Top Banner

of 17

The Future of Magnetic Sensors

Apr 14, 2018

Download

Documents

Navin Karanth
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/30/2019 The Future of Magnetic Sensors

    1/17

    E L S E V I E R Senso~ and Actuators A 56 (1996) 39--55A

    The future o f m agnet ic sensorsR.S. P opovic, J.A . Flanagan, P.A . Besse

    Sw iss Federal Institute o f Teclmology (EPFL). Institute of Microsystems. Lausann e. Switzerland

    Abs t rac tThe operation o f magnetic-field sensors is based on m any different physical principles rang ing from induction to magneto-optical effects.

    Th is in t u rn leads to a vast range o f poss ib le magnet ic sensor t ypes. Wh at w i l l f i na l l y dec ide the commerc ia l v ia b i l i t y o f a par t i cu la r magneti csensor i s i t s per fo rmance as we l l as i t s comp at ib i l i t y w i th m in ia tur i za t ion and m icroe lec t ron ic c i rcu i t s . The magnet ic sensors w i th t he mostpotent ia l for future ap pl icat ions includ e: H al l devices, magne toresistors, indu ct ive coi ls and fluxgates. The H al l device , w hi le v ery compat iblewi th m icroe lec t ron ics , su f fe rs f rom a l im i ted s ens i t i v i t y i n s i l i con , a h igh leve l o . I I f noise and a relat ively large of fset . Ferromagnet icmagnetores is to rs g enera l l y have a h igh s ens i t i v i t y at a low f ie ld ; assoc ia ted prob lems are the f l i pp ing e f fec t a r ' t hys teres is . I nduct i ve cmlsf ind m any app l i ca t ions in p ro x im i t y and d is tance sensors , bu t t he m in ia tur i za t ion o f co i l s i s d i f f i cu l t . The f l uxgate i s a h igh ly se ns i t i ve ,nagneti csensor. In pr in ciple , i t could be integrated, but the ma in challenges are the three-dimensional st ructure o f the coi ls and the low magne t icperm eab i l i t y o f i n tegra ted fe rromagneti c cores. The per fo rmance o f sensors can be cons iderab ly improve d by incorpora t ing them in to a systemand us ing syn erg is t i c re la t ionsh ips such as feedback and compensat ion . Th e fu ture o f magnet ic sensor m icrosystems looks br ig h t w i th m anypromis ing app l i ca t ion areas.geywords : Magnetic sensors; Miniaturization; Hall devices; Ma gnetoresistors; Proximity detectors; Inductive coils, Fluxgates; Sensor syste ms

    1 . I n t r o d u c t i o nA magne t i c s ens o r i s a dev ice capab le o f s ens ing a mag-

    ne t i c f i eld and ex t rac t ing in fo rma t ion f rom i t . In mos t p rac -t i c al app l i c a t ions , t he in fo rm a t ion i s r e l a t ed to the magne t i cinduc t ion a long an ax i s and i s t r ans duced by the s ens o r in toan e l ec t r i c a l s igna l . T he re fo re , a m agne t i c s en s o r i s a t r ans -duce r tha t conve r t s a magne t i c f i e ld in to a co r re s pond inge lec t r i c a l s igna l .

    T he re i s a wea l th o f phys ica l p r inc ip le s us ed to rea l i z emag ne t i c s ens o rs. T hey inc lude : induc t ion , ga lvano mag nc t i ce f fec t s , nuc lea r p rece s s ion , s upe rconduc t ing quan tum in te r -fe rence , magne tos t r i c t ion and m agne to -op t i ca l e f fec t s [ 1 ,2 ] .In th is r ev iew we s ha l l cons id e r on ly mag ne t i c s ens o rs o f b igp rac t i c a l impor tance and thos e w i th the h igh po ten t i a l t o reachthis status.

    Now adays , a s ens o r c an be p rac t i c a l ly impor tan t on ly i f itf e a tu re s a p r i c e -pe r fo rmance ra t io comparab le to tha t o fmic ro e lec t ron ic s c i rcu i t s {3 ] . Us ua l ly th i s c an be a ch ievedon ly i f a magn e t i c s ens o r i t s e l f i s s ma l l enoug h and com pa t -ib l e w i th m ic r~ lecU 'on ic s in t e rms o f ma te r i a l s , t e chno log ie sand ope ra t ing cond i t ions (e . g . , ope ra t ing t empe ra tu re s ) .On ly s o l id - s t a t e mag ne t i c s ens o rs ba s ed on ga lvanomag ne t i ce f fec t s , s uch a s H a l l dev ice s and m agne to re s i s to r s , and induc -t ive s ens o rs ba s ed on s ma l l co i l s , s uch a s f luxga te magne to -Elsevier Science S.A.P il S 0 9 2 4 - 4 2 4 7 ( 9 6 ) 0 1 2 8 5 - X

    mete rs and induc t ive p rox imi ty s ens o rs , more o r l e s s fu l f i lt he s e requ i remen t s .In th i s pape r, we s ha l l concen t ra t e ou r a t t en t ion on the s e

    mag ne t i c s enso rs . Our a im i s to iden t i fy the mos t im por tan tp rob lems , to po in t ou t s ome p romis ing idea s to s o lve thep rob lems , ind ica te t r ends in the deve lo pm en t , bu t a l s o to wa rnof pos s ib le dead ends .

    A m agne t i c s ens o r i s r a re ly us ed a lone . Us ua l ly , i t i s com -b ined wi th o the r s ma l l - s i z e dev ice s in to a s o -ca l l ed mag ne t i cs e n s o r m i c r o s y st e m .

    A magne t i c s ens o r mic ros ys tem i s a complex dev ice tha tt rans fo rms a m agne t i c s igna l in to an e l ec t r i c a l s igna l , p roc -e s s e s th i s s igna l, and t rans mi t s the re s u l t t o o the r e l ec t ron ics ys tems . T l le e s sen t i a l ope ra t ing com pone n t s o f s uch a mic ro -s ys tem a re a m agne t i c s ens o r , b i a sing , s igna l -p roces s ing andin te r face c i rcu i ts . In s ome ca s e s , t he mic ros y s tem ma y a l s oincorpora te fu r the r s pec i f i c componen t s , s uch a s magne t i cconcen t ra to rs , pe rm anen t magn e t s and co i l s . A l l t he s e com-ponen t s a re a s s em bled in a s u i t ab le pa~;kagc o f s ma l l d im en-s ions , i n the mi l l ime t re to c en t ime t re range .

    T he magne t i c s igna l to be de tec :ed by a magne t i c s ens o rmic ros ys tem may be a s s oc ia t ed wi th an ex te rna l magne t i cf i eld . In th i s c a s e , t he mic ros ys tem w orks a s a s mar t mag ne t i cs ens o r . T yp ica l ly , s uch magne t i c s ens o r mic ros ys tems a reapp l i ed in magne tom e te rs , mag ne t i c compas s e s , cu r ren t s en -

  • 7/30/2019 The Future of Magnetic Sensors

    2/17

    40 R.S. Popovic et ,zl. ~Sets , rs and Actuawrs A 56 (1996) 39-5.5

    s o t s , m a g n e t i c r e a d o u t h e a d s a n d a s r o t o r o o s i l i o n s e n s o r s inb r ush l e s s m o ' ,o r s . A l t e r na t i ve l y , t he s igna l m ay s t em f r om anex t e r na l mo du l a t i on 0~" a mag ne t i c f i e ld ca r r i ed by t he s e nso rmi c r osys t em i t s e l f . The i n t e r na l magne t i c f i e l d i s c r ea t ed bya l oca l sou r ce , such a s a pe r manen t magne t o r a co i l . Them o d u l a t i o n o f t h e m a g n e t i c f i el d c o m e s a b o u t , f o r e x a m p l e ,b y v a r y i n g t h e d i s t a n c e b e t w e e n t h e s e n s o r m i c r o s y s t e m a n dan ex t e r na l f e r r omagne t i c ob j ec t . I n t h i s c a se , t he magne t i cs i g n a l i s u s e d j u s t a s a m e a n s t o m e a s u r e a n o n - m a g n e t i cq u a n t i t y . T y p i c a l a p p l i c a t i o n s o f s u c h s e n s o r m i c r o s y s t e m sa r e s e n s i n g o f p o s i t io n , p r o x i m i t y o f a n o b j e c t , l in e a ra n d a n g u l a r v e l o c i t y , p r e s s u r e ( t h r o u g h d e f l e c ti o n o f am e m b r a n e ) a n d s o o n. T h e m a g n e t i c i n d u c ti o n s e n c o u n t e r e di n t he se app l i ca t i ons a r e i n t he h i gh mi c r o - and mi l l i t e s l ar a n g e s . A r e v i e w o f m a g n e t i c s e n s o r a p p l i c a t io n s i s g i v e n ,f o r e x a m p l e , i n R e f . [ 4 ] .

    T h e u l t im a t e g o a l i n t h e d e v e l o p m e n t o f a m i c r o s y s t e m i st o a c h i e v e a h i gh p e r f o r m a n c e - p r i c e r a ti o i n sp i t e o f t h e u s eo f m e d i o c r e c o m p o n e n t s . O u r a i m i n th i s p a p e r w i l l a l s o b et o i den t i f y some bas i c ways t ha t may l e ad t o t h i s end i n t hea r e a o f m a g n e t i c s e n s o r m i c r o s y s t e m s .

    E a c h o f t h e f o l l o w i n g s e c t i o n s b e g i n s w i t h a v e r y b a s i ch d r o d u c t i o n t o o n e o f t h e a b o v e - m e n t i o n e d s u b j e c t s . T h e n ,' , c av i ng many de t a i l s a s i de , we sha l l concen t r a t e on a f ewi s s u e s fu n d a m e n t a l t o t h e f u tu r e d e v e l o p m e n t o f t h e m a g n e t i cs e n s o r i n q u e s t i o n .2 . H a l l d e v i c e s

    H a l l d e v i c e s a r e b y f a r t h e m o s t w i d e l y u s e d m a g n e t i cs e n s o r s t o d a y . T o g e t h e r w i t h p h o t o d i o d c s , t h e y a r e a l s o p r o b -a b l y t h e m o s t w i d e l y u s e d s e n s o r s i n g e n e r a l. A s p h o t o d i o d e s ,H a i l d e v i c e s o w e t h e ir h i g h d e g r e e o f d e v e l o p m e n t t o a p e r -f e c t c o m p a t i b i l i t y w i t h m i c r o e l e c t r o n i c c i r c u i t s . N e v e r t h e -l e s s , Ha l l dev i ce s a r e no t i r r ep l aceab l e i n magne t i c s ens i ngapp l i ca t i ons . The i r f u t u r e depends i n pa r t i cu l a r on whe t he rmea ns w i l l be f ound i t) i nc r ea se t he i r s ens i t i v i t y and dec r ea seo f f s e t .

    A Ha l l dev i ce i s a f ou r - t e r mi na l so l i d - s t a t e e l ec t r on i cd e v i c e , s i m i l a r t o th a t w i t h w h i c h H a l l d i s c o v e r e d h i s e f f e c t[ 5 ] . Usu a l l y , i t ha s t he f o r r a o f a p l a t e , so i t is a l so ca l l ed aH u l l p la t e . O t h e r t e r m s i n c o m m o n u s e f o r a H a l l d e v i c e a r e:Ha i l e l emen t , Ha l l gene r a t o r and Ha l l s enso r .

    A n e x a m p l e o f a p l a te - l i k e H a l l d e v i c e i s s h o w n i n F ig . I .Th i s i s a t h i n p l a t e o f cond uc t i ng ma t e r i a l l ~ :t ed wi t h f ou re l ec t r i c a l con t ac t s a t i ts pe r i phe r y . A b i a s cu r r en t i s supp l i edt o t h e d e v i c e v i a t w o o f t h e c o n t a c t s , c a l le d t h e c u r r e n t c o n -t a c ts . T h e o t h e r t w o c o n t a c t s a r e p l a c e d a t t w o e q u i p o t e n ti a lp o i n t s o n t h e p l a t e b o u n d a r y . T h e s e c o n t a c t s a c e c a l l e d t h ev o l t a g e c o n t a c t s o r t h e s e n s e c o n t a c t s . I f a p e r p e n d i c u l a rmagne t i c f i e l d i s app l i ed t o t he dev i ce , a vo l t age appea r sb e t w e e n t h e s e n s e c o n t a c t s . T h i s v o l t a g e i s c a l l e d t h e H a l lv o l t a g e . T h e H a l l v ~ l t a g e c o m e s a b o u t a s a m a n i f e s t a ti o n o ft h e a c t io n o f t h e L o r e n t z f o r c eF = q E + q [ v B ] ( 1 )

    on quas i - f r ee cha r ge ca r r i e r s i n t he p l a t e . He r e q deno t e s t hepa r t i c l e cha r ge , E i s the e l ec t r i c f i e l d tha t p r od uces t he cu r r en t ,v is the ca r r i e r ve l oc i t y and B i s t he magn e t i c i nd uc t i on .

    The ca r r i e r ve l oc i t y v i n Eq . ( I ) i s due t o t he t he r ma lag i t a t i on and d r i f t . To a f i r s t app r ox i ma t i on , t he i n f l uence o ft he t he r ma l ag i t a t i on ma y be neg l ec t ed , and v in Eq . ( 1 ) c anbe cons i de r ed a s t he d r i f t ve l oc i t y o f t he ca r r i e r s . Fo r a g i vene l ec t r i c a l f i e ld , t he d r i f t ve l oc i t y o f t he c a r r i e r s i s p r opo r t i ona lt o t he i r mob i l i t y . A l so , f o r a g i ven b i a s cu r r en t , t he d r i f tve l oc i t y o f t he ca r r ie r s i s i nve r se l y p r o po r t i ona l t o t he ca r r i e rd e n s i t y an d th e p la t e t h i c k n e s s ( s e e E q s . ( 4 ) a n d ( 1 0 )b e l o w ) . T h e r e f o r e , w e c o n c l u d e t h a t t h e s t r e n g th o f th e H a l le f f ec t i s p r opo r t i ona l t o t he ca r r i e r mob i l i t y and i nve r se l yp r opor t i ona l t o t he p r oduc t o f t he p l a t e t h i cknes s and t hec a r r i e r c o n c e n t r a t i o n . C o n s e q u e n t l y , m o d e r n H a l l p l a t e s f o rm a g n e t i c s e n s o r a p p l i c a t io n s a r e u s u a l l y r e a l i z e d i n th e f o r mo f l o w - d o p e d s e m i c o n d u c t o r t h i n f il m s . T h i s f a c t m a k e s t h e mv e r y c o m p a t i b l e w i t h m i c r o e l e c t r o n i c c i r c u it s .

    F i g . 2 s h o w s a s a n e x a n t p l e a H a l l d e v i c e r e a l i z e d a s a p a rto f t he n - l ype l aye r i n a s i l i con b i po l a r i n t eg r a t ed c i r cu i t p r oc -e s s . Th i s i s t he so - ca l l ed bu r i ed Ha l l dev i ce . I t ha s a s t r uc t u r e

    i. /vFig. i. Hall device n the form of a rectangular plate. Mod ern Hall plates areusually of microscopic dimensions. For example, the thickness might be

    t = l 0 / ~ m , the length ! ,-"2 0 0 / ~ r n and the width w = 1 0 0 / z m . A bias voltageV s applied to the plate via the two current contacts CC~ and CC,. The b iasvoltage creates an electric field E and forces a current I. if the plate isexpos ed to to a perpendicular magnetic i~duction B, the H all electric fieldgives rise to the appearance of the Hall vo ltage V~e betw een the two sensecontacts St and Sz (adap ted from [6] ).

    Fig. 2. Buried Flail devic e realized using integrated circuit technology. N isthe n-type active legion, P- the substrate, P the deep -diffused isolationwalls, SP the shallow p-layer, DL the depletion ayer, CC the current contactsand SC the sense contacts. The dev ice senses he m agnetic field compon entperpendicular to the chip surface . The ins et illustrates the shielding e f f e c t o fthe shallow p-layer. In order to be effective, he shallow p-layer must not becompletely depleted (adapted from [6] ).

  • 7/30/2019 The Future of Magnetic Sensors

    3/17

    R . S . P o p o v i c e t a l . /Sensors a n d A c m a t o r x A 5 6 f 1 9 9 6 ) 3 9 - 5 5 41

    r e m in i s c e n t o f a p in c h c o l l e c to r - l a y e r r e s i s to r i n b ip o la r i n t e -g ra t e d c i r c u i t s . T h e s h a l lo w p - l a y e r p l a y s th e ro l e o f a n e l e c -t ro s t a t i c s h i e ld b e tw e e n th e s i l i c o n d io x id e in t e r fa c e a n d th ea c t iv e r e g io n o f th e H a l l d e v ic e . T h e s h ie ld in g g re a t lyi m p r o v e s t h e s t a bi l i ty o f t h e H a l l d e v i c e a n d r e d u c e s i t s I / fn o i s e . T h e in t e re s t e d r e a d e r c a n f in d o th e r b a s i c s a n d d e ta i l si n a m o n o g r a p h o n H a l l - e f f e ct d e v i c e s [ 6 ] .

    T o b e u s e f u l a s a m a g n e t i c s e n s o r , a H a l l d e v i c e m u s tfe a tu re a s e t o f c h a ra c te r i s t i c s a d e q u a te fo r t h e in t e n d e d a p p l i -c a t i o n . W e s h a l l n o w d i s c u s s a f e w c h a r a c t e r i st i c s d e c i si v efo r th e a p p l i c a b i l i t y o f H a l l d e v ic e s .2.1. Sensitivity

    T h e r e s p o n s i t i v it y o f t h e o u t p u t v o l t a g e o f a H a l l d e v i c e t oa ma g n e t i c f i e ld c a n b e c h a ra c te r i z e d b y th re e f ig u re s o f me r i t ,i . e. , a b s o lu te s e n s i t i v i ty S ^ , s u p p ly -c u r re n t - r e l a t e d s e n s i t i v i tyS , a n d s u p p l y - v o l t a g e - r e l a t e d s e n s i t i v i t y Sv.

    T h e a b s o l u t e s e n s i t i v i ty S ^ i s d e f i n e d b y= I v " IS^ IBm_ 'H e re V H i s t h e H a l l v o l t a g e a n d B j_ is t h e n o rma l ( to th e

    H a l l p l at e ) c o m p o n e n t o f t h e m a g n e t i c i n d u c t i o n .S u p p ly c u r re n t - r e l a t e d s e n s i t i v i ty ( in s h o r t : s e n s i t i v i ty S t )

    i s d e f i n e d b yS , = ~ = l l V " I, V H = S tlB ~1 7 ~ - ~ - ( 3 )w h e r e i i s t h e s u p p ly (o r b i a s ) c u r re n t o f t h e H a l l d e v n c e . F o ra s t ro n g ly e x t r in s i c H a l l p l a t es,=c,-~ (4)q n tw h e re G d e n o te s t l ' . t~ g e o m e t r i c a l c o r r e c t i o n f a c t o r ( G < 1 ) ,rH i s t h e H a l l f a c to r ( r , > I ) , q i s t h e e l e me n ta ry c h a rg e , n i sth e c a r r i e r d e n s i ty a n d t i s t h e th i c k n e s s o f t h e p l a t e .

    I n m o s t c u r r e n t l y u s e d H a l l m a g n e t i c s e n s o r s , o n e f i nd sth e v a lu e s o f t h e s e n s i t i v i ty S~ o f th e o rd e r o f 1 0 0 V A - ~ T - * .T o e s t i m a t e t h e i m p r o v e m e n t p o t e n t i a l , w e s h a ll n e 0v d e t e r -min e th e p ra c t i c a l l im i t fo r t h e in c re a s e o f S , a n d S . ,. W e s h a l ld o s o u s i n g a s i m p l i f i e d m o d e l o f t h e b r r i e d H a l l d e v i c es h o w n i n F i g . 2.

    T h e s t ru c tu re o f t h e H a l l d e v i c e in F ig . 2 i s h mi l a r ; .o th a to f an N - c h a n n e l j u n c t i o n f i e l d -e f f e c t t r a n s is t u r ( J F E T ) : t h ea c t i v e N - r e g i o n c o r r e s p o n d s t o t h e c h a n n e l , o n e o f t h e c u r r en tc o n ta c t s (C C ) to th e s o u rc e , t b e o th e r c u r r , ;n t c o n ta c t t o th ed ra in , a n d th e p - ty p e r e g io n s u r ro u n d in g th e a c t iv e a - ty p er e g i o n t o t h e g a t e . S u p p o s e w e c o n n e c t t h e ~ ef t c u r r e n t c o n t a c ta n d th e p - ty p e ' g a t e ' t o a z e ro p o te n t i a l , a n d th e o th e r c u r re n tc o n ta c t t o a p o s i t iv e v o l t a g e V . T h e n th e c ro s s s e c t io n o f o u rH a l l d e v ic e lo o k s s c h e ma t i c a l ly a s in F ig . 3 . F ro m th e th e o ryo f J F E T s [ 7 ] w e k n o w t h a t t h e t h i ck n e s s o f t he ch a n n e l td e p e n d s o n th e d ~ s ta n ce f ro m th e s o u rc e . I f w e in c re a s e th ed e v ic e c u r re n t L th e v o l t a g e V w i l l a l s o in c re a s e , th e c h a n n e l

    th i c k n e s s t w i l l fu r th e r d e c re a s e , a n d e v e n tu a l ly th e c h a n n e lw i l l p i n c h o f f a t t h e d r a i n . T h e d e v i c e c u r r e n t c a n n o t b ei n c r e a s ed a n y f u r t h e r . W e h a v e n o w r e a c h e d t h e c o n d i t i o n sfo r th e ma x ima l p o s s ib l e v a lu e o f th e a b s o lu te s e n s i t i v i ty S ^o f a g iv e n b u r i e d H a l l d e v ic e .

    T h e s a tu ra t io n c u r re n t i s g iv e n b y [ 7 !1 1- c ~ 2 ~ , 3/ , ~ , =

    w h e r eV., t~,q'-No'-a ~ WC , V,, + V, . . . " I e . L ( 6 )

    Her e Vb, iS the bu i l t - in vo l t age ( V.+ < ! V ), V~t is the sa tu-ra t io n v o l t a g e . / J . , t h e e l e c t ro n mo b i l i t y in th e c h a n n e l , q th ee l e m e n t a r y c h a r g e . N D is t h e d o n o r d e n s i t y i n t h e c h a n n e l , ai s d e f in e d in F ig . 3 . % i s t h e p e rmi t t iv i ty o f t h e ma te r i a l a n dW a n d L a re th e w id th a n d th e l e n g th o f th e c h a n n e l , r e s p e c -t iv e ly . F ig . 4 (a ) g iv e s th e c a l c u la t e d v a lu e s o f t h e s a tu ra t io nc u r re n t o f a s i l i c o n b u r i e d H a l l d e v ic e fo r V ~ ,, = $ V a n dW IL = ! .

    I f w e m u l t ip ly th e s a tu ra t io n c u r re n t , E q . (5 ) , b y th e s e n -s i v it y St , E q . ( 4 ) , w e o b t a i n t h e m a x i m u m p o s s i b l e a b so l u t es e n s i t iv i ty :

    c h i n n l l O o p l e t l o n' o f l l o n~ . 7 P

    G 4 - - x , , p . tLFig. 3. Simplified FET model of the buried Ha l l dev i ce with lhe p.type galeG and the so urce S both connected to ground. The length of the n-typchannel is L and its metallurgical hickness is 2a. The effective thickness ofthe channel at any po int along the channel is t, t < 2a because of the depletionzone. The voltage drop from drain D to S is Vand the current passi~Ig hroughthe current contacts CCI and CC2 is I.1

    o . s -0 . 6

    ~ ) 0 , 40 . 2

    o1 4 . 1( a )

    i 1 i l

    ' I1 ' $ 1 5 . 5 1 16 1 6 . 5o u g , o ( N o ) [=~'~

    0 " 5 7 7 / 1 a ~

    o . ~ , ~ r - + + . i . ~- - " s ' 6 1 - . . . . . . . / ' Ii . // ..............1" S / : . . .. . 1

    14.5 l S I,$.S 16 16.$(b } o O g , o ( N o ) [ o 1 1 " ) 1

    Fig. 4 (a) Plot of the satutmion current I , .~ for the JRET s ;ruc tute of F ig. 3for d i f ferent leve!s of n-dop ing in the channo l . (b) Plot of the var iation ofthe absolute sens iL iv ity SA of the bur ied H ~! dev ice wi th the doping of thea-c i '~nnel . The graph was calculated f ront the product o f F .q . (7) .

  • 7/30/2019 The Future of Magnetic Sensors

    4/17

    42 R.S. Popovi c et al. / Sensors and Actuator s A 56 (1996) 39- 55

    KNDa~[ 1 / 3 - C v + (2 / 3 ) C ~ / 2 ]SA~ ax= Stl~ 't ~--eV,-2 I ( 7 )

    a - V q N o ]K = I x, q W 12e~ L rag (8)

    H e re fo r t h e c a l c u la t io n w e u s e th e c h a n n e l t h i c k n e s s a tth e mid d le o f t h e c h a n n e l l e n g th . T h e c a l c u la t e d v a lu e s o fS^ , ,~ , fo r W / L r . G = 1 and V~.. , are shown in Fig. 4(b).

    U s i n g t h e c o r r e s p o n d i n g v a l u e s f r o m F ig . 4 ( a ) , ( b ) , w ec a n c a l c u la t e th e ma x imu m p o s s ib l e s e n s i t i v i ty St. F o r e x a m -ple, for/ . .~, = 0,2 m A and V~..,= 5 V , w e ob ta in S tm,~ = 2865V A - ~ T - ~. N o te th a t t h i s r e s u l t d e p e n d s v e ry l i t t le o n th ema te r i a l i n v o lv e d .

    I f t h e ju n c t io n f i e ld e f fe c t d o e s n o t e x i s t o r c a n b e n e g le c t e d ,th e n th e a b s o lu te s e n s i t i v i ty o f a H a l l d e v ic e i s l im i t e d b y th ea v a i l a b le s u p p ly v o l t a g e V . T h e r e l e v a n t p a ra m e te r i s t h e nth e s u p p ly -v o l t a g e - re l a t e d s e n s i t i v i ty ( in s h o r t : s e n s i t i v i tySv) , d e f in e d b ys v = = V B , ' V . = S v V B I ( 9 )

    T h e v a l u e o f Sv i s p a r t i c u la r ly imp o r t a n t i n lo w -v o l t a g ea p p l i c a t io n s o f H a l l d e v ic e s .

    F o r a s t ro n g ly e x t r in s i c H a l l p l a t ewS v = ~ . . ~ G ( I 0 )

    w h e re P-N is t h e H a l l mo b i l i t y o f t h e ma jo r i ty c a r r i e rs , w / I isth e w id th - to - l e n g th r a t io o f t h e e q u iv a le n t r e c t a n g le o f t h eH a l l p l a t e , a n d G i s t h e g e o me t r y c o r re c t io n f a c to r , t h e s a mea s in E q . (2 ) .

    T h e v a l u e o f t h e t er m ( w / l ) G i s the la rges t in la rge -con tac tH a l l d e v ic e s , t h e l im i t b e in gSvnvax = 0.74 2y.x ( 11 )

    T h e s e n s i t iv i ty Sv d e p e n d s s t ro n g ly o n th e ma te r i a l u s e dto f a b r i c a t e a H a l l d e v ic e . W h i l e s i l i c o n , w i th i t s mo d e s tm o b i l i t y , a l l o w s , a t r o o m t e m p e r a t u r e , S V m ~ = O . 12 6 V ( VT ) - ' , G a A s g i v e s 0 . 6 7 V ( V T ) - ~ a n d I n G a A s [ 8 ] 0 . 7 8 V(V T ) - ~. T h e re fo re , o n e c l e a r a n d imp o r t a n t t r e n d in th ed e v e lo p me n t o f H a l l d e v ic e s i s t h e s e a rc h fo r a n d th e a p p l i -c a t i o n o f h i g h - m o b i l i t y m a t e r i a l s . T h e r e c o r d m o b i l i t y o fa b o u t 6 0 0 0 0 a t 3 0 0 K w a s a c h ie v e d in a thin f i lm o f In S b[2 ] . A s e r io u s p ro b le m w i th In S b i s i t s s ma l l b a n d g a p( E g = 0 . 3 6 e V ) a n d , c o n s e q u e n t ly , h i g h t e m p e r a t u r e c r o ss -s e n s i t iv ity . A v e ry h ig h H a l l m o b i l i t y o f 1 6 0 0 0 c m" V - ~s - 'w a s o b t a i n e d i n t h e p s e u d o m o r p h i c l n A I A s / l n G a A s h e t e r -o s t r u c t u r e , o f t h e t y p e c o m m o n l y u s e d f o r h i g h e l e c t r o nm o b i l i t y t r a ns i s to r s ( H E M T S ) [ 9 ] . H o w e v e r , t h e c u r r e n t i ns u c h a H a l l d e v ic e i s u s u a l ly l im i t e d b y th e ju n c t io n f i e lde f fe c t , a n d th e p a ra m e te r S t i s a t l e a st a s r e l e v a n t a s Sv .

    I t is i n t e re s t in g to n o te th a t t h e im p o r t a n c e o f a h ig h c a r r i e rmo b i l i t y fo r t h e s e n s i t i v i ty o f a H a l l d e v ic e a p p l i e s o n ly a t

    weak b ias e lec tr ica l f ie lds , in such a case , the h igher themo b i l i t y , t h e h ig h e r th e d r i f t v e lo c i ty o f t h e c a r r i e r s , a n dh e n c e th e h ig h e r th e ma g n e t i c p a r t o f t h e L o re n tz fo rc eq [ v j B ] w h ic h i s a t t h e o r ig in o f t h e H a l l e f f e c t . B u t a ts t rong b ias e lec tr ica l f ie lds , the d r i f t ve lo c i ty is sa tu ra ted . T hes a tu ra t e d d r i ft v e lo c i ty d o e s n o t v a ry m u c h f ro m o n e ma te r i a lto a n o th e r : i t is a lw a y s a b o u t 1 07 m s - t . O n e w a y to c i r c u m-v e n t th e p ro b le m o f c a rr i e r mo b i l i t y m ig h t b e to u s e s a tu ra t e dv e l o c it y s t ru c t u re s . W e h a v e d e m o n s t r a t e d a m a g n e t i c s e n s o rs t ru c tu re th a t a p p ro a c h e d th i s g o a l [ 1 0 ] .2.2. Offset

    T h e o f f s e t v o l t a g e o f a H a l l d e v ic e i s a q u a s i s t a t i c o u tp u tv o l t a g e th a t e x i s t s i n th e a b s e n c e o f a ma g n e t i c f i e ld . W i thre fe re n c e to F ig . 1 , i n v i r tu e o f t h e s y mme t ry , w e w o u lde x p e c t t h e o u tp u t v o l t a g e o f th e H a l l d e v ic e V x to b e z e ro int h e a b s en c e o f t h e m a g n e t i c f i el d . H o w e v e r , t h e s y m m e t r y o fa H a l l d e v ic e i s n e v e r p e r fe c t : t h e re a re a lw a y s s ma l l e r ro r sin g e o me t ry a n d v a r i a t io n s in d o p in g d e n s i ty , s u r fa c e c o n d i -t io n s , c o n ta c t r e s i s ta n c e , e t c . A l s o a me c h a n ic a l s t r e s s in th eH a l l d e v ic e , i n c o mb in a t io n w i th th e p i e z o re s i s t a n c e e f fe c t ,c a n p ro d u c e a n e l e c t r i c a l n o n -s y mme t ry . T h e re s u l t i s a p a r -a s i t i c c o mp o n e n t in th e H a l l v o l t a g e w h ic h c a n n o t b e d i s t in -g u i s h e d f ro m th e r e a l q u a s i s t a t i c p a r t o f t h e H a l l v o l t a g e .T h e re fo re , t h e o f f s e t s e v e re ly l im i t s t h e a p p l i c a b i l i t y o f H a l ld e v i c e s w h e n n o n - p e r i o d i c o r l o w - f r e q u e n c y m a g n e t i c s i g -n a l s h a v e to b e d e te c t e d .

    T h e o f f s e t o f a H a l l d e v ic e i s b e s t c h a ra c te r i z e d b y th eo f f s e t -e q u i v a l en t m a g n e t i c i n d u c t i o n B ow U s i n g E q . ( 9 ) a n dE q . (1 0 ) , w e f in d

    V o . 1 1 V,,ffB a = V S v i t , V ( 1 2 )w h e r e w e t a k e ( w / l ) G = ! . T h i s e q u a t io n d e m o n s t r a t e s o n c ea g a in th e imp o r t a n c e o f a h ig h H a l l mo b i l i t y o f t h e ma te r i a lu s e d fo r H a l l d e v ic e s .

    W h e n a mic ro e le c t ro n i c s t e c h n o lo g y i s u s e d to f a b ri c a t e aH a l l d e v ic e , t h e o f f s e t v o l t a g e u s u a l ly a mo u n t s to l e s s th a n0 . 1 % o f t h e v o lt a g e ap p l i e d b e t w e e n t h e i n p u t ( c u r r e n t ) c o n -tac ts . Inse r t ing th is va lu e in Eq . ( 12 ) , we f in d Bott_< 10 , 1a n d 0 . 1 m T f o r S i , I n G a A s a n d I n S b H a l l d e v i c e s ,r e s p e c t iv e ly .

    I t i s imp o r t a n t t o n o te th a t m e o f f s e t v o l t a g e ~s n o t s t a b le .I t v a r i e s w i th t e mp e ra tu re a n d t ime . E v e n i f a l l o th e r in f lu -e n c e s a re s o m e h o w e l i m i n a t e d , t he r e r e m a i n l o n g - t e r m ( o v e ra p e r io d o f mo re th a n a n h o u r ) f lu c tu a t io n s o f t h e o u tp u tv o l t a g e d u e to 1 I f n o i s e . F r o m o u r e x p e r i e n c e w i t h h i g h -qua l i ty s i l icon Hal l d ev ic es [ 11 ] , these f luc tua t ions corre -s p o n d to a B o rf = 1 0 / s T .

    S e v e ra l me th o d s to d e c re a s e th e o f f s e t v o l t a g e h a v e b e e nd e v e l o p e d . T h e y i n c l u d e t r im m i n g , c o m p e n s a t i o n u s i n g t h ei n p u t v o l ta g e [ 1 2 ] , m u t u a l c o m p e n s a t i o n o f t w o o r m o r e H a l ldev ices [ 13 ,1 i 1 , sp in- po la r iza t io n [ 13 ,14 ] , ca l ib ra t ion an dlo o k -u p t a b le s , a n d e l im in a t io n o f me c h a n ic a l s t r a in [ 1 5 ] .T h e s m a l l e st v a l u e o f Borf i n s i l i c o n H a l l d e v ic e s ( l e s s th a n

  • 7/30/2019 The Future of Magnetic Sensors

    5/17

    R.S. Popov ic et al. / Sensorx aad Actuatorx A 56 (1996) 39-55 430 . 1 roT ) was ob ta ined us ing the s p in -po la r i z a t ion me thod[ 1 4 ]2 .3 . O ther prob lems

    T he des t iny o f Ha l l magne t i c s ens o rs a l s o depends on thefu tu re impro vem en t s o f the fo l lowing non- idea l cha rac te r i s -t i c s ( s ee Sec t ions 5 . 2 . 3 -5 . 2 . 6 in R e f , [61 ) :

    1 T he long- t e rm s t ab i li t y o f a ll cha rac te r i s ti c s , bu t inpa r t i cu la r o f s ens i t iv i ty and o f f s e t . L ong- t e rm ins t ab i l it y dueto the s u r face e f fec t s and p iezo re s i s t ive and p iezo -Ha l l e f fec t si s ra the r we l l unde rs tood . W e th ink tha t s ome hu lk e f fec t sma y a l s o p lay a ro l e , bu t p rac t i c a l ly no th ing i s pub l i s hed inthe open l i t e ra tu re on the s ub jec t . T he be s t pub l i s hed long-term s tab i l i ty of the sens i t iv i ty St is 1 0 - 4 [ I l ] .

    (2 ) No i s e i s a l imi t ing fac to r in low- leve l magne t i c meas -u rem en t s , s uch a s in cu r ren t s ens ing . Us ua l ly , I / fn o i s e i s t hemos t d i s tu rb ing . I / . / 'no i s e may be dec rea s ed by s eve ra l o rde rso f magn i tude i f pe r fec t ma te r i a l s and bur i ed s t ruc tu re s a rcus ed . In a good s i l i con Ha l l s ens o r , t he no i s e equ iva len tm a g n e t i c i n d u c t i o n i n t h e f r e q u e n c y ra n g e 0 . 1 - 1 0 H z i s a b o u tI ~,T [ l l ] .

    (3 ) T he t empe ra tu re c ros s - s ens i t iv i ty o f a Ha l l dev ice i san undes i rab le s ens i t iv i ty o f i t s cha rac te r is t i c s , s uch a s m ag-ne t i c s ens i t iv i ty , t o t em pe ra tu re .

    In the ca r r i e r -dens i ty s a tu ra t ion rang e o f the s emicon duc to rma te r i a l u s ed fo r the Ha l l dev ice , t he t empe ra tu re c ros s - s en -s i t iv i ty o f the m agne t i c s ens i t iv i ty S~ i s abou t 0 . 1% K - ~. B ya s i m p l e c o m p e n s a t i o n , it c a n e v e n b e r e d u c e d b y a f a c t o r o f10 . B u t ou t s ide o f the s a tu ra t ion range , na me ly in the in t rin s i crange and in the f reeze -ou t range , the t empe ra tu re depende nceof S t becom es exponen t i a l . T h i s rende rs a Ha l l dev ice us e le s sin s ome app l i ca t ions , T o ex tend the ope ra t ing range to h ighe rt empe ra tu re s , w ide band-gap s emiconduc to rs a re us ed ( i . e . ,G aAs up to 175 C [16] ) . Ano the r in t e re s t ing idea i s t oope ra te a Ha l l dev ic e in the minor i ty -ca r r i e r exc lus ion m ode .An ope ra t ing t empe ra tu re o f s i l i con Ha l l dev ice s a s h igh a s350 C has been dem ons t ra t ed in th i s way [ 17 ] .2.4. Outlook

    T he m a in v i r tue s o f Ha l l -dev ice magne t i c s ens o rs a re the i rra the r good bas i c cha rac te r i s t i c s, s impl i c i ty o f the ope ra t ingpr inc ip le and o f the s t ruc tu re , and compa t ib i l i t y w i thm i c r o e l e c t r o n i c s .

    Due to the good bas i c cha rac te r i s t i c s , Ha l l dev ice s a rea l ready ve ry w ide ly us ed a s m agne t i c s ens o rs . T h i s fa c t p l ace sthem, in tu rn , ve ry h igh on a l e a rn ing cu rve , a p l ace d i f fi cu l tt o a c h i e v e w i t h m o s t o f t h e c o m p e t i n g m a g n e t i c s en s o rs . T h es impl i c i ty o f a Ha l l dev ice a l lows an ea s y op t imiza t ion fo rd i f fe ren t app l i c a t ions . T h i s w i l l he lp , no tab ly , t o adap t thes t ruc tu re to fu tu re low-vo l t age app l i ca t ions . T h i s makes i te a s i e r to s ca le dow n a Ha l l dev ice . Sca l ing down a Ha l l dev icedoes no t a f fec t i t s magne t i c s ens i t iv i ty much , a s i s t he ca s e ,fo r exam ple , w i th ind uc t ive s ens o rs. T h i s mak es a Ha l l dev ice

    an in t e re s t ing cand ida te fo r de tec t ing f lux -poor magne t i cs ource s , s uch a s thos e in mag ne t i c mem ory d i s ks .

    T hank s to the i r compa t ib i l i t y w i th mic roe lec t ron ic s , t hed e v e l o p m e n t o f H a l l m a g n e t i c s e n s o r s w i l l c o n t i n u e t o t a k eadvan tage o f h igh -qua l i ty ma te r i a l s and eve r - im prov in g fab -r i c a t ion me thod s ava i l ab le in the mic ro e lec t ron ic s indus t ry .In pa r t i cu la r , we expec t tha t t he improvemen t s in the ba s i cma te r i a l s w i l l l e ad to a reduc t ion o f 1 / ] 'no i s e and an impro ve -men t o f the long- t e rm s t ab i li t y o f Ha l l dev ice s . T he inc rea s ein the fab r i ca tion p rec i s ion wi l l be us ed to reduce o f f s e t fu r -the r . T he in t eg ra ted com bina t ion o f Ha l l dev ice s w i th be t t e rin t e r face and s igna l -p roce s s ing e l ec t ron ic c i rcu i t s w i l l l e adt o t h e d e v e l o p m e n t o f n e w m a g n e t i c s e n s o r m i c r o s y s t e m sw i t h a v e r y h i g h p e r f o r m a n c e - p r i c e r a t io .

    3 . M a g n e t o r e s i s t o r sM a g n e t o r e s i s t o r s a r e t h e s e c o n d m o s t c o m m o n l y u s e dmag ne t i c s ens o rs. In the i r ba s i c fo rm, they a re ve ry s imple :

    re s i sto r s the re s i st ance o f wh ich chang es in the p re s ence o f amagne t i c f i e ld . T he re a rc two d i s t inc t t ypes o f magne to re s -i s to r s : magne to re s i s to r s ba s ed on th in fe r romagne t i c f i lmsa n d s e m i c o n d u c t o r m a g n e t o r es i st o r s .3. i. Ferro ma gnetic magnetoresistors

    The se m agne tores is to rs a re based o n ferron~.agnetic me ta lsand a l loys tha t exh ib i t an an i s o t rop ic re s i s t iv i ty in a mag ne t i cf i eld . F rom an e l ec t r i c a l po in t o f v i ew , th i s an i s o t ropy appea rsa s a d i f fe rence o f the re s i st iv i ty P l m eas ured w hen the cu r ren tI i s p a r a ll e l to t h e m a g n e t i c m o m e n t v e c t o r M c o m p a r e d t othe re s is t iv i ty p~ me as ured wi th the cu r ren t pe rpend icu la r tothe m om ent [ 2 , 18 ] . In gene ra l , t he re s i st iv i ty is dependen ton the re l a t ive ang le ~ be twe en the cu r ren t and the magne t i cm o m e n t asp ( 0 ) = p ~ + ( P l - P ~ ) c o s 2 0 = P J- + A ~ s 2 0 ( 1 3 )

    Phys ica l ly , t he e f fec t i s r e l a t ed to d i f fe ren t sh i f t s o f ene rg yleve l s fo r e l ec t rons w i th pos i t ive and nega t ive s p ins unde rthe in f luence o f m agne t i c f i e lds .

    In fe r romagne t i c ma te r i a l s the in t e rna l magne t i za t ion i sh igh , due to the pa ra l l e l o r ien ta t ion o f the e l ec t ron m agne t i cmoments . T h i s pa ra l l e l i s m i s loca l i z ed in s ma l l doma ins ,s epa ra ted by wa l l s . Wi th no ex te rna l magne t i c f i e ld eve rydom a in i s r andom ly o r i en ted s o tha t t he to ta l magne t i za t ionvan i s hes . In th in f i lms o f s o f t f e r rom agne t i c me ta l , t he f i lmth icknes s i s s ma l l com pared to the dom a in l eng th , s o tha t themagnet iza t ion l ies in the f i lm plane . In the thin f i lm i tse l f , ap re fe r red magn e t i za t ion d i rec t ion appea rs due , fo r exam ple ,to c rys t a l an i s o t ropv , dema~m e t i zat ion fi e lds o r mec han ica ls t re s s re l a t ed to the geom e t r i c a l d imens ions . T h i s re s u l t s i n at o ta l m a g n e t i c m o m e n t v e c t o r M a l i g n e d a l o n g a n a x is o flowes t ene rgy , c a l l ed the ea s y ax i s (e . a . ) . Un de r the in f luenceo f a n e x t e r n a l m a g n e t i c fi e ld H , t h e m a g n e t i c m o m e n t M ( s e eF ig . 5 ) .

  • 7/30/2019 The Future of Magnetic Sensors

    6/17

    44 R.S . Popov ic e t aL / Sensors and Actuators A 56 (1996) 39-5 5

    Hy --

    H ~ xFig. 5 . Rota t ion of the magne t ic mom ent M , r ider the inf luence of an exte rna lma gne t i c f i el d H .3. l . 1. Rotat ion o f the magnet i zat ion by an external magnet icf i e l dIn o rde r to c a l cu la t e the in f luence o f an ex te rna l magn e t i cf i e ld H on the mag ne t i c mom ent M con s ide r F ig . 5 . Accord -i n g t o th e S t o n e r - W o h l f a r t h t h e o r y [ 1 8 , 1 9 ] t h e a n g l e Tb e t w e e n t h e e a s y a x is ( e . a . ) a n d t h e m o m e n t M c a n b edes c r ibed a s

    H,s i n ( y ) = ( 1 4 )14.,+ H=/cos( y)whe re Hs i s a cha rac te r i s t i c sa tu ra t ion f i e ld depen den t on thefe r romagne t i c f i e ld us ed . T he equa t ion i s va l id fo r

    - 1 _ < s in (y ) < 1 o the rw is e s in ( ' , / ) = + 1 .3.1.2 . Magnetoresis t ive sensors base d on ferrom agne t icmaterials

    T he bas i c e l emen t in s uch s ens o rs i s a th in f i lm o f mag-ne to re s i s t ive me ta l o r a l loy wi th a rec t angu la r shape a s s how nin F ig . 6 . T he ma gne t i c m om ent M o wi thou t an ex te rna l f i eldi s a long the ea s y ax i s . T wo e lec t rodes a re a t t a ched and acu r ren t i s app l i ed . T he ex te rna l m agne t i c f i e ld is s uppos ed tobe in the y -d i rec t ion . It t ends to ro t a t e the magne t i c mom ent .T ak ing E q . (1 3 ) and E q . (14 ) in to accoun t , t he re s u l t ingre s i s t ance can be expre s s ed a s [ 18 ]R ( H ) = R o ' - A R ( H y lH , ) 2 ( 1 5 )

    T he norma l i zed behav iour o f th i s func t ion i s g iven inF ig . 7 . T h i s conf igu ra t ion ha s the d i s advan tage o f hav ing aquadra t i c behav io ur . Fu r the rm ore the s ens i tiv i ty van i s hes fo ra low ex te rna l f i e ld , and the d i rec t ion o f the ex te rna l f i e ldcanno t be m eas ured . D i f fe ren t s o lu t ions have been p ropos edt o o v e r c o m e t h e s e p ro b l e m s .3. ! .3. Linearizat ion o f the sensi t iv i tyB as ica l ly , t he l inea r i za tion can be ob ta ine d by in t roduc inga n a n g l e b e t w e e n t h e m a g n e t i c m o m e n t w i t h o u t a n e x te r n a lf ie ld /14o and the current I . A f i rs t solut ion is to add to the

    mlres~five,

    x M e u d i z a f i o n H?Fig . 6 . Schem at i c v iew o f a mag netores is t i ve sensor in i t s s imples t geomet ry .The ex tem a] f i e ld H i s supposed Io be in Ihe y -d i rec t ion .

    , - , I - . . . . . . - . . " '

    - ' , . o ! ~ ; o i = 1 ' ~F i g . 7 . N or ma l i z e d r e s i s t a nce f o r t he s i mp l e s t ge ome t r y o f F i g . 6 , c ompa r e dwi th the solut ion us in g barber po les as in F ig. 8. The s ign o f the s lope of theba r be r po l e s o l u t i ons de pe nds on t he o r i e n t a t i on o f M o i n , he + x o r - xdi rec t ion.

    l ~ x Mo ~ HyF i g . 8 . S c he ma t i c v i e w o f a m a gne t o r e s i s ti ve s e ns o r u s i ng b a r be r po l e s . T heexte rna l f ie ld H i s suppo sed to be in the y-di rec t ion. Whi te r egions avemagnetoresistive layer s and hatch ed parts are stripes of mu ch betterconductivity.ex te rna l magne t i c f i e ld H a b ia s f ie ld Hn [20 ] . In th is c a s e ,the re s i s t ance i s ob ta ined by rep lac ing H: in E q . (15 ) by14.,. + H ,~ . Th e need to gen e ra te a b i a s f i e ld inc rea s e s the com -p lex i ty o f the s ys t em. T h i s l imi t s the app l i ca t ion o f s uch al inea r i za tion me thod .

    A s econd s o lu t ion i s t o ro t a t e the d i rec t ion o f the cu r ren tcompared to the ea s y ax i s [21 ] . T h i s c an be rea l i z ed byapp ly ing , du r ing the evapora t ion o f the fe r romagne t i c ma te -r i a l, a m agne t i c f i e ld in a w e l l -de f ined d i rec t ion . I t w i l l r e s u l tin a ro t a tion o f the ea s y ax i s in F ig . 6 . Wi th ou t an ex te rna lf i e l d , t h e c u r r e n t a n d t h e m a g n e t i c m o m e n t a r e n o l o n g e rpa ra l l el . An ang le o f 4 -45 i s o f t en us ed . An o the r e l ega n ts o lu t ion cons i s t s o f u s ing s o -ca l l ed ba rbe r po le s [22 ] a ss how n in F ig . 8 . In th is conf igu ra t ion , s l an ted s t r ipe s o f goodc o n d u c t i n g m a t e r ia l a r e p l a c e d b e t w e e n s t r ip e s o f m a g n e t o -re s i s t ive ma te r i a l w i th lower conduc t iv i ty . T he cu r ren t w i l lthen fo l low the pa th w i th the low es t r e s i s tance be tw een thetwo con tac t e l e c t rodes . I t w i l l try to min im ize the pa th in themagne to re s i s t ive ma te r i a l whe re the re s i s t ance i s l a rge r .T he re fo re i t w i l l p ropaga te pe rpend icu la r to the ba rbe r po le sa s d r a w n s c h e m a t i c a ll y in F i g . 8. W h e n t h e a n g l e b e t w e e nthe ea s y ax i s and the cu r ren t i s + 45 , t he f i e ld - re s i s tancere la t ions h ip i s expre s s ed by [ 18 ]R ( H ) = Ro A R ( H , , / H s ) ~ / I L ( H , / H s ) 2) (16 )

    T w o s o lu t ions ex i s t , depend ing on the s ign o f /14o . T hes etwo cu rve s a re rep re s en ted in F ig . 7 . Such l inea r i zod s ens o rsw o r k p r o p e r ly o n l y i f t h e m a g n e t i z a ti o n M o r e m a i n s i n o n emag ne t i za t ion s ta t e . A s wi t ch in g o f/14o be tw een the + x andthe - x d i rec t ion can occur wh en the ex te rna l fi e ld excee ds ace r t a in l imi t . T h i s in t roduces a f l i p f rom one cu rve to theo the r , chang ing the s ign o f the s lope . Neve r the le s s , a t l ow

  • 7/30/2019 The Future of Magnetic Sensors

    7/17

    R.S. Poln~vicet aL /Sensors a nd Actuators A 56 (1996) 39-55 45ex te rna l f i e lds the s ens o r i s to a g ood approx ima t ion l inear .T he f l ip e f fec t ha s to be av o ided by l imi t ing the ex te rna l f ie ld .B y a p p l y i n g f r o m t i m e t o t i m e a s t r o ng w e l l - k n o w n e x t er n a lf i e ld , a r e s e t o f the mag ne t i c o r i en ta t ion o f M o can a l s o beach ieved . T h i s s a fe ty s o lu t ion inc rea s e s the complex i ty o f thes e n s o r m i c r o s y s t e m .3 . i . 4 . M a t e r i a l s , p e r f o r m a n c e a n d a p p l i c a t i o n s

    T hin f i lms o f fe r rom agne t i c me ta l s and a l loys a re us ed inthe fab r i ca t ion o f magne to re s i s t ive s ens o rs . T h in f i lms a reus ed to inc rea s e the nomina l r e s i s t ance o f the s ens o r . Fu r -the rmore , t h in f i lms can be made to behave l ike a s ing lemag ne t i c doma in . W i thou t an ex te rna l magne t i c fi e ld , t he i rmag ne t i za t ion fo l lows one we l l -de f ined d i rec tion ( the ea s yax i s ) s e t du r ing manufac tu re .

    For s ens o r app l i ca t ions , an i s o t rop ic magne to re s i s t ancesa re com mo nly us ed . In the s e m a te r i a l s the s a tu ra tion f i e ld isv e r y l o w , w h i c h m a k e s t h e m m o s t u s e f u l f o r th e d e t e c t io n o fs ma l l f i e lds. A t roo m tem pe ra tu re a l loys o f N i , Fe l _ ~ a s we l la s N ixC ol -x h ave been us ed w i th a magn e to re s i s t ive e f fec t( a m a x i m a l r e l a t iv e c h a n g e o f t h e r e s i st i v it y ) o f t h e o r d e r o f3~ [21.

    W ith an open- loo p in t e r face the magne to re s i s t ive s ens o rsh a v e a s e ns i ti v i ty r a n g e o f 1 0 - : t o 5 0 G w i t h a d y n a m i c r a n g ef r o m d . c . to I G H z [ 1 ] . I m p r o v e d f e e d b a c k r e a d o u t m e t h o d sreduce the m in im um de tec tab le f i e ld to 10 -6 G fo r l imi t edbandw id ths . T he s ens o rs a re l i gh t , s ma l l , ope ra te w i th 0 .1 to0 .5 m W o f p o w e r an d at t em p e r a tu r e s b e t w e e n - 5 0 a n d+ 2 o o C I l l .R e c e n t d e v e l o p m e n t s i n t h e m a t e r i a l t e c h n o l o g y h a v es how n a po ten t i a l t o inc rea s e the s ens i t iv ity by one o rde r o fm a g n i t u d e c o m p a r e d w i t h p e r m a l l o y s b y u s i n g m a g n e t i cm u l t i l a y e r s . T h e s e k i n d o f m a t e r i a l s h a v e a m u c h h i g h e rs a tu ra t ion f i e ld , wh ich can l e ad to p rob lems in rea lapp l i ca t ions .

    F i r s t , magne t i ca l ly coup led mul t i l aye rs , s o ca l l ed 'g i an tnega t ive magne to re s i s t ances ' have been s tud ied [2 , 23 , 24] .T h e s e a r e F e / C r o r C o / C u s u p e r la t ti c e s a n d o t h e r m u l t i l ay e r so f a l t e rna t ing mag ne t i c and non -mag ne t i c me ta l s . A t l i qu id -He t emp e ra tu re s magn e to re s i s t ive e f fec t s as h igh as 80% havebeen obs e rved [ 24 ] . T he i r h igh s a tu ra t ion f i e ld (up to 0 . 4 T )and h igh no i s e l eve l ( i . e ., r educed de tec t iv i ty ) l imi t t he app li -ca t ion o f s uch m a te r i a l s in rea l s ens o r s ys t ems .

    Nex t , uncoup led fe r romagne t i c mul t i l aye rs , c a l l ed ' s p inva lve ' ( s v ) [2 ] s t ruc tu re s , and g ranu la r f i lms a l s o exh ib i tg i an t magne to re s i s t ive e f fec t s [2 5 , 26] . In pa r t i cu la r the s vs t ruc tu re s a rc in t e re s t ing fo r dev ice app l i ca t ion s ince they a rcs ens i t ive a t l ow m agne t i c f i e lds w i th a ma gne to re s i s t ive e f fec to f t h e o r d e r o f 4 - 1 0 % [ 2 ] .

    P e r m a l l o y m a g n e t o r e si s t o rs a s m a g n e t ic s e n s o r s a r e c o m -m e r c i a l l y a v a i l ab l e ( e . g . , P h il i p s K M Z 1 0 ) . T h e m o s t c o m -mo n app l i ca t ions a re in con tac t l e s s pos it ion s ens ing [2 ] . B yu s i n g t h e p o s i t i o n - d e p e n d e n t f i el d o f p e r m a n e n t m a g n e t s o rby m eas ur ing the f i e ld d i s to r t ions gene ra ted by s o f t - iron mov-ing pa r t s , t he l a t e ra l o r angu la r pos i t ion o f d i f fe ren t p i ece sc a n b e d e t e r m i n e d [ 1 8 ].

    O the r app l i ca t ions a re in the f ie ld o f meas u rem en t o f cu r -ren t s and e l ec t r i c a l pow er [ 27 ] . T hes e s ens o rs have a l s o beenu s e d a s m a g n e t o m e t e r s , f o r e x a m p l e , a s c o m p a s s e s [ 2 8 ] .M agne to re s i s t ive s ens o rs we re app l i ed a s read ing heads a sea r ly a s 1971 [20 ] .3 . i .5 . D i s c u s s i o n a n d o u t l o o kC ompared to o the r magne t i c s ens o rs , t he fe r romagne t i cmagne to re s i s to r s have in gene ra l a h igh s ens i t iv i ty a t l owf ields . T h i s i s due to an in t r in s i c ga in , s ince the s e ns o r i t s e l fac t s a s a m agne t i c concen t ra to r . T h i s inhe re n t e f fec t s t rong lyinc rea s e s the s ens i tiv i ty o f the dev ice .

    F e r r o m a g n e t i c m a g n e t o r e s is t o r s h a v e t w o m a i n d i s a d v an -t ages : t he f l ipp ing e f fec t and hys te re s i s [ 29 l . E s pec ia l ly fo rl inea r i zed sens o rs , w i th a s ens i tiv i ty a s in F ig . 7 , e ach s ens o rhas to be m agne t i zed in one d i rec t ion be fo re us e , i n o rde r tohave w e l l -de f ined cba rac te r i st i c s . B y app ly ing a l a rge d i s -tu rb ing f i e ld in the oppos i t e d i rec t ion , t he s ens o r re s pons ecan be a f fec ted and in the ex t rem e ca s e s the re s pons e can bereve rs ed . In F ig . 7 th i s e f fec t co r re s pon ds to a s udden f l ipf r o m t h e b a rb e r c u r v e " + ' t o t h e b a rb e r c u r v e ' - - ". T o a v o i dth i s dange r a pe r iod ic magne t i za t ion o f the s ens o r c an beapp l i ed , bu t th i s inc rea s e s the complex i ty o f eve ry s ys t embas ed on the s e k inds o f dev ice s .Ne w de ve lopmen t . s a t e s t il l emerg ing . S ign i f i c an t impro ve -men t s a re expec ted in ba s ic ma te r i a l s . T he f reedom in de s ignof fe red by the new m agne t i c mul t i l aye rs ha s to be exp lo redfu r ther . W hi l e , a t p re s en t , the s e m a te r i a l s have a h igh s a tu -ra t ion f i e ld com pared to s t anda rd magne to re s i s to r s , t he deve l -opm en t i s on ly a t t he beg inn ing . T he in t r in s i c no i s e in s uchn e w c o m p o n e n t s h a s t o b e a n a l y s e d a n d u n d e r s t o o d i n d e ta i l.I t may s t rong ly l imi t t he de tec t iv i ty o f s ens o rs us ing the s ema te r i a l s .3 .2 . S e m i c o n d u c t o r m a g n e t o r e s i s t o r s

    A s e mic ondu c to r magne to re s i s to r is a th in p la t e o r a f i lmof a h igh -mobi l i ty s emiconduc to r f i t t ed wi th two e l ec t r i c a lcon tac t s . T he re s i s t ance meas ured be tween the con tac t sincreases i f the dev ice is exposed to a perpen dicu lar magnet icf ield. The increase in the resistance is another manifestat iono f t he ac t ion o f t he Lo ren tz f o rce ( Eq . ( I ) ) on the cha rgecarr iers in the f i lm . B r ie f ly , the magnet ic par t o f the Lorentzforce br ings about a def lec t ion o f charge car r iers re la t ive tothe i r pa ths w i th no magne t ic f i e ld . The m ic rodc f l ec t i on o f t hecarr iers" free transits between col l is ions is responsible for agenera l increase in the mater ia l res is t iv i ty . T h is is ca l led thephys ica l magnetores is tance ef fec t. The macroscopic def lec-t ion o f cur rent l ines addi t iona l ly increases the dev ice res is-tance. S ince th is e f fec t depends on the fo rm of the sample, i tis cal led the geometr ical magnetoresistance effect.

    T he geome t r i c a l magne to re s i s t ance e f fec t i s be s t seca ins hor t bu t w ide (wi th l a rge con tac t s ) s ample s . On the o the rhand , the magn e to re s i s t ance e f fec t i s l a rge enou gh to be us e -fu l on ly in h igh -mob i l i ty ma te r i a l s . A s hor t s amp le o f a h igh -mobi l i ty m a te r i a l ha s a ve ry low re s i s t ance , wh ich i s d i f f i cu lt

  • 7/30/2019 The Future of Magnetic Sensors

    8/17

    4 6 R S . P o p o v i c e t al . / S e n s o r s a n d A c t u at o r s A 5 6 ( 1 9 9 6 ) 3 9 - 5 5

    t o meas ure w i th a h igh eno ugh p rec i s ion . T he re fo re , t he s em-iconduc to r magne to re s i s to r s us ua l ly have a fo rm o f manyshort res is tor ce l ls conn ected in ser ies . The interes ted readercan f ind more in fo rm a t ion on the phys ic s o f the magne to re s -i s t ance e f fec t in a mo nograp h [ 22 ] and a de ta i l ed accoun t onthe deve lopm en t work in a re cen t rev iew pape r [ 18 ] .

    Sem icondu c to r magne to re s i s to r s made o f InSb a re s impleand ve ry s ens i t ive mag ne t i c - f ie ld sens o rs. T h ey a re o f t en us edto de tec t a m agne t i c f i e ld l a rge r than abou t 20 mT . C o mb inedwi th a pe rm anen t mag ne t , t hey f ind app l i ca tion , fo r example ,in p rox imi ty de tec to rs . T he p rob lem w i th s uch magne to re s -i s to r s i s t he ir r a the r s trong t emp e ra tu re dependence ( ln Sb i sa s ma l l -band-gap s emiconduc to r ) and h igh non- l inea r i ty .T he re fo re , t hey a re no t no rm a l ly us ed to meas ure a m agne t i cfield.W e be l i eve tha t s emico nduc to r magne to re s i s to r s w i l l con-t inue fo r s ome t ime to be us ed a s s imple and robus t magne t i cde tec to rs in s ome n iche app l ica t ions . T he i r s ma l l comm erc ia limpor tance can , howeve r , no t ju s t i fy ma jo r re s ea rch anddeve lop men t e f fo r t s and the i r impac t w i l l d imin i s h .

    4 . I n d u c t i v e p r o x i m i t y a n d d i s t a n c e s e ns o r sInduc t ive p rox imi ty and d i s t ance s enso rs a re ba s ed on thel a w o f i n d u c t i o n ( F a r a d a y ' s l a w ) : U = - N ( d c k / d t ) . T his

    impl i e s tha t a vo l t age U wi l l appea r a t t he ends o f a co i l w i thN turns wh en the m agn et ic f lux ~b in th is coi l i s varying.Induc t ive s ens o r mic ro s ys tems wi l l t he re fo re con ta in the fo l-lowing ba s i c comp onen t s [ 18 , 30 ] : a m agne t i c - f i e ld s ource,a rece ive r e l emen t to de tec t t he magne t i c - f i e ld var i a tions andan e l ec t ron ic in t e r face and s igna l -cond i t ion ing c ircu i t ry toampl i fy the we ak vo l t age comin g f rom the co i l and to ex t rac tf rom i t u se fu l in fo rma t ion .

    Of cours e the s ys t em requ i re s a t a rge t , loca ted ou t s ide thes ys tem. T he in f luence o f th i s componen t on the magne t i cf i e ld w i l l depend on the ma te r i a l compos i t ion o f the t a rge tand o n i ts profi le , as we l l as on the ta rge t to sensor dis tance .B as ica l ly bo th fe r romag ne t i c a s we l l a s conduc t ing t a rge t scan be de tec ted by induc t ive s ens o rs . T he in f luence wi l linc rea s e by d ec rea s ing the t a rge t to co i l s epa ra tion .

    W i th t e r rom agne t i c ma te r i a ls , t he re luc tance o f the mag-ne t i c c i rcu i t com pos ed o f the co i l and the t a rge t w i ll dec rea s eby app roach ing the t a rge t . T h i s l e ads to an inc rea s e o f theinduc tance L o f the p ickup co i l . On the con t ra ry , fo r con-duc t ing ma te r i a l s eddy cu r ren t s w i l l appea r in the t a rge t .Acco rd ing to L enz ' s p r inc ip le , the eddy cu r ren t s w i l l coun-t e rac t t he p r imary cu r ren t and p roduce a nega t ive change o fthe coi l inductance . In fac t , a mirrored coi l wi th negat ivecout~l in~ to the primary, eoi! wi l l be produced in the con-duc t ing t a rge t [ 30 ] . T he eddy cu r ren t s a l low the magn e t i cf i elds to pene t ra t e conduc to rs on ly to a c e r t a in dep th , c a l l edthe s k in dep th 8 - ~/21aurpop', with o" the cond uct ivi ty andPoP, the pe rmeab i l i ty o f the t a rge t. T he s k in dep th dec rea s e sa s the f requency w inc rea s e s. C ur ren t s w i l l be concen t ra t ednea . 1he s u r face o f the conduc t ing t a rge t , decay ing rap id ly

    pas t t he s k in dep th . N o t i ce that , be s ide the indu c tance change ,varia t ions of the ser ies ces is tance of the coi l as a funct ion o fthe t a rget pos i t ion a re a l s o expec ted fo r bo th fe r rom agne t i cand con duct in g materia ls [ 31 ] .4. i. Applications

    From the us e r po in t o f v i ew , the mic ros ys tem s hou ld becons ide red a s a b l ack -box , de l ive r ing an e l ec t r i c a l s igna l . T hef i eld o f app l i cat ion wi l l be de te rm ined by the phys ica l i n t e r -pre ta t ion of th is s ignal . In front of a f la t ta rge t of knowncompo s i t ion , t he s igna l w i l l be in t e rp re t ed a s a m eas urem en to f the d i s t ance to the t a rget . B o th s ys t ems w i th ana log ou tpu t ,used as dis tance sensors , and sys tems with a s tep responseus ed a s p rox imi ty de tec to rs a re com mer c ia l ly ava il ab le .Deve lop men t s have been rea l i z ed to make th i s k ind o f p rox-imi ty de tec to r more o r l e s s independen t o f the t a rge t com-pos i tion [32 ] . Fo r o the r app l ica t ions [ 33 ] , t he s ys t em canbe de s igned to g ive the ma te r i a l compos i t ion o r the th i cknes sof a f la t ta rge t a t a kno wn dis tance .

    B as ed on the s e s ens ors , s ys t ems fo r l a t e ra l d i s p lacemen tand fo r ro t a tion meas urem en t s have been deve lo ped [ 18 ] .T a rge t s w i th known p ro f i l e , fo r example ro ta t ing impu l s egea rs , a re us ed in f ron t o f the de tec to r . T he m ot ion w i l l beg iven by the num ber o f t e e th s een by the s ens o r . In the sameway , by a l a t e ra l dep lacem en t o f the s ens o r ra i c ros ys tem, as can o f an unkno wn t a rge t p ro f i le fo r imag e ry [34 , 35] andrecogn i t ion o f me ta l l i c p i ece s [ 36 ] c an b e ob ta ined . Fur the r -more , s uch s ens o rs c an de te rm ine and loca l i z e de fec t s in theta rge t ma te r i a l , fo r example mic roc racks in ga s p ipe l ine s[ 3 7 ] .

    In a l l t he s e app l ica t ions , t he qua l i ty o f the s ens o r m ic ro -s ys tem wi l l depend on p rope r t i e s l i ke ax ia l and l a te ra l r e so -lu t ion , r ange o f work ing d i s t ance , l i nea r i ty , t empe ra tu redepend ency and s i ze .4.2. Sourc e of magnetic field

    T w o k inds o f magn e t i c - f ie ld s ource s can be us ed , name lype rma nen t magne t s [38 ] and co i l s [ 18 ] . As the magne t i cf i eld i s cons tan t, no eddy cu r ren t s a re p roduced s o tha t on lymo ving fe r romagne t i c t arge t s c an be de tec ted . Fur the rmore ,by us ing a pick up coi l tha t is only se ns i t ive to the varia t ionso f the mag ne t i c f lux , on ly rap id chan ges a re de tec ted . No tetha t th i s d i sadvan tage can be ov e rcom e by us ing , fo r example ,a Ha l l s ens o r o r a f lux ga te a s a re ce ive r [ 39 ] .

    A l t e rna t ive ly , co i l s a re o f t en us ed a s s o urce s fo r the m ag-ne t i c f ie ld . Accord ing to Am i~r e ' s l aw , ~ H . dl = N . L a cu r-ren t I i n an N- tu rn co i l w i l l p roduce a mag ne t i c f i e ld a roundth is co i l [ 18 ] . T he c ros s s ec t ion o f the w i re s ha s to be l a rgein o rde r to adm i t a l a rge e l ec t r i c a l cu r ren t fo r the p roduc t ionof an in t ens ive mag ne t i c f i e ld . T h i s l imi t s the num ber o f tu rnsin integra ted f ia t coi ls wi th a f ixed aspect ra t io and a givena rea . Fur the rmore , t he ma te r i a l s hou ld have a s h igh a con-duc t iv i ty a s pos s ib le . Us ing co i l s i n s t ead o f a pe rmanen tmagn e t a l lows the magne t i c f i e ld to be m odu la ted . In the nex t

  • 7/30/2019 The Future of Magnetic Sensors

    9/17

    R . S . P o p o v i c e t a l. / S e n s o r s a n d A c t u a t o r s A 5 6 ( 1 9 9 6 ) 3 9 - 5 5 4" /

    sec t ion w e sha l l focus on t he se k ind o f source s fo r magne t i cfields.4.3. Pickup coils

    Since a t the rece iv er s ide only sm al l s ignals a re expected,i t is preferable to increase the n um ber of turns in the pickupco i l, even a t t he cos t o f a dec rea se o f t he c ross sec t i on o f t hewi re s . Accord ing t o Fa raday ' s l aw, t he number N o f t u rns i nthe coi l i s the re levant fac tor for the induc ed vol tage U. Thisimpl i e s tha t t he op t imu m des igns o f t he source and p i ckupco i l s a re som ewh a t d if f e ren t. M ic rosys t ems wi th two co i l ssepa ra te ly op t im ized w i l l be u sed i n app l i ca t ions whe re h ighprec ision and high sensi t ivi ty are requi red, l ike in prec ised i s t ance measurem ent s . For app l i ca ti ons l i ke l ow-cos t p rox-imi ty de t ec to r s , whe re on ly t he p re sence o f me ta l l ic p i ece shas t o be de t ec t ed , a compro mise i s made i n t he de s ign o f t heco i l. In o rde r t o s im pl i fy t he mic rosys t em, on ly one co i l i sused a s bo th sou rce and rece ive r .W e rem ark t ha t i n t he fu tu re , p rox imi ty and d i s t ance -meas-u rement sensor m ic rosys t ems wi l l a l so be ba sed on o the rk inds o f r e ce ive r s l i ke Ha l l dev i ce s and f l uxga t e sensor s .4.4. Elec tron ic interface an d signal-conditioning circuitry

    The in t e r fac ing o f a sens i t i ve e l emen t wi th t he s i gna l -p rocess ing c i r cu i t ry i s a ma jo r p rob l em in sensor sys t ems . Inmost c a se s , t he ove ra l l de t ec t iv i t y o f t he who le sys t em wi l lbe s t rong ly i n f l uenced by t he ch osen so lu t i on . Many in t e rfacec i rcu it s fo r i nduc t i ve p rox imi ty sensor s have b een p re sen t edin the past , som e of whic h are used today in indust r ia l prod-ucts . The main interface pr inc iples a re based on br idge c i r -cu i t s and on osc i l l a to r c ir cu i ts [40] .

    Due t o t he d i f f e ren t i a l na tu re o f t he i r m easuremen t p r in -c ip l e, W hea t s tone b r idges a re we l l know n fo r t he ir goodpe r fo rmance ( e .g . , l i nea r i ty , t empe ra tu re compensa t i on , ve r -sa t i l i ty) [41] . In genera l br idge c i rcui t s need severa l e le -men t s and a re t he re fo re compl i ca t ed .

    Osc i l l a to r c i r cu it s have l e ss e l emen t s and a re wide ly used[ 421 . The i n fo rma t ion o f i n t e res t i n an osc i ll a t o r c i r cu it m igh tbe i n t he f r equency ra the r t han i n t he amp l i tude , p rov id ingan i nc rea sed immu ni ty to e l ec t romagne t i c n t e r fe rences [41 ] .A f i rst c lass of such c i rcui t s i s harmonic osc i l la tors usedma in ly wi th capac i t ive o r i nduc t i ve sensor s [4 3] . Th i s t ypeof c i rcui t in terface is kn ow n to hav e a very high sensi t ivi ty ,due to i t s resonant na ture . In thes e c i rcui ts var ia t ions in f re-quency and ampl i t ude a re o f t en coup led t oge the r . Moreove rthis c i rcui t has to inc lude ra ther bulky offse t -compensat ionci rcui t ry , which makes c i rcui t in tegra t ion di f f icul t [421.An other type o f osc i l la tor c i rcui t tha t i s ra ther s imple but lesssensi t ive than the h arm onic osc i l la tor i s the re laxat ion osc i l -lator [41 ].

    Recen t ly a di f ferent ia l version of the re laxat ion osc i l la torhas been p roposed t ha t l e ads t o a s t rong ly improved sens i ti v -i ty [44 ,45] . Th i s no ve l i n te r face ha s good fea tu re s o f bo thosc i l la tors and br idges: i t i s s imple and has an output s ignal

    f r equency and ampl i t ude i ndependen t o f one ano the r, a s i nre laxat ion osc i l la tors . Fur thermore the f requency idea l lyincreases to inf ini ty , s imi lar to the am pl i tude o f the signal ina ha rmo nic osc i l la tor . Therefore i t can be m ade very sensi ,~ive .I t has a di f ferent ia l na ture , a l lowing compcnsat iens simi larto br idge c i rcui t s . The novel interface i s a se l f -osc i l la t inge l ement , de l i ve r ing a s an ou tpu t s i gna l a d ig i t a l- compa t ib l esqua re -wave s igna l a t va ry ing f requency [46] .4.5. Integrated single-coil serLtor microsystem

    Th e future o f microsen sors wi l l be in integra, .zd devices ,no t on ly fo r e conom ica l r e a sons , bu t a l so f rom a sys t em po in to f v i ew. Sma l l s i z e wi l l be needed fo r me in t roduc t i on o fsuch i nduc t ive sensor s i n sys t em s v , i th m ore com plex i ty , l i kemagne t i c l ev i t a t i on and bea r ings i n compute r ha rd d i sks[47 ] . F or image ry app l i ca t i ons, t he s i z e o f t he sensor w i l la l so de t e rmine the p ixe l r e so lu t ion o f t he sys t em. W e sha l ld i scuss he re tw o d i f f e ren t ways t o i n t eg ra t e t he co i ls fo r fu tu reprox imi ty and d i s t ance sensor s .

    Far ther sensor m icrosys tems could be f i rs t rea l ized usir .gmic roso l eno ids [61 ] ob t a ined by ' advanced s i l icon t e chno l -og i e s (F ig . 9 ( a ) ) . In such dev i ce s a f e r romagne t i c co re canbe i n t roduced ; fu r the rmore , t he num ber o f t u rns i s no t l im i t edby t he c ross sec t i on o f t he co i l. Sm a l l p ixe l s cou ld be ob t a inedwi th a l a rge co i l i nduc t ance . The d i sadvan t age o f t h i sapproach i s t he com plex i ty o f t he t e chno logy requ :aec l [48 ] .

    Ano the r approach fo r i n teg ra t i on i s f la t co i l s (F ig . 9 (b ) )[4 8] . In this case , an easier technolog y [4 9] o1" even tual ly a~tandard p rocess [50,5 1] l ike the me. ta ll iza tion steps ofCM OS can be appl ie , ! for the fabr ica t ion of the coi l s .

    By sca l i ng down the sensor , d i f f e ren t t r adeof f s shou ld be.made [ 31 ] . D ue t o t he fundam enta l d iv i s i on o f t he magne t i cf ie ld around a coi l , both the la tera l resolut ion and the w orkingd i s t ance o f t he sensor a re p ropor t i ona l t o t he co i l d i am e te r[34 ,52] . The sca l ing down wi l l r e su l t i n a h ighe r p ixe l r e s -o lu t i on bu t a l so i n a dec rea se o f t he w ork ing d i s t ance . Ano the rt radeo ff i s give n by the parasi t ic e ffec ts . Rela t ive to the indue-t ance o f t he co i l , t he pa ra s it i c c apaci t y be tween t he r ams andthe ser ies resistance wi l l increase [ 31 ] . T he ind uct ive behav-iour o f t he dev i ce t ends t o d i sappea r a t ve ry sma l l d imens ions .Neve r the l e ss , p ro to types o f such sensor m ic rc~ys t ems havebeen rea l i z ed and success fu l l y t e s t ed [53 ] us ing a hybr iddi fferent ia l re laxat ion osc i l la tor as an e lec t ronic interface(F ig . 10 ) .

    - t( a ) C o )

    Fig . 9 . (a) Pr inc ip le o f i n tegra ted mic ros o leno id as d is tance sensor mic ro-system, (b) INinciple f integrated lat coil as distance ensorn,icrosystem.

  • 7/30/2019 The Future of Magnetic Sensors

    10/17

    48 R .S . Popov ic e t a l. / Sens or s and Ac tuator s A 56 (1996) 39-55

    F l a t c o i l ~ a m o l e r 1 0 r n ~

    ~ )~ 1 0~ . . . . . ! 7 , , , ! . . . . ! . . . . i , , , r -

    I o s i . . . i. . . . . ~ , .

    S : ....~'8 IU~~ 7 l0 st ~ 6 l O S / ~ -

    5 105 ................. :: .. .. .. .. !4 Io ~ , , _ ~ , J . . . . i . . . . i . . . . i . . . . -(b) 0 1 2 3 4 5Distance cc, l to target [mini

    Fig. I0. (a) Pro:otypeoCa flat coil distancesensor microsystem ( after [ 531 ).(b) Measured frequt'ncy variation as function of the distance of the targetto the coil (after I53 1)

    I i

    i 2

    ( a )

    _ .- . . .

    (b)Fig. I i. (a ) Principle of a differential trmlsformer. (b ) Picture of the inte-grated differential transformer as deve loped at the CSE M Neuch.~lel (after[54]).

    4.6. hztegratcd differential transformer 4. 7. O utlookI n o r de r t o i l l u s t r a t e t he new pos s i b i l i t i e s o f f e r ed by t he

    i n t eg r a t i on , we a l so p r e sen t t he p r i nc i p l e o f a d i f f e r en t i a lt r a n s f o r m e r ( F i g . 1 1 ( a ) ) . T h i s d e v i c e is m a d e o f t h r e e c o i l st r ad i t i ona l l y w oun d on t he f e r r om agne t i c co r e i t s e l f [ 18 ] . I nou r F i gu r e , w e s epa r a t e ~ .he exc i t a t i on , t he r ece i v e r and t hem o v i n g c o r e , i n o r d e r t o p r e p a r e f o r t h e d i s c u s s i o n o f t h ei n t eg r a t ed ve r s i on o f such a s enso r . Co i l I i s exc i t ed b y ana . c . cu r r en t . The p i ckup co i l s 2 and 3 a r e magne t i ca l l y cou -p l e d t o c o i l 1 . T h e d e g r e e o f c o u p l i n g i s c o n t r o l l e d b y t h em o v i n g c o r e . F o r a n a s y m m e t r i c a l p o s i t i o n o f th e c o r e a ni n d u c e d v o l t a g e a p p e a r s i n t h e p i c k u p - c o i l c ir c u it . T h i s s e r v e st o meas u r e t he l a t e r a l pos i t i on o f t he co r e .

    T h e C S E M a t N e u c h ~ t e l h a s d e v e l o p e d a n e w i n t eg r a t e ds e n s o r m i c r o s y s t e m [ 5 4 ] b a s e d o n an a n a l o g p r i n c ip l e( F i g . 1 1 ( b ) ) . T h e f ir s t c h i p c o n t a i n s t h e f i a t p i c k u p c o i l s 2and 3 , r e a l i z ed i n a s t anda r d a l u mi n i um me t a l l i z a t i on p r oces s .The exc i t a t i on co i l r equ i r e s a l ow se r i e s r e s i s t ance and i st he r e f o r e r ea l i z ed on a s econd ch i p , f l i p - ch i p moun t ed on t hef i r s t , w i t h a t h i ck coppe r l aye r a s a f i a t co i l . Due t o t he t h i ns t r uc t u r e s u sed i n i n t eg r a t ed dev i ce s , t he co i l s 2 and 3 a r es t r ong l y coup l ed t o t he exc i t a t i on co i l . Fu r t he r mor e , a t a r ge twi t h a l a t e r a l p r o f i l e c an ac t a s a mov i ng co r e , t he pos i t i on o fw h i c h i s t o b e d e te c t e d . S o m e o f th e p e r f o r m a n c e o b t a i n e dw i t h t h i s s e n s o r s y s t e m i n c l u d e s s u b - m i c r o n r e s o l u t i o n , af r e q u e n c y r a n g e o f 0 to 4 k H z , a w o r k i n g d i s t a n c e b e t w e e nsenso r and t a r ge t o f O t o 2 mm and h i gh t em pe r a t u r e s t ab i l i t y .

    T h e f u t u re o f in t e g r a te d i n d u c t i v e s e n s o r m i c r o s y s t e m sw i l l st r o n g l y d e p e n d o n t h e s c a l in g d o w n o f t h e c o i l d im e n -s i o ns . O n e o f t h e m a i n p r o b l e m s i s t he a p p e a r a n c e o f p a ra s i ti ce f f ec t s l i ke t he r e l a t i ve i nc r ea se o f t he s e r i e s r e s i s t ance[ 31 , 55 ] . An i mpor t an t i s sue wi l l be t he ava i l ab i l i t y o f a l ow -c o s t , h i g h - a s p e c t - r a t i o a n d h i g h - r e s o l u t i o n t e c h n o l o g y t ode f i ne and s t r uc t u r e t he co i l s .

    I t s eems t ha t i n t he nea r f u t u r e , i nduc t i ve p r ox i mi t y andd i s t a n c e s e n s o r m i c r o s y s t e m s w i l l h a v e t h e f o r m o f s m a l l b u te s p e c i a l l y o f t h in d i s k s . T w o v e r s i o n s o f t h e s e s e n s o r s w i l lbe deve l ope d . F i r s t, m i c r os enso r s w i l l be f ab r i ca t ed u s i ng f la tco i l s on l ow- cos t subs t r a t e s l i ke p r i n t ed c i r cu i t s o r g l a s swaf e r s . I n t h i s c a se , t he s i gna l - cond i t i on i ng e l ec t r on i c s w i l lbe on a s epa r a t e s i l i con ch i p , i n t e r connec t ed wi t h t he co i l i na hyb r i d i n t eg r a ti on . Th e d i am e t e r o f t he co i l w i l l r ema i nc o m p a r a b l e t o t h a t o f cu r r e n t l y a v a i l a b l e s e n s o r s . A s e c o n dv e r s i o n o f i n d u c ti v e s e n s o r m i c r o s y s t e m s w i l l s c a le d o w n t h es i ze o f t he co i l s by a mono l i t h i c i n t eg r a t i on o f t he co i l andt he e l ec t r on i c s on a s i ng l e s i l i con ch i p u s i ng pos t - p r oces s i ngt echno l og i e s . Due t o t he mi n i a t u r i za t i on , t he i nduc t ance o ft h e c o i l w i ll d e c r e a s e . N e v e r t h e l e s s , w h e n t h e p a r a s it i c e f f e c t sa r e n e g l ig i b l e, t h e s e n s i t i v i ty o f t h e s c a l e d - d o w n m i c r o s y s t e mwi l l r ema i n cons t an t i f, t ogs ! he r w i t h t he l i nea r s ca l i ng dow nof t he co i l d i mens i ons , t he t a r ge t d i s t ance i s a l so l i nea r l ys c a l e d d o w n a n d t h e f r e q u e n c y i s i n c r e a s e d b y t h e i n v e r s esqua r e o f t he mi n i a t u r i za t i on f ac t o r [ 31 ] . The dev e l op me n t

  • 7/30/2019 The Future of Magnetic Sensors

    11/17

    Rs . Popovic et aL I Sensors and Actuators A 56 I'1996)39-55 49o f h ig h - f r eq u en cy e l ec t ro n i c i n t e r f aces wi l l t h e re fo re b ereq u i r ed fo r t h e m o n o l i t h i c i n t eg ra t i o n o f m in i a tu r i ze d i n d u c-t i v e p ro x im i ty an d d i s t an ce sen so r s .

    F ro m th e ap p l i ca t i o n s p o in t o f v i ew, b o th k in d s o f t h in -d i sk i n d u c t i v e sen so r s wi l l h av e i n t e r es t i n g p ro p er t i e s fo rc o m p l e x s y s t e m s w h e r e a r e g u l a t i o n s c h e m e i s a p p li e d . T h ed i s t a n c e t o b e m e a s u r e d w i ll t h e n b e m a i n t a i n e d c o n s t a n t.Th i s wi l l av o id t h e i n t r i n s i c n o n - l i n ea r i t y o f t h e sen so r , t h em a x i m u m o f s e n s i t i v i ty b e i n g s e t a t t h e p o i n t o f i n te r e s t. F o re x a m p l e , m i c r o s o l e n o i d s c a n b e u s e d a s a c t u a t o r s b u t a l s o a ssen so r s i n m ag n e t i c l ev i t a l i o n an d b ear in g sy s t em s . In t eg ra t edf i at co i l s wi l l a l so f i n d ap p l i ca t i o n s i n m e asu r in g t h e d i s t an ceo f m e t a l l i z e d m e m b r a n e s e s p e c ia ! l y in n o n - h e r m e t i c s y s t e m s ,wh e re i n sen s i t i v i t y to h u m id i t y an d d u s t i s r eq u ir ed .

    I n t he l o n g t e r m , i n d u c t i w i m a g e r y a n d i m a g e r e c o g n i ti o nw i l l d e p e n d o n t h e i n t e g r a t io n o f l a r g e a r r a y s o f m i c r o c o i l s[ 5 6 ] a n d o n t h e d e v e l o p m e n t o f s i m p l i f ie d e l e c tr o n i c i n t er -f aces . In t h ese ap p l i ca t i o n s t h e n o n - l i n ca r i t y o f t h e sen so rs h o u l d b e u s e d a s a c o n t r a s t e n h a n c e m e n t f a ct o r. A s t r o n gl im i t a t i o n is se t b y t h e r e l a t i o n sh ip b e twee n t h e co i l d i am e te r ,wo rk in g d i s t an ce an d l a t e ra l r e so lu t i o n . L i t tl e wo rk h as b eend o n e t o d ev e lo p fo cu s f i e l d sen so r s , b u t t h e i n t eg ra t i o n o ft h e s e e l e m e n t s s h o u l d s ti ll b e r e a l iz e d [ 5 1 ] . A n o t h e rap p ro ach fo r im ag ery wi l l b e to r ep l ace t h e a r ray o f i n d u c t i v eco i l r ece iv e r s b y an a r r ay o f o th e r m a g n e t i c sen so r s l i k e Ha l ld e v i c e s , k e e p i n g t h e c o i l s a s e x c i t a t i o n e l e m e n t s . A d d r e s s i n go f l a rg e a r r ay s wi l l a l so b e an i s su e . No t i ce t h a t s im p l i f i eds c h e m e s ar e u s e d i n e l e c t r o n s p i n r e s o n a n c e ( E S R ) i m a g e r y[ 5 7 1 , a n d c a n g i v e n e w i d e a s f o r f u rt h e r d e v e l o p m e n t s ini n d u c t i v e i m a g e r y .

    5 . F l u x g a t e s e n s o r sT h e f l u xg a t e m a g n e t o m e t e r [ 5 8 - 6 0 ! i s a m a g n e t i c s e n s o r

    ty p i ca l l y cap ab l e o f m easu r in g d . c . o r s l o wly v a ry in g f i e l ds t r en g th s o f th e o rd er o f 1 0 " ) t o 1 0 4 T wi th a r eso lu t i o no f a p p r o x i m a t e l y O . 1 - 1 0 n T . I n t e r m s o f r a n g e a n d r e s o l u t io n ,t h e y f a l l i n to t h e c a t e g o r y o f m a g n e t i c s e n s o r s b e t w e e n t h ei n e x p e n s i v e H a l l d e v i c e a n d v e r y e x p e n s i v e s e n s o r s b a s e d o nq u a n t u m e f f e c t s s u c h a s S Q U I D s . T h e y f i n d m a n y a p p l i c a -t i o n s i n d i f f e r e n t e n v i r o n m e n t s ( e . g . , m i n e r a l p r o s p e c t in g ,s u b m a r i n e d e t e c t io n , m e a s u r e m e n t s in o u t e r s p a c e ) . S u c h awid e r an g e o f ap p l i ca t i o n i s d u e t o t h e i r ro b u s tn ess , r e l i ab i l it y ,s t ab i l it y , lo w n o i se l ev e l an d ec o n o m i c o p era t i o n .

    Th e b as i c f l u x g a t e i s sh o wn in F ig . 1 2 . I t co n s i s t s o f af e r r o m a g n e t i c c o r e w r a p p e d w i t h t w o c o i l s , th e p r i m a r y o rex c i t a t i o n co i l , an d t h e seco n d ary o r p i ck u p co i l . Du r in go p era t i o n an a . c . ex c i t a t i o n cu r r en t I ~ a t a f r eq u en cy fo i sf o r c e d o n t h e p r i m a r y c o i l. T h e a m p l i t u d e o f t h e e x c i t a ti o ncu r ren t i s su f f i c i en t to sa tu ra t e t h e f e r ro m ag n e t i c co re wi thp erm eab i l i t y / . t . Th e r easo n fo r ca l l i n g t h i s d ev i ce a f lu x g a t et h e n b e c o m e s o b v i o u s . W h e n t h e f e r r o m a g n e t i c c o r e i s n o tsa tu ra t ed , b eca u se o f i ts h ig h r e l a t i v e p e rm eab i l i t y i t o f f e r s ap a th o f l o w m a g n e t i c r es i s t an ce t o t h e f l u x l i n es o f t h e ex te rn a lf i e ld B , (F ig . 1 2 ( a ) ) . W h en t h e co re is sa tu ra t ed t h e m ~ g -

    "" \ (a) / "/ / -

    I,,==.0 V,~

    Fig, 12. The basic fluxga ling principle. (a) The central ferromagn etic corewith permea bil ity /~, surrounded by two coils, the excitat io n coil wh ichdelivers the excitat ion current/~,~ and the seconda ry o r p i c k u p coi l whichhas an induced vol tage V ~ be tw~ n i ts ends. When the exc itation is 7erothe core is non-saturated and thus wit h a high relat ive pe rmeabil i ty. T he f luxof the external magne tic ie ldBo is thus concentrated n the core, which s apath of low mag netic esistance..',b) The core is saturated by/c,~cand itsrelat ive perm eabil i ty (k 'creases. The f lux 8 o is then expulsed from the core.n e t i c r e s i s ta n c e o f t h e c o r e i n c r e a s e s a n d t h e e x c e s s m a g n e t i cf l u x li n e s a r e e x p u l s e d f r o m t h e co r e ( F i g . ] 2 ( b ) ) . T h ea l t e rn a t e g a t i n g o f t h e f lu x c a u s e s a c h a n g e o f f l u x t h r o u g ht h e p i c k u p - c o i l w i n d i n g s . I f w e e x a m i n e t h e r e s u l t a n t v o lt a g eV, ,. , i n t h e p i ck u p co i l we f i n d f ro m F arad ay ' s l aw o f i n d u c t i o nth a t

    d B . Av ~.. = N - - ~ - + v ~ , ( 1 7 )w h e r e A i s th e v e c t o r s u r f ac e a r e a o f t h e c o r e p e r p e n d i c u l a rt o t h e co i ls , B i s t h e g a t ed f i e ld an d N th e n u m b er o f t u rn s i nt h e s e c o n d a r y c o i ls . T h e v a l u e o f B. A = KBoA, w h e r e K i st h e co n cen t r a t i o n f ac to r o f th e ex t e rn a l f i e l d b y t h e f e r ro m ag -n e t i c co re . Un fo r tu n a t e ly , i n ad d i t i o n t o t h e u se fu l p a r t o fV, ,~ , n am ely t h e fi r st te rm in t h e su m o fE q . (1 7 ) , t h e re is ap a r a s i t i c c o m p o n e n t V ~ c a u s e d b y t h e c h a n g e o f m a g n e t i cf lux m the core crea ted by the ex ci tat io n curren t Ic ,,~ .

    F ro m th i s ex p l an a t i o n o f t h e o p era t i o n o f t h e f l u x g a t e , wesee w h ich f ac to r s i n f l u en ce t h e sen s i t iv i t y o f t h e d ev i ce . Ap ar tf r o m t h e o b v i o u s f a c t or s o f i n c r e a s i n g t h e n u m b e r o f t u r n s Nin t h e p i ck u p co i l an d t h e f e r ro m a g n e t i c q u a l i ti e s o f t h e co re ,o n e way t o i nc rease : : h e sen s i t i v i ty i s t o au g m en t t h e l en g tho f t h e co re i n t h e d i r ec t i o n o f t h e ex t e rn a l f i e l d , wh ichin creases K an d t h e g a t i n g f r eq u en cy fo .

    T h e r e e x i s t t h re e m a i n m e t h o d s f o r e x t r a c t in g t h e l e v e l o ft h e ex t e rn a l f i e ld Bo f ro m th e o u tp u t s i g n a l V , ,~ : s e c o n d - h a r m o n i c p r i n c ip l e p u l se -p o s i t i o n p r i n c ip l e p u l se -h e ig h t p r in c ip l e

    The secondJmrmonic principle i s b ased o n t h e f ac t t h a tt h e m ag n e t i za t i o n cu rv e o f t h e co re i s an u n e v en fu n c t i o n . I fan a .c . s ignal H( t ) a t f r eq u e n cy fo i s ap p l i ed t o t h e co re , i t

  • 7/30/2019 The Future of Magnetic Sensors

    12/17

    50 R.S Popovic et al. / Se,txor.~ and Actuators A 5o (1996) 39-5 5

    ~ ~ Excitationcoll

    l P , o , ,o c o i ,Excllalion :oli PickupcollaxFig . 13. (a) A do ub le-co re f l uxgate cons is ting o f tw o co-cs wrapped wi ththe exc i ta t io n co i l s i n opp os ing d i rect ions . The sum o f the two f ie lds B~ . ',ndB2 caused by I== s ze ro i f the t wo cores are per fec t l y matched. Thus thef l u x s e e n b y t h e p i c k u p c o i l t h a t s u r ro u n d s th e t wo c o re s s d u e o n l y t o a ne x t e rn a l f i e ld . ( b ) Th e e x c i l a t i o n a n d p i c k u p c o i l a re o n h o g o n a l t o e ac hother and hence the f lux produced by the exc i ta t ion current w i l l no t be scanb y t h e p i c k u p o il .

    c a n b e s h o w n t h a t t h e vo l t a ge V , d c o n t a in s o n l y o d d h a r -m o n i c s o f fo . Ho w ev er , i f t h e ap p l i ed m ag n e t i c s i g n a l co n t a in sad .c . co m p o n e n t ( i . e . , d u e t o t h e ex t e rn a l f ie l d Bo ) t h en ev en -h a r m o n i c c o m p o n e n t s a r e i n t r o d u c e d a n d t h e a m p l i tu d e o ft h e seco n d h arm o n ic a t a f r eq u e n cy 2 fo i s p ro p o r t io n a l t o t h eam pl i tu de of the f ie ld Bo. The s ignal V,, ,~ s then pro cess ed toex t r ac t t h i s seco n d h arm o n ic an d r ec t i fy i t t o o b t a in a d . c .s i g n a l p ro p o r t i o n a l t o B0 . Th ere a r e tw o m ean s o f r em o v in gth e p a ras i t ic c o m p o n en t Vp ~ d u e t o t h e ex c i t a t io n so u rce a tthe f re que ncy fo . On e i s to f i l ter V, ,d elect r ical ly ; the o ther i st o f i l te r th e s i g n a l m ag n e t i ca l l y b y d es ig n in g t h e sen so r su chth a t t h e p a ras i ti c t e rm i s can ce l l ed . Th i s can b e ach i ev e d i ns e v e r al w a y s , t w o o f w h i c h a r e u s i n g t w o c o r e s t h e m a g n e t -i za t i o n s o f wh ich can ce l (F ig . i 3 ( a ) ) , o r p l ac in g t h e p i ck u pco i l o r t h o g o n a l t o t h e ex c i t a t i o n co i l (F ig . 1 3 (b ) ) . I n eachcase t h e o n ly f l u x ch an g e seen b y t h e p i ck u p co il i s th a t cau sedb y t h e g a t ed ex t e rn a l f i el d . By e l im in a t i n g t h e co m p o n e n t a tfo t h e e f fo r t r eq u i r ed t o ex t r ac t t h e u se fu l seco n d h a rm o n ic i sco n s id e rab ly r ed u ced . Go o d o p era t i o n o f a d o u b l e -co ref l u x g a t e r eq u i res t h a t t h e two co res b e p e r f ec t l y m atch ed ( i. e. ,t h e i r m a g n e t i c ch arac t e r i s t ic s an d g eo m et ry ) wh ich i s n o t aneasy task . S im i lar ly for the or lhog .~nal f luxgate, whe re i f thetwo co i l s a r c n o t p e r f ec t l y o n h o g o n a l t o each o th e r a co n t ri -b u t i o n f ro m Vt,~ w i l l appea r in Vi ,d-The pulse-position principle i s b ased o n t h e ch an g e i n t h ep u l se p o s i t i o n o f t h e v o l t ag e i n t h e p i ck u p co i l , wh ere t h i sch an g e i n p o s i t i o n can b e r e l a t ed t o t i l e m ag n i tu d e o f t h eex t e rn a l f i e l d Bo. Th i s a l l o ws fo r easy i n co rp o ra t i o n i n to ad ig i ta l m easu r in g sy s t em , as t h e m a g n i tu d e o f t h e f i e l d Bo i seas i l y t r an s fo rm ed i n to a p u l se -wid th -m o d u la t ed ~ ig n al .The pulse-height principle i s based on th e fact that increas-i n g Bo cau ses t h e p eak s o f ~h e p i ck u p co i l v o l t ag e t o i n c reasein o n e p o l a r i t y an d d ecrease i n t h e o th e r . Th e d i f f e r en ceb e tw een t h e n eg a