

1287426056Fe23+

707725056Fe22+

38017845Sc18+

100031829335Cll7+

100017007312C6+

150045019532S16+

3

lt1

750

1000

Intensity [μA]

3695197Au50+

5050680Se31+

9816O8+

22000021p

life time[s]E [MeV]Ion

N asymp 4000 32S16+

I0 equilibrium intensityIinj injected intensityT- life timeTcool cooling time of

a multiturn injectedion beam

M intensity multiplicationfactor multiturninjection

ECOOL StackingM le 10

⎩⎨⎧

lt=

⎩⎨⎧

legt

=

sdotsdotεsdot==

coolr

coolrm

cool

coolcoolr

rminj

0

T1n1T1n80

s20Ts15s20TT1

n

TnMIIN

Iasymp1 mAinchoherenttune shiftlimit

RF acceleration and decelerationfrequency range 05-7 MHzonly with magnetization

factor asymp 7 Imag=0-150 Arf voltage max 5 kVrf power max 10 kWferrite Philips FXC 8C12 ferrite size 498x270x25 mm3

number of ferrites 20cooling 21 water cooled Cu disks

quadrupole coil resonatorRF resonator

quadrupolebull magnetization of the ferritesbull decoupling of rf field and magnetization field

Acceleration tests with 12C6+ ions

rigidity

energy E= 733 MeVrarr 362 MeV hArr Bmiddotρ = 071 Tm rarr 157 Tm

nom

inal

val

ue

pow

er su

pply

[bits

]

t[s]

nominal value power supplies

saturation effectsquadrupoleQFX1 ramp

main dipole ramp

η=98

start

final

NN

=ηfinal energy

start acceleration

ion current

0fNQI sdotsdot=

rArr

efficiencyion current

Internal target experiments at the TSRFILTEX experiment

storage cell

H

circulating beam

target thickness 5middot1013 atomscm2

Reaction microscopegas jet stored

ion beam

Helmholzcoils

gas jet

storedion beamsto

red i

onbe

am

polarized H

Slow extractionslow extraction processbull ion beam is cooled with electron coolingbullhorizontal working point is shifted close to the third order resonance Qxrarr 266hellipbullrf noise is given to a horizontal kicker to blow up the horizontal phase space

extraction scheme extraction rate

electron cooling rf noise is given to

a horizontal kicker

first ions are reachingthe separatrix

rf noise is switched off

beam 12C6+

E=733 MeV

efficiencywithout electron pre-cooling asymp25 with electron pre-cooling asymp90

Status of the TSR ring

bullTSR is routinely used at MPI up to the end of 2012bullend of 2012 shut down of the whole accelerator facility at MPIK

including TSRbullTSR will kept at MPI until TSR can be reassembled at ISOLDE (scheduled 2015)bull between 2013-2015 some modification at the TSR can be done

to fulfill the requirements from CERN bull in 2015 disassembly and reassembly by specialists from MPIK

and CERNISOLDE bull commissioning of the TSR at ISOLDE can be done in a joined

effort with experts from MPIK and CERNISOLDE

17

TSR HIE-ISOLDE

tilted beam-line comingfrom the HIE-ISOLDE machine

possible TSR installationabove the CERN cable-tunnel(E Siesling)

TSRHIE-ISOLDE building

HIE-ISOLDE

Technical Design Report

Storage Ring at Hie-IsoldeK Blaum Y Blumenfeld P A Butler M GrieserY Litvinov R RaabeF Wenander and Ph J Woods(Eds)Published at the European PhysicalJournalVolume 207 May 3 2012

Page 2: The Heavy Ion Storage Ring TSR - CERNisolde.web.cern.ch/sites/isolde.web.cern.ch/files/M_Grieser.pdf · Simulation for the heavy ion storage ring TSR acceptance ... •decoupling

heavy ion coolerstorage ring TSR

tandem

post accelerator high current injector

TSR

Pelletron

The accelerator facilities at MPIK

The heavy ion storage ring TSR

extractioninjection

ECOOL

resonator

experiment

With multiturn Injection filled transverse phase spaceSimulation for the heavy ion storage ring TSR

acceptance ellipseA=120 mmmiddotmrad

septum thickness

phase space injector beam(tandem)ε=15 mmmrad

intensity multiplication factor Mεsdot

==dA

IIMinj

0

I0 stored intensity Iinj injector intensityd- phase space dilution factor simulation d asymp2 rArr M asymp 40

injection timeasymp 70 turns

xrsquo [mrad]

Beam profile after multi turn injectionbeam 12C6+ E=733 MeV

2xv

2x

x

v21

vx e

2N)v(n σ

minus

σπ=

2vx

m21Tk

21

σsdot=sdot

velocity distribution

beam temperature xvσ with

sm106 4vx

sdotasympσ

rArr T asymp 5106 K

The electron cooler

gun

collector

ionsions

electrons electr

onsinteraction

soleonid

Transverse electron cooling

hot ionbeam

cold ion beam

examplehorizontal beam profile12C6+ (E=733 MeV)

measuring time 2s

rArr transversecooling timeT asymp 1s

for αex= 77and ne=153middot107 1cm3

ECOOL Stacking

measured I(t) for 35Cl17+ ions

principle

inj

emeff I

IM =

equilibrium intensity I0

Iinj-Injector intensity Meff- effective intensity

multiplication factor T- beam lifetimenr-injection rateTcool- electron cooling time

⎩⎨⎧

legt

=

sdotsdotsdot=

s20Ts15s20TT1

n

IMTnI

cool

coolcoolr

injeffr0

Iem effectiveintensityincrease withmultiturninjection

TIIn

dtdI

emr minus=

Cooling time Tcool of a multiturn injected ion beam

e

2

2cool nszlig

qAconstT sdotasymp ( 003ltszliglt016 )

inverse cooling time 1Tcool as a function of szlig

rArr for αex=96 and per =1 μperv

s3qAT 2cool sdotasymp 2

en βpropbecause

normalized to q2A and ne=108 cm-3

1T co

ol[1

s]

Ion Energy Pressure cooled uncooled cooled expl uncooled expl[MeV] [10-11 mbar] [s] [s] [s] [s]

p 21 4 220000 180000 RECHD+ 2 7 5 DIS7Li+ 13 6 48 41 ST 41 ST9Be+ 7 6 16 16 12 ST 12 ST12C6+ 73 6 7470 5519 REC 5630 MS28Si14+ 115 6 540 260 424 CAP 493 CAP32S16+ 196 5 450 554 REC 1200 CAP35Cl15+ 157 6 366 306 CAP 375 CAP35Cl17+ 202 6 318 366 402 REC 735 CAP56Fe22+ 250 5 77 90 REC 278 CAP58Ni25+ 342 5 60 89 REC 374 CAP63Cu26+ 510 6 122 166 REC 622 CAP74Ge28+ 365 5 45 59 REC 162 CAP80Se25+ 480 5 204 179 REC 384 CAP197Au51+ 710 5 23 51

Beam life-time T for some ions

60 h

Intensities for a few ions achieved with ECOOL stacking

2804929063Cu25+

10012251063Cu26+

1104536574Ge28+

10020448080Se25+

6006034258Ni25+

1287426056Fe23+

707725056Fe22+

38017845Sc18+

100031829335Cll7+

100017007312C6+

150045019532S16+

3

lt1

750

1000

Intensity [μA]

3695197Au50+

5050680Se31+

9816O8+

22000021p

life time[s]E [MeV]Ion

N asymp 4000 32S16+

I0 equilibrium intensityIinj injected intensityT- life timeTcool cooling time of

a multiturn injectedion beam

M intensity multiplicationfactor multiturninjection

ECOOL StackingM le 10

⎩⎨⎧

lt=

⎩⎨⎧

legt

=

sdotsdotεsdot==

coolr

coolrm

cool

coolcoolr

rminj

0

T1n1T1n80

s20Ts15s20TT1

n

TnMIIN

Iasymp1 mAinchoherenttune shiftlimit

RF acceleration and decelerationfrequency range 05-7 MHzonly with magnetization

factor asymp 7 Imag=0-150 Arf voltage max 5 kVrf power max 10 kWferrite Philips FXC 8C12 ferrite size 498x270x25 mm3

number of ferrites 20cooling 21 water cooled Cu disks

quadrupole coil resonatorRF resonator

quadrupolebull magnetization of the ferritesbull decoupling of rf field and magnetization field

Acceleration tests with 12C6+ ions

rigidity

energy E= 733 MeVrarr 362 MeV hArr Bmiddotρ = 071 Tm rarr 157 Tm

nom

inal

val

ue

pow

er su

pply

[bits

]

t[s]

nominal value power supplies

saturation effectsquadrupoleQFX1 ramp

main dipole ramp

η=98

start

final

NN

=ηfinal energy

start acceleration

ion current

0fNQI sdotsdot=

rArr

efficiencyion current

Internal target experiments at the TSRFILTEX experiment

storage cell

H

circulating beam

target thickness 5middot1013 atomscm2

Reaction microscopegas jet stored

ion beam

Helmholzcoils

gas jet

storedion beamsto

red i

onbe

am

polarized H

Slow extractionslow extraction processbull ion beam is cooled with electron coolingbullhorizontal working point is shifted close to the third order resonance Qxrarr 266hellipbullrf noise is given to a horizontal kicker to blow up the horizontal phase space

extraction scheme extraction rate

electron cooling rf noise is given to

a horizontal kicker

first ions are reachingthe separatrix

rf noise is switched off

beam 12C6+

E=733 MeV

efficiencywithout electron pre-cooling asymp25 with electron pre-cooling asymp90

Status of the TSR ring

bullTSR is routinely used at MPI up to the end of 2012bullend of 2012 shut down of the whole accelerator facility at MPIK

including TSRbullTSR will kept at MPI until TSR can be reassembled at ISOLDE (scheduled 2015)bull between 2013-2015 some modification at the TSR can be done

to fulfill the requirements from CERN bull in 2015 disassembly and reassembly by specialists from MPIK

and CERNISOLDE bull commissioning of the TSR at ISOLDE can be done in a joined

effort with experts from MPIK and CERNISOLDE

17

TSR HIE-ISOLDE

tilted beam-line comingfrom the HIE-ISOLDE machine

possible TSR installationabove the CERN cable-tunnel(E Siesling)

TSRHIE-ISOLDE building

HIE-ISOLDE

Technical Design Report

Storage Ring at Hie-IsoldeK Blaum Y Blumenfeld P A Butler M GrieserY Litvinov R RaabeF Wenander and Ph J Woods(Eds)Published at the European PhysicalJournalVolume 207 May 3 2012

Page 3: The Heavy Ion Storage Ring TSR - CERNisolde.web.cern.ch/sites/isolde.web.cern.ch/files/M_Grieser.pdf · Simulation for the heavy ion storage ring TSR acceptance ... •decoupling

The heavy ion storage ring TSR

extractioninjection

ECOOL

resonator

experiment

With multiturn Injection filled transverse phase spaceSimulation for the heavy ion storage ring TSR

acceptance ellipseA=120 mmmiddotmrad

septum thickness

phase space injector beam(tandem)ε=15 mmmrad

intensity multiplication factor Mεsdot

==dA

IIMinj

0

I0 stored intensity Iinj injector intensityd- phase space dilution factor simulation d asymp2 rArr M asymp 40

injection timeasymp 70 turns

xrsquo [mrad]

Beam profile after multi turn injectionbeam 12C6+ E=733 MeV

2xv

2x

x

v21

vx e

2N)v(n σ

minus

σπ=

2vx

m21Tk

21

σsdot=sdot

velocity distribution

beam temperature xvσ with

sm106 4vx

sdotasympσ

rArr T asymp 5106 K

The electron cooler

gun

collector

ionsions

electrons electr

onsinteraction

soleonid

Transverse electron cooling

hot ionbeam

cold ion beam

examplehorizontal beam profile12C6+ (E=733 MeV)

measuring time 2s

rArr transversecooling timeT asymp 1s

for αex= 77and ne=153middot107 1cm3

ECOOL Stacking

measured I(t) for 35Cl17+ ions

principle

inj

emeff I

IM =

equilibrium intensity I0

Iinj-Injector intensity Meff- effective intensity

multiplication factor T- beam lifetimenr-injection rateTcool- electron cooling time

⎩⎨⎧

legt

=

sdotsdotsdot=

s20Ts15s20TT1

n

IMTnI

cool

coolcoolr

injeffr0

Iem effectiveintensityincrease withmultiturninjection

TIIn

dtdI

emr minus=

Cooling time Tcool of a multiturn injected ion beam

e

2

2cool nszlig

qAconstT sdotasymp ( 003ltszliglt016 )

inverse cooling time 1Tcool as a function of szlig

rArr for αex=96 and per =1 μperv

s3qAT 2cool sdotasymp 2

en βpropbecause

normalized to q2A and ne=108 cm-3

1T co

ol[1

s]

Ion Energy Pressure cooled uncooled cooled expl uncooled expl[MeV] [10-11 mbar] [s] [s] [s] [s]

p 21 4 220000 180000 RECHD+ 2 7 5 DIS7Li+ 13 6 48 41 ST 41 ST9Be+ 7 6 16 16 12 ST 12 ST12C6+ 73 6 7470 5519 REC 5630 MS28Si14+ 115 6 540 260 424 CAP 493 CAP32S16+ 196 5 450 554 REC 1200 CAP35Cl15+ 157 6 366 306 CAP 375 CAP35Cl17+ 202 6 318 366 402 REC 735 CAP56Fe22+ 250 5 77 90 REC 278 CAP58Ni25+ 342 5 60 89 REC 374 CAP63Cu26+ 510 6 122 166 REC 622 CAP74Ge28+ 365 5 45 59 REC 162 CAP80Se25+ 480 5 204 179 REC 384 CAP197Au51+ 710 5 23 51

Beam life-time T for some ions

60 h

Intensities for a few ions achieved with ECOOL stacking

2804929063Cu25+

10012251063Cu26+

1104536574Ge28+

10020448080Se25+

6006034258Ni25+

1287426056Fe23+

707725056Fe22+

38017845Sc18+

100031829335Cll7+

100017007312C6+

150045019532S16+

3

lt1

750

1000

Intensity [μA]

3695197Au50+

5050680Se31+

9816O8+

22000021p

life time[s]E [MeV]Ion

N asymp 4000 32S16+

I0 equilibrium intensityIinj injected intensityT- life timeTcool cooling time of

a multiturn injectedion beam

M intensity multiplicationfactor multiturninjection

ECOOL StackingM le 10

⎩⎨⎧

lt=

⎩⎨⎧

legt

=

sdotsdotεsdot==

coolr

coolrm

cool

coolcoolr

rminj

0

T1n1T1n80

s20Ts15s20TT1

n

TnMIIN

Iasymp1 mAinchoherenttune shiftlimit

RF acceleration and decelerationfrequency range 05-7 MHzonly with magnetization

factor asymp 7 Imag=0-150 Arf voltage max 5 kVrf power max 10 kWferrite Philips FXC 8C12 ferrite size 498x270x25 mm3

number of ferrites 20cooling 21 water cooled Cu disks

quadrupole coil resonatorRF resonator

quadrupolebull magnetization of the ferritesbull decoupling of rf field and magnetization field

Acceleration tests with 12C6+ ions

rigidity

energy E= 733 MeVrarr 362 MeV hArr Bmiddotρ = 071 Tm rarr 157 Tm

nom

inal

val

ue

pow

er su

pply

[bits

]

t[s]

nominal value power supplies

saturation effectsquadrupoleQFX1 ramp

main dipole ramp

η=98

start

final

NN

=ηfinal energy

start acceleration

ion current

0fNQI sdotsdot=

rArr

efficiencyion current

Internal target experiments at the TSRFILTEX experiment

storage cell

H

circulating beam

target thickness 5middot1013 atomscm2

Reaction microscopegas jet stored

ion beam

Helmholzcoils

gas jet

storedion beamsto

red i

onbe

am

polarized H

Slow extractionslow extraction processbull ion beam is cooled with electron coolingbullhorizontal working point is shifted close to the third order resonance Qxrarr 266hellipbullrf noise is given to a horizontal kicker to blow up the horizontal phase space

extraction scheme extraction rate

electron cooling rf noise is given to

a horizontal kicker

first ions are reachingthe separatrix

rf noise is switched off

beam 12C6+

E=733 MeV

efficiencywithout electron pre-cooling asymp25 with electron pre-cooling asymp90

Status of the TSR ring

bullTSR is routinely used at MPI up to the end of 2012bullend of 2012 shut down of the whole accelerator facility at MPIK

including TSRbullTSR will kept at MPI until TSR can be reassembled at ISOLDE (scheduled 2015)bull between 2013-2015 some modification at the TSR can be done

to fulfill the requirements from CERN bull in 2015 disassembly and reassembly by specialists from MPIK

and CERNISOLDE bull commissioning of the TSR at ISOLDE can be done in a joined

effort with experts from MPIK and CERNISOLDE

17

TSR HIE-ISOLDE

tilted beam-line comingfrom the HIE-ISOLDE machine

possible TSR installationabove the CERN cable-tunnel(E Siesling)

TSRHIE-ISOLDE building

HIE-ISOLDE

Technical Design Report

Storage Ring at Hie-IsoldeK Blaum Y Blumenfeld P A Butler M GrieserY Litvinov R RaabeF Wenander and Ph J Woods(Eds)Published at the European PhysicalJournalVolume 207 May 3 2012

Page 4: The Heavy Ion Storage Ring TSR - CERNisolde.web.cern.ch/sites/isolde.web.cern.ch/files/M_Grieser.pdf · Simulation for the heavy ion storage ring TSR acceptance ... •decoupling

With multiturn Injection filled transverse phase spaceSimulation for the heavy ion storage ring TSR

acceptance ellipseA=120 mmmiddotmrad

septum thickness

phase space injector beam(tandem)ε=15 mmmrad

intensity multiplication factor Mεsdot

==dA

IIMinj

0

I0 stored intensity Iinj injector intensityd- phase space dilution factor simulation d asymp2 rArr M asymp 40

injection timeasymp 70 turns

xrsquo [mrad]

Beam profile after multi turn injectionbeam 12C6+ E=733 MeV

2xv

2x

x

v21

vx e

2N)v(n σ

minus

σπ=

2vx

m21Tk

21

σsdot=sdot

velocity distribution

beam temperature xvσ with

sm106 4vx

sdotasympσ

rArr T asymp 5106 K

The electron cooler

gun

collector

ionsions

electrons electr

onsinteraction

soleonid

Transverse electron cooling

hot ionbeam

cold ion beam

examplehorizontal beam profile12C6+ (E=733 MeV)

measuring time 2s

rArr transversecooling timeT asymp 1s

for αex= 77and ne=153middot107 1cm3

ECOOL Stacking

measured I(t) for 35Cl17+ ions

principle

inj

emeff I

IM =

equilibrium intensity I0

Iinj-Injector intensity Meff- effective intensity

multiplication factor T- beam lifetimenr-injection rateTcool- electron cooling time

⎩⎨⎧

legt

=

sdotsdotsdot=

s20Ts15s20TT1

n

IMTnI

cool

coolcoolr

injeffr0

Iem effectiveintensityincrease withmultiturninjection

TIIn

dtdI

emr minus=

Cooling time Tcool of a multiturn injected ion beam

e

2

2cool nszlig

qAconstT sdotasymp ( 003ltszliglt016 )

inverse cooling time 1Tcool as a function of szlig

rArr for αex=96 and per =1 μperv

s3qAT 2cool sdotasymp 2

en βpropbecause

normalized to q2A and ne=108 cm-3

1T co

ol[1

s]

Ion Energy Pressure cooled uncooled cooled expl uncooled expl[MeV] [10-11 mbar] [s] [s] [s] [s]

p 21 4 220000 180000 RECHD+ 2 7 5 DIS7Li+ 13 6 48 41 ST 41 ST9Be+ 7 6 16 16 12 ST 12 ST12C6+ 73 6 7470 5519 REC 5630 MS28Si14+ 115 6 540 260 424 CAP 493 CAP32S16+ 196 5 450 554 REC 1200 CAP35Cl15+ 157 6 366 306 CAP 375 CAP35Cl17+ 202 6 318 366 402 REC 735 CAP56Fe22+ 250 5 77 90 REC 278 CAP58Ni25+ 342 5 60 89 REC 374 CAP63Cu26+ 510 6 122 166 REC 622 CAP74Ge28+ 365 5 45 59 REC 162 CAP80Se25+ 480 5 204 179 REC 384 CAP197Au51+ 710 5 23 51

Beam life-time T for some ions

60 h

Intensities for a few ions achieved with ECOOL stacking

2804929063Cu25+

10012251063Cu26+

1104536574Ge28+

10020448080Se25+

6006034258Ni25+

1287426056Fe23+

707725056Fe22+

38017845Sc18+

100031829335Cll7+

100017007312C6+

150045019532S16+

3

lt1

750

1000

Intensity [μA]

3695197Au50+

5050680Se31+

9816O8+

22000021p

life time[s]E [MeV]Ion

N asymp 4000 32S16+

I0 equilibrium intensityIinj injected intensityT- life timeTcool cooling time of

a multiturn injectedion beam

M intensity multiplicationfactor multiturninjection

ECOOL StackingM le 10

⎩⎨⎧

lt=

⎩⎨⎧

legt

=

sdotsdotεsdot==

coolr

coolrm

cool

coolcoolr

rminj

0

T1n1T1n80

s20Ts15s20TT1

n

TnMIIN

Iasymp1 mAinchoherenttune shiftlimit

RF acceleration and decelerationfrequency range 05-7 MHzonly with magnetization

factor asymp 7 Imag=0-150 Arf voltage max 5 kVrf power max 10 kWferrite Philips FXC 8C12 ferrite size 498x270x25 mm3

number of ferrites 20cooling 21 water cooled Cu disks

quadrupole coil resonatorRF resonator

quadrupolebull magnetization of the ferritesbull decoupling of rf field and magnetization field

Acceleration tests with 12C6+ ions

rigidity

energy E= 733 MeVrarr 362 MeV hArr Bmiddotρ = 071 Tm rarr 157 Tm

nom

inal

val

ue

pow

er su

pply

[bits

]

t[s]

nominal value power supplies

saturation effectsquadrupoleQFX1 ramp

main dipole ramp

η=98

start

final

NN

=ηfinal energy

start acceleration

ion current

0fNQI sdotsdot=

rArr

efficiencyion current

Internal target experiments at the TSRFILTEX experiment

storage cell

H

circulating beam

target thickness 5middot1013 atomscm2

Reaction microscopegas jet stored

ion beam

Helmholzcoils

gas jet

storedion beamsto

red i

onbe

am

polarized H

Slow extractionslow extraction processbull ion beam is cooled with electron coolingbullhorizontal working point is shifted close to the third order resonance Qxrarr 266hellipbullrf noise is given to a horizontal kicker to blow up the horizontal phase space

extraction scheme extraction rate

electron cooling rf noise is given to

a horizontal kicker

first ions are reachingthe separatrix

rf noise is switched off

beam 12C6+

E=733 MeV

efficiencywithout electron pre-cooling asymp25 with electron pre-cooling asymp90

Status of the TSR ring

bullTSR is routinely used at MPI up to the end of 2012bullend of 2012 shut down of the whole accelerator facility at MPIK

including TSRbullTSR will kept at MPI until TSR can be reassembled at ISOLDE (scheduled 2015)bull between 2013-2015 some modification at the TSR can be done

to fulfill the requirements from CERN bull in 2015 disassembly and reassembly by specialists from MPIK

and CERNISOLDE bull commissioning of the TSR at ISOLDE can be done in a joined

effort with experts from MPIK and CERNISOLDE

17

TSR HIE-ISOLDE

tilted beam-line comingfrom the HIE-ISOLDE machine

possible TSR installationabove the CERN cable-tunnel(E Siesling)

TSRHIE-ISOLDE building

HIE-ISOLDE

Technical Design Report

Storage Ring at Hie-IsoldeK Blaum Y Blumenfeld P A Butler M GrieserY Litvinov R RaabeF Wenander and Ph J Woods(Eds)Published at the European PhysicalJournalVolume 207 May 3 2012

Page 5: The Heavy Ion Storage Ring TSR - CERNisolde.web.cern.ch/sites/isolde.web.cern.ch/files/M_Grieser.pdf · Simulation for the heavy ion storage ring TSR acceptance ... •decoupling

Beam profile after multi turn injectionbeam 12C6+ E=733 MeV

2xv

2x

x

v21

vx e

2N)v(n σ

minus

σπ=

2vx

m21Tk

21

σsdot=sdot

velocity distribution

beam temperature xvσ with

sm106 4vx

sdotasympσ

rArr T asymp 5106 K

The electron cooler

gun

collector

ionsions

electrons electr

onsinteraction

soleonid

Transverse electron cooling

hot ionbeam

cold ion beam

examplehorizontal beam profile12C6+ (E=733 MeV)

measuring time 2s

rArr transversecooling timeT asymp 1s

for αex= 77and ne=153middot107 1cm3

ECOOL Stacking

measured I(t) for 35Cl17+ ions

principle

inj

emeff I

IM =

equilibrium intensity I0

Iinj-Injector intensity Meff- effective intensity

multiplication factor T- beam lifetimenr-injection rateTcool- electron cooling time

⎩⎨⎧

legt

=

sdotsdotsdot=

s20Ts15s20TT1

n

IMTnI

cool

coolcoolr

injeffr0

Iem effectiveintensityincrease withmultiturninjection

TIIn

dtdI

emr minus=

Cooling time Tcool of a multiturn injected ion beam

e

2

2cool nszlig

qAconstT sdotasymp ( 003ltszliglt016 )

inverse cooling time 1Tcool as a function of szlig

rArr for αex=96 and per =1 μperv

s3qAT 2cool sdotasymp 2

en βpropbecause

normalized to q2A and ne=108 cm-3

1T co

ol[1

s]

Ion Energy Pressure cooled uncooled cooled expl uncooled expl[MeV] [10-11 mbar] [s] [s] [s] [s]

p 21 4 220000 180000 RECHD+ 2 7 5 DIS7Li+ 13 6 48 41 ST 41 ST9Be+ 7 6 16 16 12 ST 12 ST12C6+ 73 6 7470 5519 REC 5630 MS28Si14+ 115 6 540 260 424 CAP 493 CAP32S16+ 196 5 450 554 REC 1200 CAP35Cl15+ 157 6 366 306 CAP 375 CAP35Cl17+ 202 6 318 366 402 REC 735 CAP56Fe22+ 250 5 77 90 REC 278 CAP58Ni25+ 342 5 60 89 REC 374 CAP63Cu26+ 510 6 122 166 REC 622 CAP74Ge28+ 365 5 45 59 REC 162 CAP80Se25+ 480 5 204 179 REC 384 CAP197Au51+ 710 5 23 51

Beam life-time T for some ions

60 h

Intensities for a few ions achieved with ECOOL stacking

2804929063Cu25+

10012251063Cu26+

1104536574Ge28+

10020448080Se25+

6006034258Ni25+

1287426056Fe23+

707725056Fe22+

38017845Sc18+

100031829335Cll7+

100017007312C6+

150045019532S16+

3

lt1

750

1000

Intensity [μA]

3695197Au50+

5050680Se31+

9816O8+

22000021p

life time[s]E [MeV]Ion

N asymp 4000 32S16+

I0 equilibrium intensityIinj injected intensityT- life timeTcool cooling time of

a multiturn injectedion beam

M intensity multiplicationfactor multiturninjection

ECOOL StackingM le 10

⎩⎨⎧

lt=

⎩⎨⎧

legt

=

sdotsdotεsdot==

coolr

coolrm

cool

coolcoolr

rminj

0

T1n1T1n80

s20Ts15s20TT1

n

TnMIIN

Iasymp1 mAinchoherenttune shiftlimit

RF acceleration and decelerationfrequency range 05-7 MHzonly with magnetization

factor asymp 7 Imag=0-150 Arf voltage max 5 kVrf power max 10 kWferrite Philips FXC 8C12 ferrite size 498x270x25 mm3

number of ferrites 20cooling 21 water cooled Cu disks

quadrupole coil resonatorRF resonator

quadrupolebull magnetization of the ferritesbull decoupling of rf field and magnetization field

Acceleration tests with 12C6+ ions

rigidity

energy E= 733 MeVrarr 362 MeV hArr Bmiddotρ = 071 Tm rarr 157 Tm

nom

inal

val

ue

pow

er su

pply

[bits

]

t[s]

nominal value power supplies

saturation effectsquadrupoleQFX1 ramp

main dipole ramp

η=98

start

final

NN

=ηfinal energy

start acceleration

ion current

0fNQI sdotsdot=

rArr

efficiencyion current

Internal target experiments at the TSRFILTEX experiment

storage cell

H

circulating beam

target thickness 5middot1013 atomscm2

Reaction microscopegas jet stored

ion beam

Helmholzcoils

gas jet

storedion beamsto

red i

onbe

am

polarized H

Slow extractionslow extraction processbull ion beam is cooled with electron coolingbullhorizontal working point is shifted close to the third order resonance Qxrarr 266hellipbullrf noise is given to a horizontal kicker to blow up the horizontal phase space

extraction scheme extraction rate

electron cooling rf noise is given to

a horizontal kicker

first ions are reachingthe separatrix

rf noise is switched off

beam 12C6+

E=733 MeV

efficiencywithout electron pre-cooling asymp25 with electron pre-cooling asymp90

Status of the TSR ring

bullTSR is routinely used at MPI up to the end of 2012bullend of 2012 shut down of the whole accelerator facility at MPIK

including TSRbullTSR will kept at MPI until TSR can be reassembled at ISOLDE (scheduled 2015)bull between 2013-2015 some modification at the TSR can be done

to fulfill the requirements from CERN bull in 2015 disassembly and reassembly by specialists from MPIK

and CERNISOLDE bull commissioning of the TSR at ISOLDE can be done in a joined

effort with experts from MPIK and CERNISOLDE

17

TSR HIE-ISOLDE

tilted beam-line comingfrom the HIE-ISOLDE machine

possible TSR installationabove the CERN cable-tunnel(E Siesling)

TSRHIE-ISOLDE building

HIE-ISOLDE

Technical Design Report

Storage Ring at Hie-IsoldeK Blaum Y Blumenfeld P A Butler M GrieserY Litvinov R RaabeF Wenander and Ph J Woods(Eds)Published at the European PhysicalJournalVolume 207 May 3 2012

Page 6: The Heavy Ion Storage Ring TSR - CERNisolde.web.cern.ch/sites/isolde.web.cern.ch/files/M_Grieser.pdf · Simulation for the heavy ion storage ring TSR acceptance ... •decoupling

The electron cooler

gun

collector

ionsions

electrons electr

onsinteraction

soleonid

Transverse electron cooling

hot ionbeam

cold ion beam

examplehorizontal beam profile12C6+ (E=733 MeV)

measuring time 2s

rArr transversecooling timeT asymp 1s

for αex= 77and ne=153middot107 1cm3

ECOOL Stacking

measured I(t) for 35Cl17+ ions

principle

inj

emeff I

IM =

equilibrium intensity I0

Iinj-Injector intensity Meff- effective intensity

multiplication factor T- beam lifetimenr-injection rateTcool- electron cooling time

⎩⎨⎧

legt

=

sdotsdotsdot=

s20Ts15s20TT1

n

IMTnI

cool

coolcoolr

injeffr0

Iem effectiveintensityincrease withmultiturninjection

TIIn

dtdI

emr minus=

Cooling time Tcool of a multiturn injected ion beam

e

2

2cool nszlig

qAconstT sdotasymp ( 003ltszliglt016 )

inverse cooling time 1Tcool as a function of szlig

rArr for αex=96 and per =1 μperv

s3qAT 2cool sdotasymp 2

en βpropbecause

normalized to q2A and ne=108 cm-3

1T co

ol[1

s]

Ion Energy Pressure cooled uncooled cooled expl uncooled expl[MeV] [10-11 mbar] [s] [s] [s] [s]

p 21 4 220000 180000 RECHD+ 2 7 5 DIS7Li+ 13 6 48 41 ST 41 ST9Be+ 7 6 16 16 12 ST 12 ST12C6+ 73 6 7470 5519 REC 5630 MS28Si14+ 115 6 540 260 424 CAP 493 CAP32S16+ 196 5 450 554 REC 1200 CAP35Cl15+ 157 6 366 306 CAP 375 CAP35Cl17+ 202 6 318 366 402 REC 735 CAP56Fe22+ 250 5 77 90 REC 278 CAP58Ni25+ 342 5 60 89 REC 374 CAP63Cu26+ 510 6 122 166 REC 622 CAP74Ge28+ 365 5 45 59 REC 162 CAP80Se25+ 480 5 204 179 REC 384 CAP197Au51+ 710 5 23 51

Beam life-time T for some ions

60 h

Intensities for a few ions achieved with ECOOL stacking

2804929063Cu25+

10012251063Cu26+

1104536574Ge28+

10020448080Se25+

6006034258Ni25+

1287426056Fe23+

707725056Fe22+

38017845Sc18+

100031829335Cll7+

100017007312C6+

150045019532S16+

3

lt1

750

1000

Intensity [μA]

3695197Au50+

5050680Se31+

9816O8+

22000021p

life time[s]E [MeV]Ion

N asymp 4000 32S16+

I0 equilibrium intensityIinj injected intensityT- life timeTcool cooling time of

a multiturn injectedion beam

M intensity multiplicationfactor multiturninjection

ECOOL StackingM le 10

⎩⎨⎧

lt=

⎩⎨⎧

legt

=

sdotsdotεsdot==

coolr

coolrm

cool

coolcoolr

rminj

0

T1n1T1n80

s20Ts15s20TT1

n

TnMIIN

Iasymp1 mAinchoherenttune shiftlimit

RF acceleration and decelerationfrequency range 05-7 MHzonly with magnetization

factor asymp 7 Imag=0-150 Arf voltage max 5 kVrf power max 10 kWferrite Philips FXC 8C12 ferrite size 498x270x25 mm3

number of ferrites 20cooling 21 water cooled Cu disks

quadrupole coil resonatorRF resonator

quadrupolebull magnetization of the ferritesbull decoupling of rf field and magnetization field

Acceleration tests with 12C6+ ions

rigidity

energy E= 733 MeVrarr 362 MeV hArr Bmiddotρ = 071 Tm rarr 157 Tm

nom

inal

val

ue

pow

er su

pply

[bits

]

t[s]

nominal value power supplies

saturation effectsquadrupoleQFX1 ramp

main dipole ramp

η=98

start

final

NN

=ηfinal energy

start acceleration

ion current

0fNQI sdotsdot=

rArr

efficiencyion current

Internal target experiments at the TSRFILTEX experiment

storage cell

H

circulating beam

target thickness 5middot1013 atomscm2

Reaction microscopegas jet stored

ion beam

Helmholzcoils

gas jet

storedion beamsto

red i

onbe

am

polarized H

Slow extractionslow extraction processbull ion beam is cooled with electron coolingbullhorizontal working point is shifted close to the third order resonance Qxrarr 266hellipbullrf noise is given to a horizontal kicker to blow up the horizontal phase space

extraction scheme extraction rate

electron cooling rf noise is given to

a horizontal kicker

first ions are reachingthe separatrix

rf noise is switched off

beam 12C6+

E=733 MeV

efficiencywithout electron pre-cooling asymp25 with electron pre-cooling asymp90

Status of the TSR ring

bullTSR is routinely used at MPI up to the end of 2012bullend of 2012 shut down of the whole accelerator facility at MPIK

including TSRbullTSR will kept at MPI until TSR can be reassembled at ISOLDE (scheduled 2015)bull between 2013-2015 some modification at the TSR can be done

to fulfill the requirements from CERN bull in 2015 disassembly and reassembly by specialists from MPIK

and CERNISOLDE bull commissioning of the TSR at ISOLDE can be done in a joined

effort with experts from MPIK and CERNISOLDE

17

TSR HIE-ISOLDE

tilted beam-line comingfrom the HIE-ISOLDE machine

possible TSR installationabove the CERN cable-tunnel(E Siesling)

TSRHIE-ISOLDE building

HIE-ISOLDE

Technical Design Report

Storage Ring at Hie-IsoldeK Blaum Y Blumenfeld P A Butler M GrieserY Litvinov R RaabeF Wenander and Ph J Woods(Eds)Published at the European PhysicalJournalVolume 207 May 3 2012

Page 7: The Heavy Ion Storage Ring TSR - CERNisolde.web.cern.ch/sites/isolde.web.cern.ch/files/M_Grieser.pdf · Simulation for the heavy ion storage ring TSR acceptance ... •decoupling

Transverse electron cooling

hot ionbeam

cold ion beam

examplehorizontal beam profile12C6+ (E=733 MeV)

measuring time 2s

rArr transversecooling timeT asymp 1s

for αex= 77and ne=153middot107 1cm3

ECOOL Stacking

measured I(t) for 35Cl17+ ions

principle

inj

emeff I

IM =

equilibrium intensity I0

Iinj-Injector intensity Meff- effective intensity

multiplication factor T- beam lifetimenr-injection rateTcool- electron cooling time

⎩⎨⎧

legt

=

sdotsdotsdot=

s20Ts15s20TT1

n

IMTnI

cool

coolcoolr

injeffr0

Iem effectiveintensityincrease withmultiturninjection

TIIn

dtdI

emr minus=

Cooling time Tcool of a multiturn injected ion beam

e

2

2cool nszlig

qAconstT sdotasymp ( 003ltszliglt016 )

inverse cooling time 1Tcool as a function of szlig

rArr for αex=96 and per =1 μperv

s3qAT 2cool sdotasymp 2

en βpropbecause

normalized to q2A and ne=108 cm-3

1T co

ol[1

s]

Ion Energy Pressure cooled uncooled cooled expl uncooled expl[MeV] [10-11 mbar] [s] [s] [s] [s]

p 21 4 220000 180000 RECHD+ 2 7 5 DIS7Li+ 13 6 48 41 ST 41 ST9Be+ 7 6 16 16 12 ST 12 ST12C6+ 73 6 7470 5519 REC 5630 MS28Si14+ 115 6 540 260 424 CAP 493 CAP32S16+ 196 5 450 554 REC 1200 CAP35Cl15+ 157 6 366 306 CAP 375 CAP35Cl17+ 202 6 318 366 402 REC 735 CAP56Fe22+ 250 5 77 90 REC 278 CAP58Ni25+ 342 5 60 89 REC 374 CAP63Cu26+ 510 6 122 166 REC 622 CAP74Ge28+ 365 5 45 59 REC 162 CAP80Se25+ 480 5 204 179 REC 384 CAP197Au51+ 710 5 23 51

Beam life-time T for some ions

60 h

Intensities for a few ions achieved with ECOOL stacking

2804929063Cu25+

10012251063Cu26+

1104536574Ge28+

10020448080Se25+

6006034258Ni25+

1287426056Fe23+

707725056Fe22+

38017845Sc18+

100031829335Cll7+

100017007312C6+

150045019532S16+

3

lt1

750

1000

Intensity [μA]

3695197Au50+

5050680Se31+

9816O8+

22000021p

life time[s]E [MeV]Ion

N asymp 4000 32S16+

I0 equilibrium intensityIinj injected intensityT- life timeTcool cooling time of

a multiturn injectedion beam

M intensity multiplicationfactor multiturninjection

ECOOL StackingM le 10

⎩⎨⎧

lt=

⎩⎨⎧

legt

=

sdotsdotεsdot==

coolr

coolrm

cool

coolcoolr

rminj

0

T1n1T1n80

s20Ts15s20TT1

n

TnMIIN

Iasymp1 mAinchoherenttune shiftlimit

RF acceleration and decelerationfrequency range 05-7 MHzonly with magnetization

factor asymp 7 Imag=0-150 Arf voltage max 5 kVrf power max 10 kWferrite Philips FXC 8C12 ferrite size 498x270x25 mm3

number of ferrites 20cooling 21 water cooled Cu disks

quadrupole coil resonatorRF resonator

quadrupolebull magnetization of the ferritesbull decoupling of rf field and magnetization field

Acceleration tests with 12C6+ ions

rigidity

energy E= 733 MeVrarr 362 MeV hArr Bmiddotρ = 071 Tm rarr 157 Tm

nom

inal

val

ue

pow

er su

pply

[bits

]

t[s]

nominal value power supplies

saturation effectsquadrupoleQFX1 ramp

main dipole ramp

η=98

start

final

NN

=ηfinal energy

start acceleration

ion current

0fNQI sdotsdot=

rArr

efficiencyion current

Internal target experiments at the TSRFILTEX experiment

storage cell

H

circulating beam

target thickness 5middot1013 atomscm2

Reaction microscopegas jet stored

ion beam

Helmholzcoils

gas jet

storedion beamsto

red i

onbe

am

polarized H

Slow extractionslow extraction processbull ion beam is cooled with electron coolingbullhorizontal working point is shifted close to the third order resonance Qxrarr 266hellipbullrf noise is given to a horizontal kicker to blow up the horizontal phase space

extraction scheme extraction rate

electron cooling rf noise is given to

a horizontal kicker

first ions are reachingthe separatrix

rf noise is switched off

beam 12C6+

E=733 MeV

efficiencywithout electron pre-cooling asymp25 with electron pre-cooling asymp90

Status of the TSR ring

bullTSR is routinely used at MPI up to the end of 2012bullend of 2012 shut down of the whole accelerator facility at MPIK

including TSRbullTSR will kept at MPI until TSR can be reassembled at ISOLDE (scheduled 2015)bull between 2013-2015 some modification at the TSR can be done

to fulfill the requirements from CERN bull in 2015 disassembly and reassembly by specialists from MPIK

and CERNISOLDE bull commissioning of the TSR at ISOLDE can be done in a joined

effort with experts from MPIK and CERNISOLDE

17

TSR HIE-ISOLDE

tilted beam-line comingfrom the HIE-ISOLDE machine

possible TSR installationabove the CERN cable-tunnel(E Siesling)

TSRHIE-ISOLDE building

HIE-ISOLDE

Technical Design Report

Storage Ring at Hie-IsoldeK Blaum Y Blumenfeld P A Butler M GrieserY Litvinov R RaabeF Wenander and Ph J Woods(Eds)Published at the European PhysicalJournalVolume 207 May 3 2012

Page 8: The Heavy Ion Storage Ring TSR - CERNisolde.web.cern.ch/sites/isolde.web.cern.ch/files/M_Grieser.pdf · Simulation for the heavy ion storage ring TSR acceptance ... •decoupling

ECOOL Stacking

measured I(t) for 35Cl17+ ions

principle

inj

emeff I

IM =

equilibrium intensity I0

Iinj-Injector intensity Meff- effective intensity

multiplication factor T- beam lifetimenr-injection rateTcool- electron cooling time

⎩⎨⎧

legt

=

sdotsdotsdot=

s20Ts15s20TT1

n

IMTnI

cool

coolcoolr

injeffr0

Iem effectiveintensityincrease withmultiturninjection

TIIn

dtdI

emr minus=

Cooling time Tcool of a multiturn injected ion beam

e

2

2cool nszlig

qAconstT sdotasymp ( 003ltszliglt016 )

inverse cooling time 1Tcool as a function of szlig

rArr for αex=96 and per =1 μperv

s3qAT 2cool sdotasymp 2

en βpropbecause

normalized to q2A and ne=108 cm-3

1T co

ol[1

s]

Ion Energy Pressure cooled uncooled cooled expl uncooled expl[MeV] [10-11 mbar] [s] [s] [s] [s]

p 21 4 220000 180000 RECHD+ 2 7 5 DIS7Li+ 13 6 48 41 ST 41 ST9Be+ 7 6 16 16 12 ST 12 ST12C6+ 73 6 7470 5519 REC 5630 MS28Si14+ 115 6 540 260 424 CAP 493 CAP32S16+ 196 5 450 554 REC 1200 CAP35Cl15+ 157 6 366 306 CAP 375 CAP35Cl17+ 202 6 318 366 402 REC 735 CAP56Fe22+ 250 5 77 90 REC 278 CAP58Ni25+ 342 5 60 89 REC 374 CAP63Cu26+ 510 6 122 166 REC 622 CAP74Ge28+ 365 5 45 59 REC 162 CAP80Se25+ 480 5 204 179 REC 384 CAP197Au51+ 710 5 23 51

Beam life-time T for some ions

60 h

Intensities for a few ions achieved with ECOOL stacking

2804929063Cu25+

10012251063Cu26+

1104536574Ge28+

10020448080Se25+

6006034258Ni25+

1287426056Fe23+

707725056Fe22+

38017845Sc18+

100031829335Cll7+

100017007312C6+

150045019532S16+

3

lt1

750

1000

Intensity [μA]

3695197Au50+

5050680Se31+

9816O8+

22000021p

life time[s]E [MeV]Ion

N asymp 4000 32S16+

I0 equilibrium intensityIinj injected intensityT- life timeTcool cooling time of

a multiturn injectedion beam

M intensity multiplicationfactor multiturninjection

ECOOL StackingM le 10

⎩⎨⎧

lt=

⎩⎨⎧

legt

=

sdotsdotεsdot==

coolr

coolrm

cool

coolcoolr

rminj

0

T1n1T1n80

s20Ts15s20TT1

n

TnMIIN

Iasymp1 mAinchoherenttune shiftlimit

RF acceleration and decelerationfrequency range 05-7 MHzonly with magnetization

factor asymp 7 Imag=0-150 Arf voltage max 5 kVrf power max 10 kWferrite Philips FXC 8C12 ferrite size 498x270x25 mm3

number of ferrites 20cooling 21 water cooled Cu disks

quadrupole coil resonatorRF resonator

quadrupolebull magnetization of the ferritesbull decoupling of rf field and magnetization field

Acceleration tests with 12C6+ ions

rigidity

energy E= 733 MeVrarr 362 MeV hArr Bmiddotρ = 071 Tm rarr 157 Tm

nom

inal

val

ue

pow

er su

pply

[bits

]

t[s]

nominal value power supplies

saturation effectsquadrupoleQFX1 ramp

main dipole ramp

η=98

start

final

NN

=ηfinal energy

start acceleration

ion current

0fNQI sdotsdot=

rArr

efficiencyion current

Internal target experiments at the TSRFILTEX experiment

storage cell

H

circulating beam

target thickness 5middot1013 atomscm2

Reaction microscopegas jet stored

ion beam

Helmholzcoils

gas jet

storedion beamsto

red i

onbe

am

polarized H

Slow extractionslow extraction processbull ion beam is cooled with electron coolingbullhorizontal working point is shifted close to the third order resonance Qxrarr 266hellipbullrf noise is given to a horizontal kicker to blow up the horizontal phase space

extraction scheme extraction rate

electron cooling rf noise is given to

a horizontal kicker

first ions are reachingthe separatrix

rf noise is switched off

beam 12C6+

E=733 MeV

efficiencywithout electron pre-cooling asymp25 with electron pre-cooling asymp90

Status of the TSR ring

bullTSR is routinely used at MPI up to the end of 2012bullend of 2012 shut down of the whole accelerator facility at MPIK

including TSRbullTSR will kept at MPI until TSR can be reassembled at ISOLDE (scheduled 2015)bull between 2013-2015 some modification at the TSR can be done

to fulfill the requirements from CERN bull in 2015 disassembly and reassembly by specialists from MPIK

and CERNISOLDE bull commissioning of the TSR at ISOLDE can be done in a joined

effort with experts from MPIK and CERNISOLDE

17

TSR HIE-ISOLDE

tilted beam-line comingfrom the HIE-ISOLDE machine

possible TSR installationabove the CERN cable-tunnel(E Siesling)

TSRHIE-ISOLDE building

HIE-ISOLDE

Technical Design Report

Storage Ring at Hie-IsoldeK Blaum Y Blumenfeld P A Butler M GrieserY Litvinov R RaabeF Wenander and Ph J Woods(Eds)Published at the European PhysicalJournalVolume 207 May 3 2012

Page 9: The Heavy Ion Storage Ring TSR - CERNisolde.web.cern.ch/sites/isolde.web.cern.ch/files/M_Grieser.pdf · Simulation for the heavy ion storage ring TSR acceptance ... •decoupling

Cooling time Tcool of a multiturn injected ion beam

e

2

2cool nszlig

qAconstT sdotasymp ( 003ltszliglt016 )

inverse cooling time 1Tcool as a function of szlig

rArr for αex=96 and per =1 μperv

s3qAT 2cool sdotasymp 2

en βpropbecause

normalized to q2A and ne=108 cm-3

1T co

ol[1

s]

Ion Energy Pressure cooled uncooled cooled expl uncooled expl[MeV] [10-11 mbar] [s] [s] [s] [s]

p 21 4 220000 180000 RECHD+ 2 7 5 DIS7Li+ 13 6 48 41 ST 41 ST9Be+ 7 6 16 16 12 ST 12 ST12C6+ 73 6 7470 5519 REC 5630 MS28Si14+ 115 6 540 260 424 CAP 493 CAP32S16+ 196 5 450 554 REC 1200 CAP35Cl15+ 157 6 366 306 CAP 375 CAP35Cl17+ 202 6 318 366 402 REC 735 CAP56Fe22+ 250 5 77 90 REC 278 CAP58Ni25+ 342 5 60 89 REC 374 CAP63Cu26+ 510 6 122 166 REC 622 CAP74Ge28+ 365 5 45 59 REC 162 CAP80Se25+ 480 5 204 179 REC 384 CAP197Au51+ 710 5 23 51

Beam life-time T for some ions

60 h

Intensities for a few ions achieved with ECOOL stacking

2804929063Cu25+

10012251063Cu26+

1104536574Ge28+

10020448080Se25+

6006034258Ni25+

1287426056Fe23+

707725056Fe22+

38017845Sc18+

100031829335Cll7+

100017007312C6+

150045019532S16+

3

lt1

750

1000

Intensity [μA]

3695197Au50+

5050680Se31+

9816O8+

22000021p

life time[s]E [MeV]Ion

N asymp 4000 32S16+

I0 equilibrium intensityIinj injected intensityT- life timeTcool cooling time of

a multiturn injectedion beam

M intensity multiplicationfactor multiturninjection

ECOOL StackingM le 10

⎩⎨⎧

lt=

⎩⎨⎧

legt

=

sdotsdotεsdot==

coolr

coolrm

cool

coolcoolr

rminj

0

T1n1T1n80

s20Ts15s20TT1

n

TnMIIN

Iasymp1 mAinchoherenttune shiftlimit

RF acceleration and decelerationfrequency range 05-7 MHzonly with magnetization

factor asymp 7 Imag=0-150 Arf voltage max 5 kVrf power max 10 kWferrite Philips FXC 8C12 ferrite size 498x270x25 mm3

number of ferrites 20cooling 21 water cooled Cu disks

quadrupole coil resonatorRF resonator

quadrupolebull magnetization of the ferritesbull decoupling of rf field and magnetization field

Acceleration tests with 12C6+ ions

rigidity

energy E= 733 MeVrarr 362 MeV hArr Bmiddotρ = 071 Tm rarr 157 Tm

nom

inal

val

ue

pow

er su

pply

[bits

]

t[s]

nominal value power supplies

saturation effectsquadrupoleQFX1 ramp

main dipole ramp

η=98

start

final

NN

=ηfinal energy

start acceleration

ion current

0fNQI sdotsdot=

rArr

efficiencyion current

Internal target experiments at the TSRFILTEX experiment

storage cell

H

circulating beam

target thickness 5middot1013 atomscm2

Reaction microscopegas jet stored

ion beam

Helmholzcoils

gas jet

storedion beamsto

red i

onbe

am

polarized H

Slow extractionslow extraction processbull ion beam is cooled with electron coolingbullhorizontal working point is shifted close to the third order resonance Qxrarr 266hellipbullrf noise is given to a horizontal kicker to blow up the horizontal phase space

extraction scheme extraction rate

electron cooling rf noise is given to

a horizontal kicker

first ions are reachingthe separatrix

rf noise is switched off

beam 12C6+

E=733 MeV

efficiencywithout electron pre-cooling asymp25 with electron pre-cooling asymp90

Status of the TSR ring

bullTSR is routinely used at MPI up to the end of 2012bullend of 2012 shut down of the whole accelerator facility at MPIK

including TSRbullTSR will kept at MPI until TSR can be reassembled at ISOLDE (scheduled 2015)bull between 2013-2015 some modification at the TSR can be done

to fulfill the requirements from CERN bull in 2015 disassembly and reassembly by specialists from MPIK

and CERNISOLDE bull commissioning of the TSR at ISOLDE can be done in a joined

effort with experts from MPIK and CERNISOLDE

17

TSR HIE-ISOLDE

tilted beam-line comingfrom the HIE-ISOLDE machine

possible TSR installationabove the CERN cable-tunnel(E Siesling)

TSRHIE-ISOLDE building

HIE-ISOLDE

Technical Design Report

Storage Ring at Hie-IsoldeK Blaum Y Blumenfeld P A Butler M GrieserY Litvinov R RaabeF Wenander and Ph J Woods(Eds)Published at the European PhysicalJournalVolume 207 May 3 2012

Page 10: The Heavy Ion Storage Ring TSR - CERNisolde.web.cern.ch/sites/isolde.web.cern.ch/files/M_Grieser.pdf · Simulation for the heavy ion storage ring TSR acceptance ... •decoupling

Ion Energy Pressure cooled uncooled cooled expl uncooled expl[MeV] [10-11 mbar] [s] [s] [s] [s]

p 21 4 220000 180000 RECHD+ 2 7 5 DIS7Li+ 13 6 48 41 ST 41 ST9Be+ 7 6 16 16 12 ST 12 ST12C6+ 73 6 7470 5519 REC 5630 MS28Si14+ 115 6 540 260 424 CAP 493 CAP32S16+ 196 5 450 554 REC 1200 CAP35Cl15+ 157 6 366 306 CAP 375 CAP35Cl17+ 202 6 318 366 402 REC 735 CAP56Fe22+ 250 5 77 90 REC 278 CAP58Ni25+ 342 5 60 89 REC 374 CAP63Cu26+ 510 6 122 166 REC 622 CAP74Ge28+ 365 5 45 59 REC 162 CAP80Se25+ 480 5 204 179 REC 384 CAP197Au51+ 710 5 23 51

Beam life-time T for some ions

60 h

Intensities for a few ions achieved with ECOOL stacking

2804929063Cu25+

10012251063Cu26+

1104536574Ge28+

10020448080Se25+

6006034258Ni25+

1287426056Fe23+

707725056Fe22+

38017845Sc18+

100031829335Cll7+

100017007312C6+

150045019532S16+

3

lt1

750

1000

Intensity [μA]

3695197Au50+

5050680Se31+

9816O8+

22000021p

life time[s]E [MeV]Ion

N asymp 4000 32S16+

I0 equilibrium intensityIinj injected intensityT- life timeTcool cooling time of

a multiturn injectedion beam

M intensity multiplicationfactor multiturninjection

ECOOL StackingM le 10

⎩⎨⎧

lt=

⎩⎨⎧

legt

=

sdotsdotεsdot==

coolr

coolrm

cool

coolcoolr

rminj

0

T1n1T1n80

s20Ts15s20TT1

n

TnMIIN

Iasymp1 mAinchoherenttune shiftlimit

RF acceleration and decelerationfrequency range 05-7 MHzonly with magnetization

factor asymp 7 Imag=0-150 Arf voltage max 5 kVrf power max 10 kWferrite Philips FXC 8C12 ferrite size 498x270x25 mm3

number of ferrites 20cooling 21 water cooled Cu disks

quadrupole coil resonatorRF resonator

quadrupolebull magnetization of the ferritesbull decoupling of rf field and magnetization field

Acceleration tests with 12C6+ ions

rigidity

energy E= 733 MeVrarr 362 MeV hArr Bmiddotρ = 071 Tm rarr 157 Tm

nom

inal

val

ue

pow

er su

pply

[bits

]

t[s]

nominal value power supplies

saturation effectsquadrupoleQFX1 ramp

main dipole ramp

η=98

start

final

NN

=ηfinal energy

start acceleration

ion current

0fNQI sdotsdot=

rArr

efficiencyion current

Internal target experiments at the TSRFILTEX experiment

storage cell

H

circulating beam

target thickness 5middot1013 atomscm2

Reaction microscopegas jet stored

ion beam

Helmholzcoils

gas jet

storedion beamsto

red i

onbe

am

polarized H

Slow extractionslow extraction processbull ion beam is cooled with electron coolingbullhorizontal working point is shifted close to the third order resonance Qxrarr 266hellipbullrf noise is given to a horizontal kicker to blow up the horizontal phase space

extraction scheme extraction rate

electron cooling rf noise is given to

a horizontal kicker

first ions are reachingthe separatrix

rf noise is switched off

beam 12C6+

E=733 MeV

efficiencywithout electron pre-cooling asymp25 with electron pre-cooling asymp90

Status of the TSR ring

bullTSR is routinely used at MPI up to the end of 2012bullend of 2012 shut down of the whole accelerator facility at MPIK

including TSRbullTSR will kept at MPI until TSR can be reassembled at ISOLDE (scheduled 2015)bull between 2013-2015 some modification at the TSR can be done

to fulfill the requirements from CERN bull in 2015 disassembly and reassembly by specialists from MPIK

and CERNISOLDE bull commissioning of the TSR at ISOLDE can be done in a joined

effort with experts from MPIK and CERNISOLDE

17

TSR HIE-ISOLDE

tilted beam-line comingfrom the HIE-ISOLDE machine

possible TSR installationabove the CERN cable-tunnel(E Siesling)

TSRHIE-ISOLDE building

HIE-ISOLDE

Technical Design Report

Storage Ring at Hie-IsoldeK Blaum Y Blumenfeld P A Butler M GrieserY Litvinov R RaabeF Wenander and Ph J Woods(Eds)Published at the European PhysicalJournalVolume 207 May 3 2012

Page 11: The Heavy Ion Storage Ring TSR - CERNisolde.web.cern.ch/sites/isolde.web.cern.ch/files/M_Grieser.pdf · Simulation for the heavy ion storage ring TSR acceptance ... •decoupling

Intensities for a few ions achieved with ECOOL stacking

2804929063Cu25+

10012251063Cu26+

1104536574Ge28+

10020448080Se25+

6006034258Ni25+

1287426056Fe23+

707725056Fe22+

38017845Sc18+

100031829335Cll7+

100017007312C6+

150045019532S16+

3

lt1

750

1000

Intensity [μA]

3695197Au50+

5050680Se31+

9816O8+

22000021p

life time[s]E [MeV]Ion

N asymp 4000 32S16+

I0 equilibrium intensityIinj injected intensityT- life timeTcool cooling time of

a multiturn injectedion beam

M intensity multiplicationfactor multiturninjection

ECOOL StackingM le 10

⎩⎨⎧

lt=

⎩⎨⎧

legt

=

sdotsdotεsdot==

coolr

coolrm

cool

coolcoolr

rminj

0

T1n1T1n80

s20Ts15s20TT1

n

TnMIIN

Iasymp1 mAinchoherenttune shiftlimit

RF acceleration and decelerationfrequency range 05-7 MHzonly with magnetization

factor asymp 7 Imag=0-150 Arf voltage max 5 kVrf power max 10 kWferrite Philips FXC 8C12 ferrite size 498x270x25 mm3

number of ferrites 20cooling 21 water cooled Cu disks

quadrupole coil resonatorRF resonator

quadrupolebull magnetization of the ferritesbull decoupling of rf field and magnetization field

Acceleration tests with 12C6+ ions

rigidity

energy E= 733 MeVrarr 362 MeV hArr Bmiddotρ = 071 Tm rarr 157 Tm

nom

inal

val

ue

pow

er su

pply

[bits

]

t[s]

nominal value power supplies

saturation effectsquadrupoleQFX1 ramp

main dipole ramp

η=98

start

final

NN

=ηfinal energy

start acceleration

ion current

0fNQI sdotsdot=

rArr

efficiencyion current

Internal target experiments at the TSRFILTEX experiment

storage cell

H

circulating beam

target thickness 5middot1013 atomscm2

Reaction microscopegas jet stored

ion beam

Helmholzcoils

gas jet

storedion beamsto

red i

onbe

am

polarized H

Slow extractionslow extraction processbull ion beam is cooled with electron coolingbullhorizontal working point is shifted close to the third order resonance Qxrarr 266hellipbullrf noise is given to a horizontal kicker to blow up the horizontal phase space

extraction scheme extraction rate

electron cooling rf noise is given to

a horizontal kicker

first ions are reachingthe separatrix

rf noise is switched off

beam 12C6+

E=733 MeV

efficiencywithout electron pre-cooling asymp25 with electron pre-cooling asymp90

Status of the TSR ring

bullTSR is routinely used at MPI up to the end of 2012bullend of 2012 shut down of the whole accelerator facility at MPIK

including TSRbullTSR will kept at MPI until TSR can be reassembled at ISOLDE (scheduled 2015)bull between 2013-2015 some modification at the TSR can be done

to fulfill the requirements from CERN bull in 2015 disassembly and reassembly by specialists from MPIK

and CERNISOLDE bull commissioning of the TSR at ISOLDE can be done in a joined

effort with experts from MPIK and CERNISOLDE

17

TSR HIE-ISOLDE

tilted beam-line comingfrom the HIE-ISOLDE machine

possible TSR installationabove the CERN cable-tunnel(E Siesling)

TSRHIE-ISOLDE building

HIE-ISOLDE

Technical Design Report

Storage Ring at Hie-IsoldeK Blaum Y Blumenfeld P A Butler M GrieserY Litvinov R RaabeF Wenander and Ph J Woods(Eds)Published at the European PhysicalJournalVolume 207 May 3 2012

Page 12: The Heavy Ion Storage Ring TSR - CERNisolde.web.cern.ch/sites/isolde.web.cern.ch/files/M_Grieser.pdf · Simulation for the heavy ion storage ring TSR acceptance ... •decoupling

RF acceleration and decelerationfrequency range 05-7 MHzonly with magnetization

factor asymp 7 Imag=0-150 Arf voltage max 5 kVrf power max 10 kWferrite Philips FXC 8C12 ferrite size 498x270x25 mm3

number of ferrites 20cooling 21 water cooled Cu disks

quadrupole coil resonatorRF resonator

quadrupolebull magnetization of the ferritesbull decoupling of rf field and magnetization field

Acceleration tests with 12C6+ ions

rigidity

energy E= 733 MeVrarr 362 MeV hArr Bmiddotρ = 071 Tm rarr 157 Tm

nom

inal

val

ue

pow

er su

pply

[bits

]

t[s]

nominal value power supplies

saturation effectsquadrupoleQFX1 ramp

main dipole ramp

η=98

start

final

NN

=ηfinal energy

start acceleration

ion current

0fNQI sdotsdot=

rArr

efficiencyion current

Internal target experiments at the TSRFILTEX experiment

storage cell

H

circulating beam

target thickness 5middot1013 atomscm2

Reaction microscopegas jet stored

ion beam

Helmholzcoils

gas jet

storedion beamsto

red i

onbe

am

polarized H

Slow extractionslow extraction processbull ion beam is cooled with electron coolingbullhorizontal working point is shifted close to the third order resonance Qxrarr 266hellipbullrf noise is given to a horizontal kicker to blow up the horizontal phase space

extraction scheme extraction rate

electron cooling rf noise is given to

a horizontal kicker

first ions are reachingthe separatrix

rf noise is switched off

beam 12C6+

E=733 MeV

efficiencywithout electron pre-cooling asymp25 with electron pre-cooling asymp90

Status of the TSR ring

bullTSR is routinely used at MPI up to the end of 2012bullend of 2012 shut down of the whole accelerator facility at MPIK

including TSRbullTSR will kept at MPI until TSR can be reassembled at ISOLDE (scheduled 2015)bull between 2013-2015 some modification at the TSR can be done

to fulfill the requirements from CERN bull in 2015 disassembly and reassembly by specialists from MPIK

and CERNISOLDE bull commissioning of the TSR at ISOLDE can be done in a joined

effort with experts from MPIK and CERNISOLDE

17

TSR HIE-ISOLDE

tilted beam-line comingfrom the HIE-ISOLDE machine

possible TSR installationabove the CERN cable-tunnel(E Siesling)

TSRHIE-ISOLDE building

HIE-ISOLDE

Technical Design Report

Storage Ring at Hie-IsoldeK Blaum Y Blumenfeld P A Butler M GrieserY Litvinov R RaabeF Wenander and Ph J Woods(Eds)Published at the European PhysicalJournalVolume 207 May 3 2012

Page 13: The Heavy Ion Storage Ring TSR - CERNisolde.web.cern.ch/sites/isolde.web.cern.ch/files/M_Grieser.pdf · Simulation for the heavy ion storage ring TSR acceptance ... •decoupling

Acceleration tests with 12C6+ ions

rigidity

energy E= 733 MeVrarr 362 MeV hArr Bmiddotρ = 071 Tm rarr 157 Tm

nom

inal

val

ue

pow

er su

pply

[bits

]

t[s]

nominal value power supplies

saturation effectsquadrupoleQFX1 ramp

main dipole ramp

η=98

start

final

NN

=ηfinal energy

start acceleration

ion current

0fNQI sdotsdot=

rArr

efficiencyion current

Internal target experiments at the TSRFILTEX experiment

storage cell

H

circulating beam

target thickness 5middot1013 atomscm2

Reaction microscopegas jet stored

ion beam

Helmholzcoils

gas jet

storedion beamsto

red i

onbe

am

polarized H

Slow extractionslow extraction processbull ion beam is cooled with electron coolingbullhorizontal working point is shifted close to the third order resonance Qxrarr 266hellipbullrf noise is given to a horizontal kicker to blow up the horizontal phase space

extraction scheme extraction rate

electron cooling rf noise is given to

a horizontal kicker

first ions are reachingthe separatrix

rf noise is switched off

beam 12C6+

E=733 MeV

efficiencywithout electron pre-cooling asymp25 with electron pre-cooling asymp90

Status of the TSR ring

bullTSR is routinely used at MPI up to the end of 2012bullend of 2012 shut down of the whole accelerator facility at MPIK

including TSRbullTSR will kept at MPI until TSR can be reassembled at ISOLDE (scheduled 2015)bull between 2013-2015 some modification at the TSR can be done

to fulfill the requirements from CERN bull in 2015 disassembly and reassembly by specialists from MPIK

and CERNISOLDE bull commissioning of the TSR at ISOLDE can be done in a joined

effort with experts from MPIK and CERNISOLDE

17

TSR HIE-ISOLDE

tilted beam-line comingfrom the HIE-ISOLDE machine

possible TSR installationabove the CERN cable-tunnel(E Siesling)

TSRHIE-ISOLDE building

HIE-ISOLDE

Technical Design Report

Storage Ring at Hie-IsoldeK Blaum Y Blumenfeld P A Butler M GrieserY Litvinov R RaabeF Wenander and Ph J Woods(Eds)Published at the European PhysicalJournalVolume 207 May 3 2012

Page 14: The Heavy Ion Storage Ring TSR - CERNisolde.web.cern.ch/sites/isolde.web.cern.ch/files/M_Grieser.pdf · Simulation for the heavy ion storage ring TSR acceptance ... •decoupling

Internal target experiments at the TSRFILTEX experiment

storage cell

H

circulating beam

target thickness 5middot1013 atomscm2

Reaction microscopegas jet stored

ion beam

Helmholzcoils

gas jet

storedion beamsto

red i

onbe

am

polarized H

Slow extractionslow extraction processbull ion beam is cooled with electron coolingbullhorizontal working point is shifted close to the third order resonance Qxrarr 266hellipbullrf noise is given to a horizontal kicker to blow up the horizontal phase space

extraction scheme extraction rate

electron cooling rf noise is given to

a horizontal kicker

first ions are reachingthe separatrix

rf noise is switched off

beam 12C6+

E=733 MeV

efficiencywithout electron pre-cooling asymp25 with electron pre-cooling asymp90

Status of the TSR ring

bullTSR is routinely used at MPI up to the end of 2012bullend of 2012 shut down of the whole accelerator facility at MPIK

including TSRbullTSR will kept at MPI until TSR can be reassembled at ISOLDE (scheduled 2015)bull between 2013-2015 some modification at the TSR can be done

to fulfill the requirements from CERN bull in 2015 disassembly and reassembly by specialists from MPIK

and CERNISOLDE bull commissioning of the TSR at ISOLDE can be done in a joined

effort with experts from MPIK and CERNISOLDE

17

TSR HIE-ISOLDE

tilted beam-line comingfrom the HIE-ISOLDE machine

possible TSR installationabove the CERN cable-tunnel(E Siesling)

TSRHIE-ISOLDE building

HIE-ISOLDE

Technical Design Report

Storage Ring at Hie-IsoldeK Blaum Y Blumenfeld P A Butler M GrieserY Litvinov R RaabeF Wenander and Ph J Woods(Eds)Published at the European PhysicalJournalVolume 207 May 3 2012

Page 15: The Heavy Ion Storage Ring TSR - CERNisolde.web.cern.ch/sites/isolde.web.cern.ch/files/M_Grieser.pdf · Simulation for the heavy ion storage ring TSR acceptance ... •decoupling

Slow extractionslow extraction processbull ion beam is cooled with electron coolingbullhorizontal working point is shifted close to the third order resonance Qxrarr 266hellipbullrf noise is given to a horizontal kicker to blow up the horizontal phase space

extraction scheme extraction rate

electron cooling rf noise is given to

a horizontal kicker

first ions are reachingthe separatrix

rf noise is switched off

beam 12C6+

E=733 MeV

efficiencywithout electron pre-cooling asymp25 with electron pre-cooling asymp90

Status of the TSR ring

bullTSR is routinely used at MPI up to the end of 2012bullend of 2012 shut down of the whole accelerator facility at MPIK

including TSRbullTSR will kept at MPI until TSR can be reassembled at ISOLDE (scheduled 2015)bull between 2013-2015 some modification at the TSR can be done

to fulfill the requirements from CERN bull in 2015 disassembly and reassembly by specialists from MPIK

and CERNISOLDE bull commissioning of the TSR at ISOLDE can be done in a joined

effort with experts from MPIK and CERNISOLDE

17

TSR HIE-ISOLDE

tilted beam-line comingfrom the HIE-ISOLDE machine

possible TSR installationabove the CERN cable-tunnel(E Siesling)

TSRHIE-ISOLDE building

HIE-ISOLDE

Technical Design Report

Storage Ring at Hie-IsoldeK Blaum Y Blumenfeld P A Butler M GrieserY Litvinov R RaabeF Wenander and Ph J Woods(Eds)Published at the European PhysicalJournalVolume 207 May 3 2012

Page 16: The Heavy Ion Storage Ring TSR - CERNisolde.web.cern.ch/sites/isolde.web.cern.ch/files/M_Grieser.pdf · Simulation for the heavy ion storage ring TSR acceptance ... •decoupling

Status of the TSR ring

bullTSR is routinely used at MPI up to the end of 2012bullend of 2012 shut down of the whole accelerator facility at MPIK

including TSRbullTSR will kept at MPI until TSR can be reassembled at ISOLDE (scheduled 2015)bull between 2013-2015 some modification at the TSR can be done

to fulfill the requirements from CERN bull in 2015 disassembly and reassembly by specialists from MPIK

and CERNISOLDE bull commissioning of the TSR at ISOLDE can be done in a joined

effort with experts from MPIK and CERNISOLDE

17

TSR HIE-ISOLDE

tilted beam-line comingfrom the HIE-ISOLDE machine

possible TSR installationabove the CERN cable-tunnel(E Siesling)

TSRHIE-ISOLDE building

HIE-ISOLDE

Technical Design Report

Storage Ring at Hie-IsoldeK Blaum Y Blumenfeld P A Butler M GrieserY Litvinov R RaabeF Wenander and Ph J Woods(Eds)Published at the European PhysicalJournalVolume 207 May 3 2012

Page 17: The Heavy Ion Storage Ring TSR - CERNisolde.web.cern.ch/sites/isolde.web.cern.ch/files/M_Grieser.pdf · Simulation for the heavy ion storage ring TSR acceptance ... •decoupling

17

TSR HIE-ISOLDE

tilted beam-line comingfrom the HIE-ISOLDE machine

possible TSR installationabove the CERN cable-tunnel(E Siesling)

TSRHIE-ISOLDE building

HIE-ISOLDE

Technical Design Report

Storage Ring at Hie-IsoldeK Blaum Y Blumenfeld P A Butler M GrieserY Litvinov R RaabeF Wenander and Ph J Woods(Eds)Published at the European PhysicalJournalVolume 207 May 3 2012

Page 18: The Heavy Ion Storage Ring TSR - CERNisolde.web.cern.ch/sites/isolde.web.cern.ch/files/M_Grieser.pdf · Simulation for the heavy ion storage ring TSR acceptance ... •decoupling

Technical Design Report

Storage Ring at Hie-IsoldeK Blaum Y Blumenfeld P A Butler M GrieserY Litvinov R RaabeF Wenander and Ph J Woods(Eds)Published at the European PhysicalJournalVolume 207 May 3 2012