Top Banner
Introduction Special Relativity General Relativity Applications The Geometry of Relativity Tevian Dray Department of Mathematics Oregon State University http://www.math.oregonstate.edu/ ~ tevian OSU 4/27/15 Tevian Dray The Geometry of Relativity 1/27
29

The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

Jul 18, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

The Geometry of Relativity

Tevian Dray

Department of MathematicsOregon State University

http://www.math.oregonstate.edu/~tevian

OSU 4/27/15 Tevian Dray The Geometry of Relativity 1/27

Page 2: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

Books

The Geometry of Special RelativityTevian DrayA K Peters/CRC Press 2012ISBN: 978-1-4665-1047-0http://physics.oregonstate.edu/coursewikis/GSR

Differential Forms andthe Geometry of General RelativityTevian DrayA K Peters/CRC Press 2014ISBN: 978-1-4665-1000-5http://physics.oregonstate.edu/coursewikis/GDF

http://physics.oregonstate.edu/coursewikis/GGR

OSU 4/27/15 Tevian Dray The Geometry of Relativity 2/27

Page 3: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

Circle GeometryHyperbola GeometryApplications

Trigonometry

ds2 = dx2 + dy2

Φ

r Hr cosΦ, r sinΦL

x2 + y2 = r2

rφ = arclength

4

53

θ

tan θ =3

4=⇒ cos θ =

4

5

OSU 4/27/15 Tevian Dray The Geometry of Relativity 3/27

Page 4: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

Circle GeometryHyperbola GeometryApplications

Measurements

Width:θ

1

θ

1

Apparent width > 1

1cos θ

1cos θ

Slope:

y

y’

x’

y

x

φθ

m 6= m1 +m2

tan(θ + φ) = tan θ+tanφ1−tan θ tanφ = m1+m2

1−m1m2

OSU 4/27/15 Tevian Dray The Geometry of Relativity 4/27

Page 5: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

Circle GeometryHyperbola GeometryApplications

Rotations

y

B

θ

θ

A

y’

x’

x

OSU 4/27/15 Tevian Dray The Geometry of Relativity 5/27

Page 6: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

Circle GeometryHyperbola GeometryApplications

Trigonometry

ds2 = −c2 dt2 + dx2

ββ ρρ( cosh , sinh )

β

ρβ = arclength

4

5

3

β

tanhβ =3

5=⇒ coshβ =

5

4

(coshβ ≥ 1; tanhβ < 1)

OSU 4/27/15 Tevian Dray The Geometry of Relativity 6/27

Page 7: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

Circle GeometryHyperbola GeometryApplications

Trigonometry

β

βB

t’

A

x’

t

x

β coshρ

β sinhρρ

β

OSU 4/27/15 Tevian Dray The Geometry of Relativity 7/27

Page 8: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

Circle GeometryHyperbola GeometryApplications

Length Contraction

x’

t’t

x

x’

t’t

x

ℓ ′ = ℓcoshβ

β β

ℓ ′

ℓ ′

OSU 4/27/15 Tevian Dray The Geometry of Relativity 8/27

Page 9: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

Circle GeometryHyperbola GeometryApplications

Time Dilation

x’

ct’ct

x

OSU 4/27/15 Tevian Dray The Geometry of Relativity 9/27

Page 10: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

Circle GeometryHyperbola GeometryApplications

Pole & Barn

A 20 foot pole is moving towards a 10 foot barn fast enough thatthe pole appears to be only 10 feet long. As soon as both ends ofthe pole are in the barn, slam the doors. How can a 20 foot polefit into a 10 foot barn?

-20

-10

0

10

20

-20 -10 10 20 30

-20

-10

0

10

20

-10 10 20 30

barn frame pole frame

OSU 4/27/15 Tevian Dray The Geometry of Relativity 10/27

Page 11: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

Circle GeometryHyperbola GeometryApplications

Relativistic Mechanics

A pion of (rest) mass m and (relativistic) momentum p = 34mc

decays into 2 (massless) photons. One photon travels in the samedirection as the original pion, and the other travels in the oppositedirection. Find the energy of each photon. [E1 = mc2, E2 =

14mc2]

0

0

mc2

Β

E

E1

E2

pc

p1c

p2c

p0c

E0

E0

p0c

Β

Β

ΒΒ

p 0c

sinhΒ

p 0c

sinhΒ

E0c

coshΒ

E0c

coshΒ

0

0

mc2

Β

E1

p1 c

E2

p2 c

p0c

E0

E0

p0c

Β

Β

Β

p0 c sinh

Β

p0 c sinh

Β

E0 c cosh

ΒE

0 c coshΒ

OSU 4/27/15 Tevian Dray The Geometry of Relativity 11/27

Page 12: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

Circle GeometryHyperbola GeometryApplications

Twin Paradox

One twin travels 24 light-years to star X at speed 2425c; her twin

brother stays home. When the traveling twin gets to star X, sheimmediately turns around, and returns at the same speed. Howlong does each twin think the trip took?

β

•24

25 7

coshβ =25

7

7

q

q =7

coshβ=

49

25 49/25

7

24

25

β

Straight path takes longest!

OSU 4/27/15 Tevian Dray The Geometry of Relativity 12/27

Page 13: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

Circle GeometryHyperbola GeometryApplications

Addition of Velocities

v

c= tanhβ

tanh(α+ β) =tanhα+ tanhβ

1 + tanhα tanhβ=

uc+ v

c

1 + uvc2

Einstein addition formula!

OSU 4/27/15 Tevian Dray The Geometry of Relativity 13/27

Page 14: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

The MetricDifferential FormsGeodesicsEinstein’s Equation

Line Elements

a

a

dr2 + r2 dφ2 dθ2 + sin2 θ dφ2 dβ2 + sinh2 β dφ2

Black Hole: ds2 = −(

1− 2mr

)

dt2 + dr2

1− 2mr

+ r2 dθ2 + r2 sin2 θ dφ2

Cosmology: ds2 = −dt2 + a(t)2(

dr2

1−kr2+ r2

(

dθ2 + sin2 θ dφ2)

)

s = 0 s = 1

flat Euclidean Minkowskian (SR)curved Riemannian Lorentzian (GR)

OSU 4/27/15 Tevian Dray The Geometry of Relativity 14/27

Page 15: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

The MetricDifferential FormsGeodesicsEinstein’s Equation

Vector Calculus

ds2 = d~r · d~r

dy ^|

d~r

dx ^

d~r

r d

^

dr ^r

d~r = dx ı+ dy = dr r + r dφ φ

OSU 4/27/15 Tevian Dray The Geometry of Relativity 15/27

Page 16: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

The MetricDifferential FormsGeodesicsEinstein’s Equation

Differential Forms in a Nutshell (R3)

Differential forms are integrands: (∗2 = 1)

f = f (0-form)

F = ~F · d~r (1-form)

∗F = ~F · d~A (2-form)

∗f = f dV (3-form)

Products: F ∧ G = ~F× ~G · d~A

F ∧ ∗G = ~F · ~G dV

Exterior derivative: (d2 = 0)

df = ~∇f · d~r

dF = ~∇× ~F · d~A

d∗F = ~∇ · ~F dV

d∗f = 0

OSU 4/27/15 Tevian Dray The Geometry of Relativity 16/27

Page 17: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

The MetricDifferential FormsGeodesicsEinstein’s Equation

The Geometry of Differential Forms

dx

dx + dy r dr = x dx + y dy

OSU 4/27/15 Tevian Dray The Geometry of Relativity 17/27

Page 18: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

The MetricDifferential FormsGeodesicsEinstein’s Equation

Geodesic Equation

Orthonormal basis: d~r = σi ei

Connection: ωij = ei · d ej

dσi + ωij ∧ σj = 0

ωij + ωji = 0

Geodesics: ~v dλ = d~r

~v = 0

Symmetry: d~X · d~r = 0

=⇒ ~X · ~v = const

OSU 4/27/15 Tevian Dray The Geometry of Relativity 18/27

Page 19: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

The MetricDifferential FormsGeodesicsEinstein’s Equation

Einstein’s Equation

Curvature:Ωi

j = dωij + ωi

k ∧ ωkj

Einstein tensor:γ i = −

1

2Ωjk ∧ ∗(σi ∧ σj ∧ σk)

G i = ∗γ i = G ij σ

j

~G = G i ei = G ij σ

j ei

=⇒d∗~G = 0

Field equation: ~G+ Λ d~r = 8π~T

(curvature = matter)

OSU 4/27/15 Tevian Dray The Geometry of Relativity 19/27

Page 20: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

CosmologyCurvatureAccelerationBlack Holes

Cosmological Redshift

a = a(t)

1 + z =a(tR)

a(tE )≈ 1 +

a

a∆s

(redshift ∝ distance)

OSU 4/27/15 Tevian Dray The Geometry of Relativity 20/27

Page 21: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

CosmologyCurvatureAccelerationBlack Holes

Curvature

ds2 = r2(dθ2 + sin2θ dφ2) Tidal forces!

OSU 4/27/15 Tevian Dray The Geometry of Relativity 21/27

Page 22: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

CosmologyCurvatureAccelerationBlack Holes

Gravitational Lensing

EarthSun

star

perceiv

edpath

actual path

OSU 4/27/15 Tevian Dray The Geometry of Relativity 22/27

Page 23: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

CosmologyCurvatureAccelerationBlack Holes

Rindler Geometry

constant curvature = constant acceleration

ββ ρρ( cosh , sinh )

β

Ρ=const

Ρ=0, Α=-¥

Ρ=0,Α=¥

x = ρ coshαt = ρ sinhα

=⇒ ds2 = dρ2 − ρ2 dα2

Can outrun lightbeam!

OSU 4/27/15 Tevian Dray The Geometry of Relativity 23/27

Page 24: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

CosmologyCurvatureAccelerationBlack Holes

From Rindler to Minkowski

Ρ=const

Α=const

x=-t

x=t

Ρ=0, Α=-¥

Ρ=0,Α=¥

v=-¥

u=¥

u v V=0

U=0

U V

u = α− ln ρ, v = α+ ln ρ U = −e−u = −ρ e−α, V = ev = ρ eαds

2 = −dU dV = −d(t− x) d(t+ x)

OSU 4/27/15 Tevian Dray The Geometry of Relativity 24/27

Page 25: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

CosmologyCurvatureAccelerationBlack Holes

From Schwarzschild to Kruskal

ds2 = −(

1− 2mr

)

dt2 + dr2

1− 2mr

+ r2 dθ2 + r2 sin2 θ dφ2

r=2mHv=-¥L

r=2mHu=¥L

u v

r=0

r=0

r=2mHV=0L

r=2mHU=0L

U V

X

T

ds2 = −32m3

re−r/2m dU dV

OSU 4/27/15 Tevian Dray The Geometry of Relativity 25/27

Page 26: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

CosmologyCurvatureAccelerationBlack Holes

From Schwarzschild to Kruskal

ds2 = −(

1− 2mr

)

dt2 + dr2

1− 2mr

+ r2 dθ2 + r2 sin2 θ dφ2

r=2mHv=-¥L

r=2mHu=¥L

u v

usthem

BH

WH

ds2 = −32m3

re−r/2m dU dV

OSU 4/27/15 Tevian Dray The Geometry of Relativity 25/27

Page 27: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

CosmologyCurvatureAccelerationBlack Holes

Wormholes

Constant radius = constant acceleration!

OSU 4/27/15 Tevian Dray The Geometry of Relativity 26/27

Page 28: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

CosmologyCurvatureAccelerationBlack Holes

Wormholes

OSU 4/27/15 Tevian Dray The Geometry of Relativity 26/27

Page 29: The Geometry of Relativitypeople.oregonstate.edu/~drayt/talks/OSUgeomPub.pdf · Introduction Special Relativity General Relativity Applications Cosmology Curvature Acceleration Black

IntroductionSpecial RelativityGeneral Relativity

Applications

SUMMARY

http://relativity.geometryof.org/GSR

http://relativity.geometryof.org/GDF

http://relativity.geometryof.org/GGR

Special relativity is hyperbolic trigonometry!

Spacetimes are described by line elements!

Curvature = gravity!

Geometry = physics!

THE END

OSU 4/27/15 Tevian Dray The Geometry of Relativity 27/27