Top Banner
The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states S. Cuccagna Università di Trieste Bertinoro 29 September 2011
22

The Hamiltonian structure of the nonlinear Schrödinger ...delsanto/PhSA2011/PhSA2011/Speakers_files/...The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic

Aug 24, 2019

Download

Documents

ngongoc
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Hamiltonian structure of the nonlinear Schrödinger ...delsanto/PhSA2011/PhSA2011/Speakers_files/...The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic

The Hamiltonian structure of the nonlinearSchrödinger equation and the asymptotic

stability of its ground states

S. Cuccagna

Università di Trieste

Bertinoro 29 September 2011

Page 2: The Hamiltonian structure of the nonlinear Schrödinger ...delsanto/PhSA2011/PhSA2011/Speakers_files/...The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic

iut = −∆u + β(|u|2)u, (t , x) ∈ R× R3

u(0, x) = u0(x),

β(s) smooth, β(0) = 0.

We assume existence of ground states for ω ∈ (a,b) ⊂ R+:

ei2 v ·(x−vt−D)+ i

4 |v |2t+itω+iγϕω(x − vt − D), where

−∆ϕω(x) + ωϕω(x) + β(ϕ2ω(x))ϕω(x) = 0

Page 3: The Hamiltonian structure of the nonlinear Schrödinger ...delsanto/PhSA2011/PhSA2011/Speakers_files/...The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic

−8 −6 −4 −2 0 2 4 6 80

0.5

1

−8 −6 −4 −2 0 2 4 6 8−0.5

0

0.5

1

ground state

Page 4: The Hamiltonian structure of the nonlinear Schrödinger ...delsanto/PhSA2011/PhSA2011/Speakers_files/...The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic

1) SPECTRAL STABILITY (M.I.Weinstein’s hypotheses CPAM 86 )

2) ORBITAL STABILITY

infγ∈R,y∈R3

∥u(0)− eiγei2 v0·xϕω0(· − y)∥H1 < δ ⇒

supt∈R

infγ∈R,y∈R3

∥u(t)− eiγei2 v0·xϕω0(· − y)∥H1 < ϵ

3) ASYMPTOTIC STABILITY

limt→±∞

∥u(t , ·)− eiθ(t)+ i2 v±·xτy(t)ϕω± − eit∆h±∥H1 = 0

WORKING HYPOTHESIS: 1)⇔2)⇔3)

Theorem: 1 ⇒ 3 generically.

Technically our main result is proof of the Fermi Golden Rule.

Page 5: The Hamiltonian structure of the nonlinear Schrödinger ...delsanto/PhSA2011/PhSA2011/Speakers_files/...The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic

Example: iut = −∆u − |u|p−1u with p < n+2n−2 admits ground states.

Orbitally stable for p < 1 + 4n (Cazenave & Lions 82)

For n = 1 and p = 3 they are not asymptotically stable (byintegrability).

For p < 1 + 4n one has to deal with interactions of multi–solitons (one

large, the other small, in H1)

Multi–soliton problem is avoided in Σ := H1 ∩ |x |−1L2, but then oneneeds a yet unknown surrogate of quasiconformal invariance.

Unfortunately we do not cover these L2 subcritical equations.

Page 6: The Hamiltonian structure of the nonlinear Schrödinger ...delsanto/PhSA2011/PhSA2011/Speakers_files/...The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic

u(t , x) = ei( v·(x−D)2 +ϑ)(ϕω(x − D) + r(x − D)),

σ1 =

(0 11 0

), σ3 =

(1 00 −1

),R =

(rr

),Φω =

(ϕω

ϕω

).

iRt = Hω(t)R + O(R2) + σ3(ϑ(t)−v2(t)

4− ω(t))(Φω(t) + R)

+ i(D(t)− v(t)) · ∇x (Φω(t) + R)− v(t) · x2

σ3(Φω(t) + R)− iω(t)∂ωΦω(t)

modulation equations:ω = O(R2) , v = O(R2)

ϑ− v2

4 − ω = O(R2) , D − v = O(R2)

Hω =

(−∆+ ω + β(ϕ2

ω) + β′(ϕ2ω)ϕ

2ω β′(ϕ2

ω)ϕ2ω

−β′(ϕ2ω)ϕ

2ω ∆− ω − β(ϕ2

ω)− β′(ϕ2ω)ϕ

)

Page 7: The Hamiltonian structure of the nonlinear Schrödinger ...delsanto/PhSA2011/PhSA2011/Speakers_files/...The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic

σ(Hω) looks like this:

0

λ2λ1

−λ1−λ2

ω−ω

L2 = Ng(Hω)⊕∑

λ∈σp\0

ker(Hω − λ)⊕ L2c(Hω)

L2c(Hω) := Ng(H∗

ω)⊕∑

λ∈σp\0

ker(H∗ω − λ)⊥.

eitHω | L2c(Hω) satisfies the same Strichartz of eit∆.

Page 8: The Hamiltonian structure of the nonlinear Schrödinger ...delsanto/PhSA2011/PhSA2011/Speakers_files/...The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic

0

λ2λ1

−λ1−λ2

ω−ω

L2 = Ng(Hω(t))⊕n∑

j=1

(ker(Hω(t) − λj(ω(t)))⊕ ker(Hω(t) + λj(ω(t))

)⊕ L2

c(ω(t))

R(t , x) =n∑

j=1

(zj(t)ξj(x , ω(t)) + z j(t)σ1ξj(x , ω(t))) + f (t , x),

ξj(x , ω) = ker(Hω − λj(ω)) , iRt = Hω(t)R + O(R2)

Page 9: The Hamiltonian structure of the nonlinear Schrödinger ...delsanto/PhSA2011/PhSA2011/Speakers_files/...The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic

Oversimplifying, for some H(|z|2) with Im H(|z|2) = 0, above systemis of form

izj = ∂z jH(|z|2) +

∑µν

zµzν⟨G(j)µν(t , x), f (t , x)⟩L2

x+ · · ·

if −Hωf =∑µν

zµzνMµν(t , x) + · · ·(1)

(1) is a perturbation of

iz = ∇zH(|z|2) , if −Hωf = 0 .

for which |z(t)| ≡ |z(0)|.

To get |z(t)| 0 in (1) we need the Fermi Golden Rule.

We recall the classical FGR (cfr. [Reed & Simon]) for a simple model

Page 10: The Hamiltonian structure of the nonlinear Schrödinger ...delsanto/PhSA2011/PhSA2011/Speakers_files/...The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic

For H0 := 12∥∇f∥L2 + 1

2 |z|2, (e−it ,0) is a periodic solution of

iz = ∂zH0 = z , if = ∇f H0 = −∆f .

For H := H0 + z⟨V , f ⟩+ z⟨V , f ⟩ generally do not exist periodicsolutions e−iλt(z0, f0) with λ > 0 and f0 satisfying radiation condition

iz = z + ⟨V , f ⟩ , if = −∆f + zV .

Indeed, if it existed then

(1 − λ)z0 + ⟨V , f 0⟩ = 0 and f0 = −z0R+−∆(λ)V

z0(1 − λ− ⟨V ,R−

−∆(λ)V ⟩)= 0 ⇒

Im⟨V ,R−−∆(λ)V ⟩ ∼

∫|ξ|=

√λ

|V (ξ)|2dA = 0 ⇔ V ||ξ|=√λ = 0

and this is not true for V generic.Two ingredients: 1) coupling z & f ; 2) Hamiltonian structure.

Page 11: The Hamiltonian structure of the nonlinear Schrödinger ...delsanto/PhSA2011/PhSA2011/Speakers_files/...The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic

FGR applied in nonlinear problems by M.I.Sigal (Instability Periodicsol’s 93).

In the present context FGR introduced by V.Buslaev and G.Perelman(95) in special cases.

See also A. Soffer and M.I.Weinstein [SW99] for scattering small sol’sNLKG: u −∆u + V (x)u + m2u + β(u) = 0 when σd (−∆+ V ) = ∅.

Improvements in G.Zhou and Sigal (2006) and C. and T.Mizumachi(2008). All the above papers emphasized coupling.

Relevance of hamiltonian structure emphasized in C. Phys.D (2009)

General case for NLS without translation C. (2009); earlier D.Bambusiand C. (2009) complete solution of [SW99].

Some application to Dirac equation N. Boussaid and C. (2011).

Moving soliton: C. (2011), Bambusi (2011).

Page 12: The Hamiltonian structure of the nonlinear Schrödinger ...delsanto/PhSA2011/PhSA2011/Speakers_files/...The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic

U = t(u,u), B′ = β, B(0) = 0,

E(u) =∫R3

|∇u(x)|2dx +

∫R3

B(|u(x)|2)dx

Q(u) =∫R3

|u(x)|2dx , Πa(U) = Im∫R3

u(x)∂xau(x)dx .

U(x) = eiσ3(v·(x−D)

2 +ϑ) (Φω(x − D) + R(x − D))

R(x) = z · ξ(ω, x) + z · σ1ξ(ω, x) + (Pc(Hω)f )(x) , f ∈ L2c(Hω0),

ω0 s.t. ∥ϕω0∥22 = ∥u0∥2

2.

U ↔ (ϑ, ω,D, v , z, f ) coordinates, where for Θ = ϑ+v · x

2,

f ′ ∼ −∂ωR dω − iσ3R dϑ − i2σ3xaR dva + (∂xa + iσ3

va

2)R dDa + e−iσ3Θτ−DI

Page 13: The Hamiltonian structure of the nonlinear Schrödinger ...delsanto/PhSA2011/PhSA2011/Speakers_files/...The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic

Symplectic form: Ω(X ,Y ) = ⟨X , σ3σ1Y ⟩.

ω = ω,E , v = v ,E , f = f ,E , z = z,E , D = D,E , ϑ = ϑ,E.

We set

K (U) := E(U)− E(Φω0) + ω(U)Q(U)− ω(U)∥u0∥2L2

x

and look at

ω = ω,K , v = v ,K , f = f ,K , z = z,K , D = D,K , ϑ = ϑ,K.

Page 14: The Hamiltonian structure of the nonlinear Schrödinger ...delsanto/PhSA2011/PhSA2011/Speakers_files/...The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic

Q := Q(U) = Q(Φω) + Q(R) ,

Πa := Πa(U) = Πa(R)− va

2(Q(Φω) + Q(R)) .

(2)

Then in this new coordinate system we can reduce variables

Q = 0 , Π = 0 , D = D,K , ϑ = ϑ,K ,

f = f ,K , z = z,K.

The coordinate system is not canonical. So zj ,K = i ∂K∂z j

andf ,K = iσ1σ3∇f K

Page 15: The Hamiltonian structure of the nonlinear Schrödinger ...delsanto/PhSA2011/PhSA2011/Speakers_files/...The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic

Set Ω0 := idϑ ∧ dQ + idDa ∧ dΠa + dzj ∧ dz j + ⟨f ′|σ3σ1f ′⟩.

Ω0 = Ω at τDeiσ3( v·x2 +ϑ)Φω0 for all (ϑ,D, v) ∈ R7.

We apply Darboux Theorem: F∗Ω = Ω0 and we set H := K F

Scattering and decay equivalent in the two coordinate systems andboxed formulas be semilinear NLS:

ϑ = −∂H∂Q

, D = −∇ΠH ,

Q =∂H∂ϑ

≡ 0 , Π = ∇DH ≡ 0

izj =∂H∂z j

, if = σ3σ1∇f H .

Page 16: The Hamiltonian structure of the nonlinear Schrödinger ...delsanto/PhSA2011/PhSA2011/Speakers_files/...The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic

The next stage is Birkhoff normal forms. We get to

H = H2 + Z + Reminder

H2 =n∑

j=1

λj(ω0)|zj |2 +12⟨σ3Hω0 f , σ1f ⟩

Z = Z0 + Z1

Z0 =∑

λ(ω0)·(µ−ν)=0

aµ,νzµzν where λ = (λ1, ..., λn)

Z1 =∑

|λ(ω0)·(µ−ν)|>ω0

zµzν⟨σ1σ3Gµν , f ⟩ , Gµν(x) ∈ S(R3,C2)

(One has aµ,ν = aµ,ν(Q(f ),Π(f )) and Gµ,ν(x) = Gµ,ν(x ,Q(f ),Π(f )))

Page 17: The Hamiltonian structure of the nonlinear Schrödinger ...delsanto/PhSA2011/PhSA2011/Speakers_files/...The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic

∥f∥Strichartz ≤ Cϵ

∥zµ∥L2t ([0,∞)) ≤ Cϵ for all multi indexes µ with λ · µ > ω0

if −Hf − (∂Q(f )H)Pc(ω0)σ3f − i(∂Πa(f )H)Pc(ω0)∂xa f

=∑

|λ(ω0)·(µ−ν)|>ω0

zµzνGµν + ....

∥f∥Strichartz ≤ ∥f (0)∥H1x+

∑|λ(ω0)·(µ−ν)|>ω0

∥zµzν∥L2t ([0,∞)) + ...

We expand

f = −∑

|λ(ω0)·(µ−ν)|>ω0

zµzνR+H(λ(ω0) · (µ− ν))Gµν + ...

Page 18: The Hamiltonian structure of the nonlinear Schrödinger ...delsanto/PhSA2011/PhSA2011/Speakers_files/...The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic

izj = ∂z j(H2 + Z0) +

∑|λ(ω0)·(µ′−ν′)|>ω0

νjzµ′

zν′

z j⟨f , σ1σ3Gµ′ν′⟩+ ∂z j

Reminder.

Substituting for f , the significant terms are

izj = ∂z j(H2 + Z0)

−∑

λ(ω0)·µ=λ(ω0)·ν′>ω0

ν′jzµzν′

z j⟨R+

H(µ · λ(ω0))Gµ0, σ1σ3G0ν′⟩.

Multiplying by λj(ω0)z j , summing up and taking imaginary part

Page 19: The Hamiltonian structure of the nonlinear Schrödinger ...delsanto/PhSA2011/PhSA2011/Speakers_files/...The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic

∂t

n∑j=1

λj |zj |2 = −2∑

λ·µ=λ·ν>ω0

λ · ν Im(zµzν⟨R+

H(µ · λ)Gµ0, σ1σ3G0ν⟩)

= −2∑κ>ω0

κ Im

⟨R+

H(κ)∑

λ·µ=κ

zµGµ0, σ3

∑λ·µ=κ

zµGµ0

⟩(by Gµν = −σ1Gνµ)

= −2π∑κ>ω0

κ

⟨δ (H− κ)

∑λ·µ=κ

zµGµ0, σ3

∑λ·µ=κ

zµGµ0

= −2π∑κ>ω0

κ

⟨δ(−∆+ ω0 − κ)

∑λ·µ=κ

zµF (1)µ0 ,

∑λ·µ=κ

zµF (1)µ0

⟩≤ 0 (the FGR)

Here Fµ0 = (F (1)µ0 ,F

(2)µ0 ) with Gµ0 = limt∞ e−itHωeitσ3(−∆+ω)Fµ0

Page 20: The Hamiltonian structure of the nonlinear Schrödinger ...delsanto/PhSA2011/PhSA2011/Speakers_files/...The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic

Generically for a Γ > 0 we have

∑κ>ω0

κ

⟨δ(−∆+ ω0 − κ)

∑λ·µ=κ

with λ·µ−λk<ω0∀ k s.t. µk =0

zµF (1)µ0 ,

∑λ·µ=κ

with λ·µ−λk<ω0∀ k s.t. µk =0

zµF (1)µ0

≥ Γ∑

λ·µ>ω0with λ·µ−λk<ω0∀ k s.t. µk =0

|zµ|2

=⇒ ∂t

n∑j=1

λj |zj |2 + Γ∑

λ·µ>ω0

|zµ|2 ≤ 0

=⇒n∑

j=1

λj |zj(t)|2 + Γ∑

λ·µ>ω0

∫ t

0|zµ(s)|2ds ≤

n∑j=1

λj |zj(0)|2

=⇒ limz→+∞

z(t) = 0 & ∥zµ∥L2t≤ ϵ for λ · µ > ω0.

Page 21: The Hamiltonian structure of the nonlinear Schrödinger ...delsanto/PhSA2011/PhSA2011/Speakers_files/...The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic

With N.Boussaid we consider Dirac equation

iut − Dmu + g(uu)βu = 0 , only for βu(t , x) ≡ u(t ,−x),

Dm = −i∑3

j=1 αj∂xj + mβ, with for j = 1,2,3

αj =

(0 σjσj 0

), β =

(IC2 00 −IC2

), σ(Dm) = (−∞,−m] ∪ [m,∞) .

The discussion is similar, with

Hω =

(Dm − ω 0

0 Dm + ω

)+ Vω

but now the strong indefiniteness of the energy reveals itself withjuxtaposition of continuous spectrum of distinct components

σ(Dm − ω) ∩ σ(Dm + ω) = ∅ while earlier σ(−∆+ ω) ∩ σ(∆− ω) = ∅

Page 22: The Hamiltonian structure of the nonlinear Schrödinger ...delsanto/PhSA2011/PhSA2011/Speakers_files/...The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic

∂t

n∑j=1

λj |zj |2 = −2π∑

κ>m−ω

κ

⟨δ (H− κ)

∑λ·µ=κ

zµGµ0,

(IdC4 0

0 −IdC4

) ∑λ·µ=κ

zµGµ0

= −2π∑

κ>m−ω

κ

⟨δ(Dm − (κ+ ω))

∑λ·µ=κ

zµF (1)µ0 ,

∑λ·µ=κ

zµF (1)µ0

+ 2π∑

κ>m−ω

κ

⟨δ(Dm − (κ− ω))

∑λ·µ=κ

zµF (2)µ0 ,

∑λ·µ=κ

zµF (2)µ0

Here 0 < ω < m and for ω > m3 the last line = 0 because it is enough

to get κ ∈ R+ ∩ σ(Dm − ω)\σ(Dm + ω) = [m − ω,m + ω).

Then ∂t

n∑j=1

λj |zj |2 + Γ∑

λ·µ>m−ω

|zµ|2 ≤ 0.

and we get both orbital and asymptotic stability.