Top Banner
The Fisher-KPP Equation and other Pulled Fronts Éric Brunet Laboratoire de Physique Statistique, É.N.S., UPMC, Paris Banff 2010 Éric Brunet (Paris) FKPP Equation Banff 2010 1 / 50
239

The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Apr 03, 2019

Download

Documents

lenhu
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The Fisher-KPP Equation and other Pulled Fronts

Éric Brunet

Laboratoire de Physique Statistique, É.N.S., UPMC, Paris

Banff 2010

Éric Brunet (Paris) FKPP Equation Banff 2010 1 / 50

Page 2: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

A and B diffuse, A + B → 2A

Let h(x , t) = proportion of A around x at time tx

h1

0

In the limit of infinite concentration:

∂th = ∂2x h + h(1− h) Fisher-KPP equation

For large but finite concentration:

∂th = ∂2x h+h(1−h)+(small noise term) Stochastic Fisher-KPP equation

Éric Brunet (Paris) FKPP Equation Banff 2010 2 / 50

Page 3: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

A and B diffuse, A + B → 2A

Let h(x , t) = proportion of A around x at time tx

h1

0

In the limit of infinite concentration:

∂th = ∂2x h + h(1− h) Fisher-KPP equation

For large but finite concentration:

∂th = ∂2x h+h(1−h)+(small noise term) Stochastic Fisher-KPP equation

Éric Brunet (Paris) FKPP Equation Banff 2010 2 / 50

Page 4: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

A and B diffuse, A + B → 2A

Let h(x , t) = proportion of A around x at time tx

h1

0

In the limit of infinite concentration:

∂th = ∂2x h + h(1− h) Fisher-KPP equation

For large but finite concentration:

∂th = ∂2x h+h(1−h)+(small noise term) Stochastic Fisher-KPP equation

Éric Brunet (Paris) FKPP Equation Banff 2010 2 / 50

Page 5: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

A and B diffuse, A + B → 2A

Let h(x , t) = proportion of A around x at time tx

h1

0

In the limit of infinite concentration:

∂th = ∂2x h + h(1− h) Fisher-KPP equation

For large but finite concentration:

∂th = ∂2x h+h(1−h)+(small noise term) Stochastic Fisher-KPP equation

Éric Brunet (Paris) FKPP Equation Banff 2010 2 / 50

Page 6: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

A and B diffuse, A + B → 2A

Let h(x , t) = proportion of A around x at time tx

h1

0

In the limit of infinite concentration:

∂th = ∂2x h + h(1− h) Fisher-KPP equation

For large but finite concentration:

∂th = ∂2x h+h(1−h)+(small noise term) Stochastic Fisher-KPP equation

Éric Brunet (Paris) FKPP Equation Banff 2010 2 / 50

Page 7: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Before starting...

I am a physicist

There won’t be any rigorous proofbut only. . .

Heuristics Arguments Ideas Hand-wavingConjectures Theories Plausible explanations Intuitions

Diffusive processes∂tρ+ div j = 0, j = −Dgrad ρ =⇒ ∂tρ = D∆ρ; 〈x2〉 = 2Dt

The mathematician’s convention〈x2〉 = t

The physicist’s conventionD = 1

Éric Brunet (Paris) FKPP Equation Banff 2010 3 / 50

Page 8: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Before starting...

I am a physicist

There won’t be any rigorous proofbut only. . .

Heuristics Arguments Ideas Hand-wavingConjectures Theories Plausible explanations IntuitionsDiffusive processes∂tρ+ div j = 0, j = −Dgrad ρ =⇒ ∂tρ = D∆ρ; 〈x2〉 = 2Dt

The mathematician’s convention〈x2〉 = t

The physicist’s conventionD = 1

Éric Brunet (Paris) FKPP Equation Banff 2010 3 / 50

Page 9: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Before starting...

I am a physicist

There won’t be any rigorous proofbut only. . .

Heuristics Arguments Ideas Hand-wavingConjectures Theories Plausible explanations IntuitionsDiffusive processes∂tρ+ div j = 0, j = −Dgrad ρ =⇒ ∂tρ = D∆ρ; 〈x2〉 = 2Dt

The mathematician’s convention〈x2〉 = t

The physicist’s conventionD = 1

Éric Brunet (Paris) FKPP Equation Banff 2010 3 / 50

Page 10: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Outline1 Deterministic Fronts

x

h1

0

∂th = ∂2x h + h(1− h)

h(x , t + 1) = min[

1, 2∫ 1

0dε h(x − ε, t)

]. . .

2 Stochastic Fronts

x

h1

0

∂th = ∂2x h + h(1− h) + (small noise term)

h(x , t + 1) = min[

1, 2∫ 1

0dε h(x − ε, t) + · · ·

]. . .

3 Fronts and Branching Brownian Motion

Éric Brunet (Paris) FKPP Equation Banff 2010 4 / 50

Page 11: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Outline1 Deterministic Fronts

x

h1

0

∂th = ∂2x h + h(1− h)

h(x , t + 1) = min[

1, 2∫ 1

0dε h(x − ε, t)

]. . .

2 Stochastic Fronts

x

h1

0

∂th = ∂2x h + h(1− h) + (small noise term)

h(x , t + 1) = min[

1, 2∫ 1

0dε h(x − ε, t) + · · ·

]. . .

3 Fronts and Branching Brownian Motion

Éric Brunet (Paris) FKPP Equation Banff 2010 4 / 50

Page 12: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Outline1 Deterministic Fronts

x

h1

0

∂th = ∂2x h + h(1− h)

h(x , t + 1) = min[

1, 2∫ 1

0dε h(x − ε, t)

]. . .

2 Stochastic Fronts

x

h1

0

∂th = ∂2x h + h(1− h) + (small noise term)

h(x , t + 1) = min[

1, 2∫ 1

0dε h(x − ε, t) + · · ·

]. . .

3 Fronts and Branching Brownian Motion

Éric Brunet (Paris) FKPP Equation Banff 2010 4 / 50

Page 13: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Deterministic fronts

∂th = ∂2x h + h − h2

h(x , t) = 0 is an unstable solution

h(x , t) = 1 is an stable solution

what if h(x , 0) =

(0

1

0

)?

t = 0

1050-5

1

0.8

0.6

0.4

0.2

0

t = 20t = 10t = 5

454035302520151050-5

1

0.8

0.6

0.4

0.2

0

Éric Brunet (Paris) FKPP Equation Banff 2010 5 / 50

Page 14: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Deterministic fronts

∂th = ∂2x h + h − h2

h(x , t) = 0 is an unstable solution

h(x , t) = 1 is an stable solution

what if h(x , 0) =

(0

1

0

)?

t = 0

1050-5

1

0.8

0.6

0.4

0.2

0

t = 20t = 10t = 5

454035302520151050-5

1

0.8

0.6

0.4

0.2

0

Éric Brunet (Paris) FKPP Equation Banff 2010 5 / 50

Page 15: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Deterministic fronts

∂th = ∂2x h + h − h2

h(x , t) = 0 is an unstable solution

h(x , t) = 1 is an stable solution

what if h(x , 0) =

(0

1

0

)?

t = 0

1050-5

1

0.8

0.6

0.4

0.2

0

t = 1

1050-5

1

0.8

0.6

0.4

0.2

0

t = 20t = 10t = 5

454035302520151050-5

1

0.8

0.6

0.4

0.2

0

Éric Brunet (Paris) FKPP Equation Banff 2010 5 / 50

Page 16: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Deterministic fronts

∂th = ∂2x h + h − h2

h(x , t) = 0 is an unstable solution

h(x , t) = 1 is an stable solution

what if h(x , 0) =

(0

1

0

)?

t = 0

1050-5

1

0.8

0.6

0.4

0.2

0

t = 1

1050-5

1

0.8

0.6

0.4

0.2

0

t = 2

1050-5

1

0.8

0.6

0.4

0.2

0

t = 20t = 10t = 5

454035302520151050-5

1

0.8

0.6

0.4

0.2

0

Éric Brunet (Paris) FKPP Equation Banff 2010 5 / 50

Page 17: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Deterministic fronts

∂th = ∂2x h + h − h2

h(x , t) = 0 is an unstable solution

h(x , t) = 1 is an stable solution

what if h(x , 0) =

(0

1

0

)?

t = 0

1050-5

1

0.8

0.6

0.4

0.2

0

t = 1

1050-5

1

0.8

0.6

0.4

0.2

0

t = 2

1050-5

1

0.8

0.6

0.4

0.2

0

t = 5

454035302520151050-5

1

0.8

0.6

0.4

0.2

0

t = 20t = 10t = 5

454035302520151050-5

1

0.8

0.6

0.4

0.2

0

Éric Brunet (Paris) FKPP Equation Banff 2010 5 / 50

Page 18: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Deterministic fronts

∂th = ∂2x h + h − h2

h(x , t) = 0 is an unstable solution

h(x , t) = 1 is an stable solution

what if h(x , 0) =

(0

1

0

)?

t = 0

1050-5

1

0.8

0.6

0.4

0.2

0

t = 1

1050-5

1

0.8

0.6

0.4

0.2

0

t = 2

1050-5

1

0.8

0.6

0.4

0.2

0

t = 10t = 5

454035302520151050-5

1

0.8

0.6

0.4

0.2

0

t = 20t = 10t = 5

454035302520151050-5

1

0.8

0.6

0.4

0.2

0

Éric Brunet (Paris) FKPP Equation Banff 2010 5 / 50

Page 19: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Deterministic fronts

∂th = ∂2x h + h − h2

h(x , t) = 0 is an unstable solution

h(x , t) = 1 is an stable solution

what if h(x , 0) =

(0

1

0

)?

t = 0

1050-5

1

0.8

0.6

0.4

0.2

0

t = 1

1050-5

1

0.8

0.6

0.4

0.2

0

t = 2

1050-5

1

0.8

0.6

0.4

0.2

0

t = 20t = 10t = 5

454035302520151050-5

1

0.8

0.6

0.4

0.2

0

Éric Brunet (Paris) FKPP Equation Banff 2010 5 / 50

Page 20: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

QuestionsIf h(x , 0) =

(0

1

0

),

or if h(x , 0) =

(0

1

0

)

h(Xt + z , t) −−−→t→∞

f2(z)

withXt = (position of the front)

h(Xt , t) = 1/2 h(Xt , t) = 10−10 Xt = −∫

dx x∂xh(x , t)

f2(z) =

( )= (final shape of the front)

What is Xt ? What is f2(z) ?Answer:

Xt = 2t − 32 ln t + a0 − 3√π√

t+

a1t +

a3/2t3/2 + · · · for large t

Éric Brunet (Paris) FKPP Equation Banff 2010 6 / 50

Page 21: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

QuestionsIf h(x , 0) =

(0

1

0

),

or if h(x , 0) =

(0

1

0

)

h(Xt + z , t) −−−→t→∞

f2(z)

withXt = (position of the front)

h(Xt , t) = 1/2

h(Xt , t) = 10−10 Xt = −∫

dx x∂xh(x , t)

f2(z) =

( )= (final shape of the front)

What is Xt ? What is f2(z) ?Answer:

Xt = 2t − 32 ln t + a0 − 3√π√

t+

a1t +

a3/2t3/2 + · · · for large t

Éric Brunet (Paris) FKPP Equation Banff 2010 6 / 50

Page 22: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

QuestionsIf h(x , 0) =

(0

1

0

),

or if h(x , 0) =

(0

1

0

)

h(Xt + z , t) −−−→t→∞

f2(z)

withXt = (position of the front)

h(Xt , t) = 1/2 h(Xt , t) = 10−10

Xt = −∫

dx x∂xh(x , t)

f2(z) =

( )= (final shape of the front)

What is Xt ? What is f2(z) ?Answer:

Xt = 2t − 32 ln t + a0 − 3√π√

t+

a1t +

a3/2t3/2 + · · · for large t

Éric Brunet (Paris) FKPP Equation Banff 2010 6 / 50

Page 23: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

QuestionsIf h(x , 0) =

(0

1

0

),

or if h(x , 0) =

(0

1

0

)

h(Xt + z , t) −−−→t→∞

f2(z)

withXt = (position of the front)

h(Xt , t) = 1/2 h(Xt , t) = 10−10 Xt = −∫

dx x∂xh(x , t)

f2(z) =

( )= (final shape of the front)

What is Xt ? What is f2(z) ?Answer:

Xt = 2t − 32 ln t + a0 − 3√π√

t+

a1t +

a3/2t3/2 + · · · for large t

Éric Brunet (Paris) FKPP Equation Banff 2010 6 / 50

Page 24: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

QuestionsIf h(x , 0) =

(0

1

0

),

or if h(x , 0) =

(0

1

0

)

h(Xt + z , t) −−−→t→∞

f2(z)

withXt = (position of the front)

h(Xt , t) = 1/2 h(Xt , t) = 10−10 Xt = −∫

dx x∂xh(x , t)

f2(z) =

( )= (final shape of the front)

What is Xt ? What is f2(z) ?Answer:

Xt = 2t − 32 ln t + a0 − 3√π√

t+

a1t +

a3/2t3/2 + · · · for large t

Éric Brunet (Paris) FKPP Equation Banff 2010 6 / 50

Page 25: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

QuestionsIf h(x , 0) =

(0

1

0

),

or if h(x , 0) =

(0

1

0

)

h(Xt + z , t) −−−→t→∞

f2(z)

withXt = (position of the front)

h(Xt , t) = 1/2 h(Xt , t) = 10−10 Xt = −∫

dx x∂xh(x , t)

f2(z) =

( )= (final shape of the front)

What is Xt ? What is f2(z) ?

Answer:

Xt = 2t − 32 ln t + a0 − 3√π√

t+

a1t +

a3/2t3/2 + · · · for large t

Éric Brunet (Paris) FKPP Equation Banff 2010 6 / 50

Page 26: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

QuestionsIf h(x , 0) =

(0

1

0

),

or if h(x , 0) =

(0

1

0

)

h(Xt + z , t) −−−→t→∞

f2(z)

withXt = (position of the front)

h(Xt , t) = 1/2 h(Xt , t) = 10−10 Xt = −∫

dx x∂xh(x , t)

f2(z) =

( )= (final shape of the front)

What is Xt ? What is f2(z) ?Answer:

Xt = 2t − 32 ln t + a0 − 3√π√

t+

a1t +

a3/2t3/2 + · · · for large t

Éric Brunet (Paris) FKPP Equation Banff 2010 6 / 50

Page 27: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

QuestionsIf h(x , 0) =

(0

1

0

), or if h(x , 0) =

(0

1

0

)h(Xt + z , t) −−−→

t→∞f2(z)

withXt = (position of the front)

h(Xt , t) = 1/2 h(Xt , t) = 10−10 Xt = −∫

dx x∂xh(x , t)

f2(z) =

( )= (final shape of the front)

What is Xt ? What is f2(z) ?Answer:

Xt = 2t − 32 ln t + a0 − 3√π√

t+

a1t +

a3/2t3/2 + · · · for large t

Éric Brunet (Paris) FKPP Equation Banff 2010 6 / 50

Page 28: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Many equations, same kind of behavior

∂th = ∂2x h + h − h2, Xt = 2t − 32 ln t + a0 − 3√π√

t+

a1t + · · ·

h(x , t + ε) = h(x , t) + ε

[h(x + s, t) + h(x − s, t)− 2h(x , t)

s2 + h − h2]

∂th = ∂2x h+h−h3, ∂th(x , t) = 2h(x−1, t)−h(x , t)−h(x−1, t)2

h(x , t + 1) = min[1, 2

∫ 1

0dy h(x − y , t)

]

Fronts propagating into an unstable stateh = 0 and h = 1 are solutionsh = 0 is unstable (growth term), h = 1 is stable (saturation term)First order equation in time, some mixing (diffusion) in space

Éric Brunet (Paris) FKPP Equation Banff 2010 7 / 50

Page 29: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Many equations, same kind of behavior

∂th = ∂2x h + h − h2, Xt = 2t − 32 ln t + a0 − 3√π√

t+

a1t + · · ·

h(x , t + ε) = h(x , t) + ε

[h(x + s, t) + h(x − s, t)− 2h(x , t)

s2 + h − h2]

∂th = ∂2x h+h−h3, ∂th(x , t) = 2h(x−1, t)−h(x , t)−h(x−1, t)2

h(x , t + 1) = min[1, 2

∫ 1

0dy h(x − y , t)

]

Fronts propagating into an unstable stateh = 0 and h = 1 are solutionsh = 0 is unstable (growth term), h = 1 is stable (saturation term)First order equation in time, some mixing (diffusion) in space

Éric Brunet (Paris) FKPP Equation Banff 2010 7 / 50

Page 30: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Many equations, same kind of behavior

∂th = ∂2x h + h − h2, Xt = 2t − 32 ln t + a0 − 3√π√

t+

a1t + · · ·

h(x , t + ε) = h(x , t) + ε

[h(x + s, t) + h(x − s, t)− 2h(x , t)

s2 + h − h2]

∂th = ∂2x h+h−h3,

∂th(x , t) = 2h(x−1, t)−h(x , t)−h(x−1, t)2

h(x , t + 1) = min[1, 2

∫ 1

0dy h(x − y , t)

]

Fronts propagating into an unstable stateh = 0 and h = 1 are solutionsh = 0 is unstable (growth term), h = 1 is stable (saturation term)First order equation in time, some mixing (diffusion) in space

Éric Brunet (Paris) FKPP Equation Banff 2010 7 / 50

Page 31: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Many equations, same kind of behavior

∂th = ∂2x h + h − h2, Xt = 2t − 32 ln t + a0 − 3√π√

t+

a1t + · · ·

h(x , t + ε) = h(x , t) + ε

[h(x + s, t) + h(x − s, t)− 2h(x , t)

s2 + h − h2]

∂th = ∂2x h+h−h3, ∂th(x , t) = 2h(x−1, t)−h(x , t)−h(x−1, t)2

h(x , t + 1) = min[1, 2

∫ 1

0dy h(x − y , t)

]

Fronts propagating into an unstable stateh = 0 and h = 1 are solutionsh = 0 is unstable (growth term), h = 1 is stable (saturation term)First order equation in time, some mixing (diffusion) in space

Éric Brunet (Paris) FKPP Equation Banff 2010 7 / 50

Page 32: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Many equations, same kind of behavior

∂th = ∂2x h + h − h2, Xt = 2t − 32 ln t + a0 − 3√π√

t+

a1t + · · ·

h(x , t + ε) = h(x , t) + ε

[h(x + s, t) + h(x − s, t)− 2h(x , t)

s2 + h − h2]

∂th = ∂2x h+h−h3, ∂th(x , t) = 2h(x−1, t)−h(x , t)−h(x−1, t)2

h(x , t + 1) = min[1, 2

∫ 1

0dy h(x − y , t)

]

Fronts propagating into an unstable stateh = 0 and h = 1 are solutionsh = 0 is unstable (growth term), h = 1 is stable (saturation term)First order equation in time, some mixing (diffusion) in space

Éric Brunet (Paris) FKPP Equation Banff 2010 7 / 50

Page 33: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Many equations, same kind of behavior

∂th = ∂2x h + h − h2, Xt = 2t − 32 ln t + a0 − 3√π√

t+

a1t + · · ·

h(x , t + ε) = h(x , t) + ε

[h(x + s, t) + h(x − s, t)− 2h(x , t)

s2 + h − h2]

∂th = ∂2x h+h−h3, ∂th(x , t) = 2h(x−1, t)−h(x , t)−h(x−1, t)2

h(x , t + 1) = min[1, 2

∫ 1

0dy h(x − y , t)

]

Fronts propagating into an unstable stateh = 0 and h = 1 are solutionsh = 0 is unstable (growth term), h = 1 is stable (saturation term)First order equation in time, some mixing (diffusion) in space

Éric Brunet (Paris) FKPP Equation Banff 2010 7 / 50

Page 34: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Many velocities

∂th = ∂2x h + h − h2

Uniformly translating front such that h(x , t) = fv (x − vt)

∂2z fv + v∂z fv + fv

///

− f 2v = 0

Look in the unstable region, where fv (z)� 1Linear equation

fv ≈ e−γz [or h ≈ e−γ(x−vt)]

. . . is solution if

γ2fv − γvfv + fv = 0

v = γ +1γ︸ ︷︷ ︸

v(γ)

γ

v

γ∗

v∗

Éric Brunet (Paris) FKPP Equation Banff 2010 8 / 50

Page 35: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Many velocities

∂th = ∂2x h + h − h2

Uniformly translating front such that h(x , t) = fv (x − vt)

∂2z fv + v∂z fv + fv

///

− f 2v = 0

Look in the unstable region, where fv (z)� 1

Linear equation

fv ≈ e−γz [or h ≈ e−γ(x−vt)]

. . . is solution if

γ2fv − γvfv + fv = 0

v = γ +1γ︸ ︷︷ ︸

v(γ)

γ

v

γ∗

v∗

Éric Brunet (Paris) FKPP Equation Banff 2010 8 / 50

Page 36: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Many velocities

∂th = ∂2x h + h − h2

Uniformly translating front such that h(x , t) = fv (x − vt)

∂2z fv + v∂z fv + fv///− f 2v = 0

Look in the unstable region, where fv (z)� 1

Linear equation

fv ≈ e−γz [or h ≈ e−γ(x−vt)]

. . . is solution if

γ2fv − γvfv + fv = 0

v = γ +1γ︸ ︷︷ ︸

v(γ)

γ

v

γ∗

v∗

Éric Brunet (Paris) FKPP Equation Banff 2010 8 / 50

Page 37: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Many velocities

∂th = ∂2x h + h − h2

Uniformly translating front such that h(x , t) = fv (x − vt)

∂2z fv + v∂z fv + fv///− f 2v = 0

Look in the unstable region, where fv (z)� 1Linear equation

fv ≈ e−γz [or h ≈ e−γ(x−vt)]

. . . is solution if

γ2fv − γvfv + fv = 0

v = γ +1γ︸ ︷︷ ︸

v(γ)

γ

v

γ∗

v∗

Éric Brunet (Paris) FKPP Equation Banff 2010 8 / 50

Page 38: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Many velocities

∂th = ∂2x h + h − h2

Uniformly translating front such that h(x , t) = fv (x − vt)

∂2z fv + v∂z fv + fv///− f 2v = 0

Look in the unstable region, where fv (z)� 1Linear equation

fv ≈ e−γz [or h ≈ e−γ(x−vt)]

. . . is solution if

γ2fv − γvfv + fv = 0

v = γ +1γ︸ ︷︷ ︸

v(γ)

γ

v

γ∗

v∗

Éric Brunet (Paris) FKPP Equation Banff 2010 8 / 50

Page 39: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Many velocities

∂th = ∂2x h + h − h2

Uniformly translating front such that h(x , t) = fv (x − vt)

∂2z fv + v∂z fv + fv///− f 2v = 0

Look in the unstable region, where fv (z)� 1Linear equation

fv ≈ e−γz [or h ≈ e−γ(x−vt)]

. . . is solution if

γ2fv − γvfv + fv = 0

v = γ +1γ︸ ︷︷ ︸

v(γ)

γ

v

γ∗

v∗

Éric Brunet (Paris) FKPP Equation Banff 2010 8 / 50

Page 40: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Many velocitiesh(x , t) = fv (x − vt)� 1, linear equation, fv (z) ≈ e−γz or h ≈ e−γ(x−vt)

∂th = ∂2x h + h − h2 =⇒ γvh = γ2h + h =⇒ v(γ) = γ +1γ

h(x , t + 1) = min[1, 2∫ 1

0dε h(x − ε, t)

]=⇒ eγv h = 2

∫ 1

0dε eγεh =⇒ v(γ) =

1γln[2∫ 1

0dε eγε

]

fv ≈ A1e−γ1z + A2e−γ2z v > v ∗

x

h1

0

fv ≈ (Az + B)e−γ∗z v = v ∗

x

h1

0

fv ≈ A sin(γIz + φ)e−γRz v < v ∗

x

h1

0

Fronts with v < v∗ are unstable

Éric Brunet (Paris) FKPP Equation Banff 2010 9 / 50

Page 41: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Many velocitiesh(x , t) = fv (x − vt)� 1, linear equation, fv (z) ≈ e−γz or h ≈ e−γ(x−vt)

∂th = ∂2x h + h − h2 =⇒ γvh = γ2h + h =⇒ v(γ) = γ +1γ

h(x , t + 1) = min[1, 2∫ 1

0dε h(x − ε, t)

]=⇒ eγv h = 2

∫ 1

0dε eγεh =⇒ v(γ) =

1γln[2∫ 1

0dε eγε

]

γ

v

γ∗

v∗

fv ≈ A1e−γ1z + A2e−γ2z v > v ∗

x

h1

0

fv ≈ (Az + B)e−γ∗z v = v ∗

x

h1

0

fv ≈ A sin(γIz + φ)e−γRz v < v ∗

x

h1

0

Fronts with v < v∗ are unstable

Éric Brunet (Paris) FKPP Equation Banff 2010 9 / 50

Page 42: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Many velocitiesh(x , t) = fv (x − vt)� 1, linear equation, fv (z) ≈ e−γz or h ≈ e−γ(x−vt)

∂th = ∂2x h + h − h2 =⇒ γvh = γ2h + h =⇒ v(γ) = γ +1γ

h(x , t + 1) = min[1, 2∫ 1

0dε h(x − ε, t)

]=⇒ eγv h = 2

∫ 1

0dε eγεh =⇒ v(γ) =

1γln[2∫ 1

0dε eγε

]

γ

v

γ2γ∗γ1

vv∗

fv ≈ A1e−γ1z + A2e−γ2z v > v ∗

x

h1

0

fv ≈ (Az + B)e−γ∗z v = v ∗

x

h1

0

fv ≈ A sin(γIz + φ)e−γRz v < v ∗

x

h1

0

Fronts with v < v∗ are unstable

Éric Brunet (Paris) FKPP Equation Banff 2010 9 / 50

Page 43: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Many velocitiesh(x , t) = fv (x − vt)� 1, linear equation, fv (z) ≈ e−γz or h ≈ e−γ(x−vt)

∂th = ∂2x h + h − h2 =⇒ γvh = γ2h + h =⇒ v(γ) = γ +1γ

h(x , t + 1) = min[1, 2∫ 1

0dε h(x − ε, t)

]=⇒ eγv h = 2

∫ 1

0dε eγεh =⇒ v(γ) =

1γln[2∫ 1

0dε eγε

]

γ

v

γ∗

v∗

fv ≈ A1e−γ1z + A2e−γ2z v > v ∗

x

h1

0

fv ≈ (Az + B)e−γ∗z v = v ∗

x

h1

0

fv ≈ A sin(γIz + φ)e−γRz v < v ∗

x

h1

0

Fronts with v < v∗ are unstable

Éric Brunet (Paris) FKPP Equation Banff 2010 9 / 50

Page 44: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Many velocitiesh(x , t) = fv (x − vt)� 1, linear equation, fv (z) ≈ e−γz or h ≈ e−γ(x−vt)

∂th = ∂2x h + h − h2 =⇒ γvh = γ2h + h =⇒ v(γ) = γ +1γ

h(x , t + 1) = min[1, 2∫ 1

0dε h(x − ε, t)

]=⇒ eγv h = 2

∫ 1

0dε eγεh =⇒ v(γ) =

1γln[2∫ 1

0dε eγε

]

γ

v

γ∗

v∗v

fv ≈ A1e−γ1z + A2e−γ2z v > v ∗

x

h1

0

fv ≈ (Az + B)e−γ∗z v = v ∗

x

h1

0

fv ≈ A sin(γIz + φ)e−γRz v < v ∗

x

h1

0

Fronts with v < v∗ are unstable

Éric Brunet (Paris) FKPP Equation Banff 2010 9 / 50

Page 45: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Many velocitiesh(x , t) = fv (x − vt)� 1, linear equation, fv (z) ≈ e−γz or h ≈ e−γ(x−vt)

∂th = ∂2x h + h − h2 =⇒ γvh = γ2h + h =⇒ v(γ) = γ +1γ

h(x , t + 1) = min[1, 2∫ 1

0dε h(x − ε, t)

]=⇒ eγv h = 2

∫ 1

0dε eγεh =⇒ v(γ) =

1γln[2∫ 1

0dε eγε

]

γ

v

γ∗

v∗

fv ≈ A1e−γ1z + A2e−γ2z v > v ∗

x

h1

0

fv ≈ (Az + B)e−γ∗z v = v ∗

x

h1

0

fv ≈ A sin(γIz + φ)e−γRz v < v ∗

x

h1

0

Fronts with v < v∗ are unstable

Éric Brunet (Paris) FKPP Equation Banff 2010 9 / 50

Page 46: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Linear perturbation

∂th = ∂2x h + h///− h2, h(x , 0) =

(1

00

)

h(x , t) =ε√4πt

exp[− x2

4t + t]

At a position x = vt + y

h(vt + y , t) =ε√4πt

exp[(

1− v2

4

)t − vy

2 −y2

4t

]

A linear perturbation movesat velocity v = v∗ (= 2)

h(2t + y , t) =ε√4πt

exp[− y − y2

4t

]At a position x = 2t − 1

2 ln t + z

h(2t − 12 ln t + z) = ε

1√4π

//

texp

[− z +

///

12 ln t − z2

4t + · · ·]

Éric Brunet (Paris) FKPP Equation Banff 2010 10 / 50

Page 47: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Linear perturbation

∂th = ∂2x h + h///− h2, h(x , 0) =

(1

00

)

h(x , t) =ε√4πt

exp[− x2

4t + t]

At a position x = vt + y

h(vt + y , t) =ε√4πt

exp[(

1− v2

4

)t − vy

2 −y2

4t

]

A linear perturbation movesat velocity v = v∗ (= 2)

h(2t + y , t) =ε√4πt

exp[− y − y2

4t

]At a position x = 2t − 1

2 ln t + z

h(2t − 12 ln t + z) = ε

1√4π

//

texp

[− z +

///

12 ln t − z2

4t + · · ·]

Éric Brunet (Paris) FKPP Equation Banff 2010 10 / 50

Page 48: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Linear perturbation

∂th = ∂2x h + h///− h2, h(x , 0) =

(1

00

)

h(x , t) =ε√4πt

exp[− x2

4t + t]

At a position x = vt + y

h(vt + y , t) =ε√4πt

exp[(

1− v2

4

)t − vy

2 −y2

4t

]

A linear perturbation movesat velocity v = v∗ (= 2)

h(2t + y , t) =ε√4πt

exp[− y − y2

4t

]At a position x = 2t − 1

2 ln t + z

h(2t − 12 ln t + z) = ε

1√4π

//

texp

[− z +

///

12 ln t − z2

4t + · · ·]

Éric Brunet (Paris) FKPP Equation Banff 2010 10 / 50

Page 49: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Linear perturbation

∂th = ∂2x h + h///− h2, h(x , 0) =

(1

00

)

h(x , t) =ε√4πt

exp[− x2

4t + t]

At a position x = vt + y

h(vt + y , t) =ε√4πt

exp[(

1− v2

4

)t − vy

2 −y2

4t

]

A linear perturbation movesat velocity v = v∗ (= 2)

h(2t + y , t) =ε√4πt

exp[− y − y2

4t

]

At a position x = 2t − 12 ln t + z

h(2t − 12 ln t + z) = ε

1√4π

//

texp

[− z +

///

12 ln t − z2

4t + · · ·]

Éric Brunet (Paris) FKPP Equation Banff 2010 10 / 50

Page 50: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Linear perturbation

∂th = ∂2x h + h///− h2, h(x , 0) =

(1

00

)

h(x , t) =ε√4πt

exp[− x2

4t + t]

At a position x = vt + y

h(vt + y , t) =ε√4πt

exp[(

1− v2

4

)t − vy

2 −y2

4t

]

A linear perturbation movesat velocity v = v∗ (= 2)

h(2t + y , t) =ε√4πt

exp[− y − y2

4t

]At a position x = 2t − 1

2 ln t + z

h(2t − 12 ln t + z) = ε

1√4π

//

texp

[− z +

///

12 ln t − z2

4t + · · ·]

Éric Brunet (Paris) FKPP Equation Banff 2010 10 / 50

Page 51: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Linear perturbation

∂th = ∂2x h + h///− h2, h(x , 0) =

(1

00

)

h(x , t) =ε√4πt

exp[− x2

4t + t]

At a position x = vt + y

h(vt + y , t) =ε√4πt

exp[(

1− v2

4

)t − vy

2 −y2

4t

]

A linear perturbation movesat velocity v = v∗ (= 2)

h(2t + y , t) =ε√4πt

exp[− y − y2

4t

]At a position x = 2t − 1

2 ln t + z

h(2t − 12 ln t + z) = ε

1√4π//t

exp[− z +

///12 ln t − z2

4t + · · ·]

Éric Brunet (Paris) FKPP Equation Banff 2010 10 / 50

Page 52: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Shape and velocity∂th = ∂2x h + h

///− h2,

For v > v∗, fv ≈ A1e−γ1z + A2e−γ2z

+A11e−2γ1z + A12e−(γ1+γ2)z + A22e−2γ2z + · · ·

A fast front decays slowly in spaceA slow front decays quickly in space

γ

v

γ2γ∗γ1

vv∗

What is ahead wins If h(x , 0) ∼ e−γx with γ ≤ γ∗, then v = v(γ)If h(x , 0)� e−γ∗x then v = v∗.

Éric Brunet (Paris) FKPP Equation Banff 2010 11 / 50

Page 53: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Shape and velocity∂th = ∂2x h + h

///

− h2,

For v > v∗, fv ≈ A1e−γ1z + A2e−γ2z +A11e−2γ1z + A12e−(γ1+γ2)z + A22e−2γ2z + · · ·

A fast front decays slowly in spaceA slow front decays quickly in space

γ

v

γ2γ∗γ1

vv∗

What is ahead wins If h(x , 0) ∼ e−γx with γ ≤ γ∗, then v = v(γ)If h(x , 0)� e−γ∗x then v = v∗.

Éric Brunet (Paris) FKPP Equation Banff 2010 11 / 50

Page 54: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Shape and velocity∂th = ∂2x h + h

///

− h2,

For v > v∗, fv ≈ A1e−γ1z + · · ·

+ A2e−γ2z +A11e−2γ1z + A12e−(γ1+γ2)z + A22e−2γ2z + · · ·

A fast front decays slowly in spaceA slow front decays quickly in space

γ

v

γ2γ∗γ1

vv∗

What is ahead wins If h(x , 0) ∼ e−γx with γ ≤ γ∗, then v = v(γ)If h(x , 0)� e−γ∗x then v = v∗.

Éric Brunet (Paris) FKPP Equation Banff 2010 11 / 50

Page 55: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Shape and velocity∂th = ∂2x h + h

///

− h2,

For v > v∗, fv ≈ A1e−γ1z + · · ·

+ A2e−γ2z +A11e−2γ1z + A12e−(γ1+γ2)z + A22e−2γ2z + · · ·

A fast front decays slowly in spaceA slow front decays quickly in space γ

v

γ2γ∗γ1

vv∗

What is ahead wins If h(x , 0) ∼ e−γx with γ ≤ γ∗, then v = v(γ)If h(x , 0)� e−γ∗x then v = v∗.

Éric Brunet (Paris) FKPP Equation Banff 2010 11 / 50

Page 56: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Shape and velocity∂th = ∂2x h + h

///

− h2,

For v > v∗, fv ≈ A1e−γ1z + · · ·

+ A2e−γ2z +A11e−2γ1z + A12e−(γ1+γ2)z + A22e−2γ2z + · · ·

A fast front decays slowly in spaceA slow front decays quickly in space γ

v

γ2γ∗γ1

vv∗

hlog

x

What is ahead wins If h(x , 0) ∼ e−γx with γ ≤ γ∗, then v = v(γ)If h(x , 0)� e−γ∗x then v = v∗.

Éric Brunet (Paris) FKPP Equation Banff 2010 11 / 50

Page 57: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Shape and velocity∂th = ∂2x h + h

///

− h2,

For v > v∗, fv ≈ A1e−γ1z + · · ·

+ A2e−γ2z +A11e−2γ1z + A12e−(γ1+γ2)z + A22e−2γ2z + · · ·

A fast front decays slowly in spaceA slow front decays quickly in space γ

v

γ2γ∗γ1

vv∗

hlog

x

What is ahead wins If h(x , 0) ∼ e−γx with γ ≤ γ∗, then v = v(γ)If h(x , 0)� e−γ∗x then v = v∗.

Éric Brunet (Paris) FKPP Equation Banff 2010 11 / 50

Page 58: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Shape and velocity∂th = ∂2x h + h

///

− h2,

For v > v∗, fv ≈ A1e−γ1z + · · ·

+ A2e−γ2z +A11e−2γ1z + A12e−(γ1+γ2)z + A22e−2γ2z + · · ·

A fast front decays slowly in spaceA slow front decays quickly in space γ

v

γ2γ∗γ1

vv∗

hlog

x

hlog

x

What is ahead wins If h(x , 0) ∼ e−γx with γ ≤ γ∗, then v = v(γ)If h(x , 0)� e−γ∗x then v = v∗.

Éric Brunet (Paris) FKPP Equation Banff 2010 11 / 50

Page 59: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Shape and velocity∂th = ∂2x h + h

///

− h2,

For v > v∗, fv ≈ A1e−γ1z + · · ·

+ A2e−γ2z +A11e−2γ1z + A12e−(γ1+γ2)z + A22e−2γ2z + · · ·

A fast front decays slowly in spaceA slow front decays quickly in space γ

v

γ2γ∗γ1

vv∗

hlog

x

hlog

x

What is ahead wins If h(x , 0) ∼ e−γx with γ ≤ γ∗, then v = v(γ)If h(x , 0)� e−γ∗x then v = v∗.

Éric Brunet (Paris) FKPP Equation Banff 2010 11 / 50

Page 60: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Shape and velocity∂th = ∂2x h + h

///

− h2,

For v > v∗, fv ≈ A1e−γ1z + · · ·

+ A2e−γ2z +A11e−2γ1z + A12e−(γ1+γ2)z + A22e−2γ2z + · · ·

A fast front decays slowly in spaceA slow front decays quickly in space γ

v

γ2γ∗γ1

vv∗

hlog

x

hlog

x

What is ahead wins

If h(x , 0) ∼ e−γx with γ ≤ γ∗, then v = v(γ)If h(x , 0)� e−γ∗x then v = v∗.

Éric Brunet (Paris) FKPP Equation Banff 2010 11 / 50

Page 61: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Shape and velocity∂th = ∂2x h + h

///

− h2,

For v > v∗, fv ≈ A1e−γ1z + · · ·

+ A2e−γ2z +A11e−2γ1z + A12e−(γ1+γ2)z + A22e−2γ2z + · · ·

A fast front decays slowly in spaceA slow front decays quickly in space γ

v

γ2γ∗γ1

vv∗

hlog

x

hlog

x

What is ahead wins If h(x , 0) ∼ e−γx with γ ≤ γ∗, then v = v(γ)If h(x , 0)� e−γ∗x then v = v∗.

Éric Brunet (Paris) FKPP Equation Banff 2010 11 / 50

Page 62: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

When it does not work — pushed frontsFor v > v∗ and z large

fv ≈ A1e−γ1z + A2e−γ2z + A11e−2γ1z + · · ·≈ A1e−γ1z

A fast front decays slowly in spaceA slow front decays quickly in space

γ

v

γ2γ∗γ1

vv∗

What if A1 < 0 ?

x

h1

0

A1 depends on v

A1 > 0

A1 < 0

γ

v

γc2γ∗γc

1

v c

v∗v = v(γ) if

{h(x , 0) ∼ e−γx

with γ ≤ γc1

v = v c if h(x , 0)� e−γc1x

Éric Brunet (Paris) FKPP Equation Banff 2010 12 / 50

Page 63: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

When it does not work — pushed frontsFor v > v∗ and z large

fv ≈ A1e−γ1z + A2e−γ2z + A11e−2γ1z + · · ·≈ A1e−γ1z

A fast front decays slowly in spaceA slow front decays quickly in space

γ

v

γ2γ∗γ1

vv∗

What if A1 < 0 ?

x

h1

0

A1 depends on v

A1 > 0

A1 < 0

γ

v

γc2γ∗γc

1

v c

v∗v = v(γ) if

{h(x , 0) ∼ e−γx

with γ ≤ γc1

v = v c if h(x , 0)� e−γc1x

Éric Brunet (Paris) FKPP Equation Banff 2010 12 / 50

Page 64: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

When it does not work — pushed frontsFor v > v∗ and z large

fv ≈ A1e−γ1z + A2e−γ2z + A11e−2γ1z + · · ·≈ A1e−γ1z

A fast front decays slowly in spaceA slow front decays quickly in space

γ

v

γ2γ∗γ1

vv∗

What if A1 < 0 ?

x

h1

0

A1 depends on v

A1 > 0

A1 < 0

γ

v

γc2γ∗γc

1

v c

v∗v = v(γ) if

{h(x , 0) ∼ e−γx

with γ ≤ γc1

v = v c if h(x , 0)� e−γc1x

Éric Brunet (Paris) FKPP Equation Banff 2010 12 / 50

Page 65: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

When it does not work — pushed frontsFor v > v∗ and z large

fv ≈ A1e−γ1z + A2e−γ2z + A11e−2γ1z + · · ·≈ A1e−γ1z

A fast front decays slowly in spaceA slow front decays quickly in space

γ

v

γ2γ∗γ1

vv∗

What if A1 < 0 ?

x

h1

0

A1 depends on v

A1 > 0

A1 < 0

γ

v

γc2γ∗γc

1

v c

v∗v = v(γ) if

{h(x , 0) ∼ e−γx

with γ ≤ γc1

v = v c if h(x , 0)� e−γc1x

Éric Brunet (Paris) FKPP Equation Banff 2010 12 / 50

Page 66: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

When it does not work — pushed frontsFor v > v∗ and z large

fv ≈ A1e−γ1z + A2e−γ2z + A11e−2γ1z + · · ·≈ A1e−γ1z

A fast front decays slowly in spaceA slow front decays quickly in space

γ

v

γ2γ∗γ1

vv∗

What if A1 < 0 ?

x

h1

0

A1 depends on v

A1 > 0

A1 < 0

γ

v

γc2γ∗γc

1

v c

v∗

v = v(γ) if{

h(x , 0) ∼ e−γx

with γ ≤ γc1

v = v c if h(x , 0)� e−γc1x

Éric Brunet (Paris) FKPP Equation Banff 2010 12 / 50

Page 67: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

When it does not work — pushed frontsFor v > v∗ and z large

fv ≈ A1e−γ1z + A2e−γ2z + A11e−2γ1z + · · ·≈ A1e−γ1z

A fast front decays slowly in spaceA slow front decays quickly in space

γ

v

γ2γ∗γ1

vv∗

What if A1 < 0 ?

x

h1

0

A1 depends on v

A1 > 0

A1 < 0

γ

v

γc2γ∗γc

1

v c

v∗v = v(γ) if

{h(x , 0) ∼ e−γx

with γ ≤ γc1

v = v c if h(x , 0)� e−γc1x

Éric Brunet (Paris) FKPP Equation Banff 2010 12 / 50

Page 68: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

SummaryPulled fronts propagating into an unstable state

x

h1

0

v < v∗, unstable

x

h1

0

v ≥ v∗, stable

Pushed fronts propagating into an unstable state

x

h1

0

v < v∗, unstablex

h1

0

v∗ ≤ v < v c , unstablex

h1

0

v ≥ v c , stable

An initial condition decaying fast enough leads to the slowest stable frontA pulled front goes at the same speed as a linear perturbationA pushed front goes faster than a linear perturbationA front can be pushed only if the non-linearities increase the growth rate

Éric Brunet (Paris) FKPP Equation Banff 2010 13 / 50

Page 69: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

An example

∂th = ∂2x h + (h − h2)(1 + αh)

h = 0 unstable, h = 1 stable, v(γ) = γ + 1γ

, γ∗ = 1 and v∗ = 2γ

v

γ2γ∗γ1

vv∗

We look for uniformly translating solutions h(x , t) = fv (x − vt)The solution is known for one value of v :

For γ =

√α

2 and v = γ +1γ

fv (z) =12

[1− tanh γz

2

]

But fv (z) = e−γz − e−2γz + e−3γz − · · ·instead of fv (z) = A1e−γ1z + A2e−γ2z + · · ·

Either γ1 or γ2 is missing (A1 = 0 or A2 = 0)If α > 2, then γ = γ2, and A1 = 0, and the front is pushed with

vc =

√α

2 +

√2α

Éric Brunet (Paris) FKPP Equation Banff 2010 14 / 50

Page 70: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

An example

∂th = ∂2x h + (h − h2)(1 + αh)

h = 0 unstable, h = 1 stable, v(γ) = γ + 1γ

, γ∗ = 1 and v∗ = 2γ

v

γ2γ∗γ1

vv∗

We look for uniformly translating solutions h(x , t) = fv (x − vt)The solution is known for one value of v :

For γ =

√α

2 and v = γ +1γ

fv (z) =12

[1− tanh γz

2

]

But fv (z) = e−γz − e−2γz + e−3γz − · · ·instead of fv (z) = A1e−γ1z + A2e−γ2z + · · ·

Either γ1 or γ2 is missing (A1 = 0 or A2 = 0)If α > 2, then γ = γ2, and A1 = 0, and the front is pushed with

vc =

√α

2 +

√2α

Éric Brunet (Paris) FKPP Equation Banff 2010 14 / 50

Page 71: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

An example

∂th = ∂2x h + (h − h2)(1 + αh)

h = 0 unstable, h = 1 stable, v(γ) = γ + 1γ

, γ∗ = 1 and v∗ = 2γ

v

γ2γ∗γ1

vv∗

We look for uniformly translating solutions h(x , t) = fv (x − vt)The solution is known for one value of v :

For γ =

√α

2 and v = γ +1γ

fv (z) =12

[1− tanh γz

2

]

But fv (z) = e−γz − e−2γz + e−3γz − · · ·instead of fv (z) = A1e−γ1z + A2e−γ2z + · · ·

Either γ1 or γ2 is missing (A1 = 0 or A2 = 0)If α > 2, then γ = γ2, and A1 = 0, and the front is pushed with

vc =

√α

2 +

√2α

Éric Brunet (Paris) FKPP Equation Banff 2010 14 / 50

Page 72: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

An example

∂th = ∂2x h + (h − h2)(1 + αh)

h = 0 unstable, h = 1 stable, v(γ) = γ + 1γ

, γ∗ = 1 and v∗ = 2γ

v

γ2γ∗γ1

vv∗

We look for uniformly translating solutions h(x , t) = fv (x − vt)The solution is known for one value of v :

For γ =

√α

2 and v = γ +1γ

fv (z) =12

[1− tanh γz

2

]

But fv (z) = e−γz − e−2γz + e−3γz − · · ·instead of fv (z) = A1e−γ1z + A2e−γ2z + · · ·

Either γ1 or γ2 is missing (A1 = 0 or A2 = 0)If α > 2, then γ = γ2, and A1 = 0, and the front is pushed with

vc =

√α

2 +

√2α

Éric Brunet (Paris) FKPP Equation Banff 2010 14 / 50

Page 73: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

An example

∂th = ∂2x h + (h − h2)(1 + αh)

h = 0 unstable, h = 1 stable, v(γ) = γ + 1γ

, γ∗ = 1 and v∗ = 2γ

v

γ2γ∗γ1

vv∗

We look for uniformly translating solutions h(x , t) = fv (x − vt)The solution is known for one value of v :

For γ =

√α

2 and v = γ +1γ

fv (z) =12

[1− tanh γz

2

]

But fv (z) = e−γz − e−2γz + e−3γz − · · ·instead of fv (z) = A1e−γ1z + A2e−γ2z + · · ·

Either γ1 or γ2 is missing (A1 = 0 or A2 = 0)

If α > 2, then γ = γ2, and A1 = 0, and the front is pushed with

vc =

√α

2 +

√2α

Éric Brunet (Paris) FKPP Equation Banff 2010 14 / 50

Page 74: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

An example

∂th = ∂2x h + (h − h2)(1 + αh)

h = 0 unstable, h = 1 stable, v(γ) = γ + 1γ

, γ∗ = 1 and v∗ = 2γ

v

γ2γ∗γ1

vv∗

We look for uniformly translating solutions h(x , t) = fv (x − vt)The solution is known for one value of v :

For γ =

√α

2 and v = γ +1γ

fv (z) =12

[1− tanh γz

2

]

But fv (z) = e−γz − e−2γz + e−3γz − · · ·instead of fv (z) = A1e−γ1z + A2e−γ2z + · · ·

Either γ1 or γ2 is missing (A1 = 0 or A2 = 0)If α > 2, then γ = γ2, and A1 = 0, and the front is pushed with

vc =

√α

2 +

√2α

Éric Brunet (Paris) FKPP Equation Banff 2010 14 / 50

Page 75: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Bramson’s resultFor h(x , 0) =

(0

1

0

), Xt

t → v∗ and h(Xt + z , t) −−−→t→∞

fv∗(z)

withfv∗(z) ≈ (Az + B)e−γ∗z for large z

t =800t =

450

t =200t =

50

z

h(X t

+z,

t)eγ∗ z

120100806040200

120100806040200

h(Xt + z) ≈ √t S( z√

t

)e−γ∗z

S(u) ≈ u for small u (z � √t)S(u) decays fast for large u (t � z2)

S(u) = ue− u24··· and Xt = v∗t − 3

2γ∗ ln t + · · ·

Solution of the linearized equation ∂th = ∂2x h + h

h(2t + y , t) =

{1√4πt

e−y− y24t ,

1 + y2t√

4πte−y− y2

4t ,y√

4πt3/2e−y− y2

4t

}

Éric Brunet (Paris) FKPP Equation Banff 2010 15 / 50

Page 76: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Bramson’s resultFor h(x , 0) =

(0

1

0

), Xt

t → v∗ and h(Xt + z , t) −−−→t→∞

fv∗(z)

withfv∗(z) ≈ (Az + B)e−γ∗z for large z

t =800t =

450

t =200t =

50

z

h(X t

+z,

t)eγ∗ z

120100806040200

120100806040200

h(Xt + z) ≈ √t S( z√

t

)e−γ∗z

S(u) ≈ u for small u (z � √t)S(u) decays fast for large u (t � z2)

S(u) = ue− u24··· and Xt = v∗t − 3

2γ∗ ln t + · · ·

Solution of the linearized equation ∂th = ∂2x h + h

h(2t + y , t) =

{1√4πt

e−y− y24t ,

1 + y2t√

4πte−y− y2

4t ,y√

4πt3/2e−y− y2

4t

}

Éric Brunet (Paris) FKPP Equation Banff 2010 15 / 50

Page 77: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Bramson’s resultFor h(x , 0) =

(0

1

0

), Xt

t → v∗ and h(Xt + z , t) −−−→t→∞

fv∗(z)

withfv∗(z) ≈ (Az + B)e−γ∗z for large z

t =800t =

450

t =200t =

50

z

h(X t

+z,

t)eγ∗ z

120100806040200

120100806040200

h(Xt + z) ≈ √t S( z√

t

)e−γ∗z

S(u) ≈ u for small u (z � √t)S(u) decays fast for large u (t � z2)

S(u) = ue− u24··· and Xt = v∗t − 3

2γ∗ ln t + · · ·

Solution of the linearized equation ∂th = ∂2x h + h

h(2t + y , t) =

{1√4πt

e−y− y24t ,

1 + y2t√

4πte−y− y2

4t ,y√

4πt3/2e−y− y2

4t

}

Éric Brunet (Paris) FKPP Equation Banff 2010 15 / 50

Page 78: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Bramson’s resultFor h(x , 0) =

(0

1

0

), Xt

t → v∗ and h(Xt + z , t) −−−→t→∞

fv∗(z)

withfv∗(z) ≈ (Az + B)e−γ∗z for large z

t =800t =

450

t =200t =

50

z

h(X t

+z,

t)eγ∗ z

120100806040200

120100806040200

h(Xt + z) ≈ √t S( z√

t

)e−γ∗z

S(u) ≈ u for small u (z � √t)S(u) decays fast for large u (t � z2)

S(u) = ue− u24··· and Xt = v∗t − 3

2γ∗ ln t + · · ·

Solution of the linearized equation ∂th = ∂2x h + h

h(2t + y , t) =

{1√4πt

e−y− y24t ,

1 + y2t√

4πte−y− y2

4t ,y√

4πt3/2e−y− y2

4t

}

Éric Brunet (Paris) FKPP Equation Banff 2010 15 / 50

Page 79: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Bramson’s resultFor h(x , 0) =

(0

1

0

), Xt

t → v∗ and h(Xt + z , t) −−−→t→∞

fv∗(z)

withfv∗(z) ≈ (Az + B)e−γ∗z for large z

t =800t =

450

t =200t =

50

z

h(X t

+z,

t)eγ∗ z

120100806040200

120100806040200

h(Xt + z) ≈ √t S( z√

t

)e−γ∗z

S(u) ≈ u for small u (z � √t)S(u) decays fast for large u (t � z2)

S(u) = ue− u24··· and Xt = v∗t − 3

2γ∗ ln t + · · ·

Solution of the linearized equation ∂th = ∂2x h + h

h(2t + y , t) =

{1√4πt

e−y− y24t ,

1 + y2t√

4πte−y− y2

4t ,y√

4πt3/2e−y− y2

4t

}

Éric Brunet (Paris) FKPP Equation Banff 2010 15 / 50

Page 80: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Bramson’s resultFor h(x , 0) =

(0

1

0

), Xt

t → v∗ and h(Xt + z , t) −−−→t→∞

fv∗(z)

withfv∗(z) ≈ (Az + B)e−γ∗z for large z

t =800t =

450

t =200t =

50

z

h(X t

+z,

t)eγ∗ z

120100806040200

120100806040200

h(Xt + z) ≈ √t S( z√

t

)e−γ∗z

S(u) ≈ u for small u (z � √t)S(u) decays fast for large u (t � z2)

S(u) = ue− u24··· and Xt = v∗t − 3

2γ∗ ln t + · · ·

Solution of the linearized equation ∂th = ∂2x h + h

h(2t + y , t) =

{1√4πt

e−y− y24t ,

1 + y2t√

4πte−y− y2

4t ,

y√4πt3/2

e−y− y24t

}

Éric Brunet (Paris) FKPP Equation Banff 2010 15 / 50

Page 81: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Bramson’s resultFor h(x , 0) =

(0

1

0

), Xt

t → v∗ and h(Xt + z , t) −−−→t→∞

fv∗(z)

withfv∗(z) ≈ (Az + B)e−γ∗z for large z

t =800t =

450

t =200t =

50

z

h(X t

+z,

t)eγ∗ z

120100806040200

120100806040200

h(Xt + z) ≈ √t S( z√

t

)e−γ∗z

S(u) ≈ u for small u (z � √t)S(u) decays fast for large u (t � z2)

S(u) = ue− u24··· and Xt = v∗t − 3

2γ∗ ln t + · · ·

Solution of the linearized equation ∂th = ∂2x h + h

h(2t + y , t) =

{1√4πt

e−y− y24t ,

1 + y2t√

4πte−y− y2

4t ,y√

4πt3/2e−y− y2

4t

}Éric Brunet (Paris) FKPP Equation Banff 2010 15 / 50

Page 82: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Outline1 Deterministic Fronts

x

h1

0

∂th = ∂2x h + h(1− h)

h(x , t + 1) = min[

1, 2∫ 1

0dε h(x − ε, t)

]. . .

2 Stochastic Fronts

x

h1

0

∂th = ∂2x h + h(1− h) + (small noise term)

h(x , t + 1) = min[

1, 2∫ 1

0dε h(x − ε, t) + · · ·

]. . .

3 Fronts and Branching Brownian Motion

Éric Brunet (Paris) FKPP Equation Banff 2010 16 / 50

Page 83: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Why the noise ?A and B diffuse, A + B → 2A

with rate 1/N

Let h(x , t) = proportion of A. In the limit of infiniteconcentration; ∂th = ∂2x h + h(1− h)What to write for a finite concentration ?

N particles on one site, nt = number of A, and N − nt = number of B

Assuming nt given, nt+dt =

{nt + 1 with probability dt

N nt(N − nt)

nt with probability 1− dtN nt(N − nt)

〈nt+dt〉 = nt + dtN nt(N − nt), Variance(nt+dt) = dt

N nt(N − nt)

nt+dt = nt+dtN nt(N−nt)+Rt

√dtN nt(N − nt) with 〈Rt〉 = 0 and 〈R2

t 〉 = 1

∂tnt = nt (N−nt )N + ηt

√nt (N−nt )

N with 〈ηtηt′〉 = δ(t − t ′)

With h =ntN , ∂th =

∂2x h +

h(1− h) + ηt

√h(1− h)

N

Éric Brunet (Paris) FKPP Equation Banff 2010 17 / 50

Page 84: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Why the noise ?A and B diffuse, A + B → 2A

with rate 1/N

Let h(x , t) = proportion of A. In the limit of infiniteconcentration; ∂th = ∂2x h + h(1− h)What to write for a finite concentration ?

N particles on one site, nt = number of A, and N − nt = number of B

Assuming nt given, nt+dt =

{nt + 1 with probability dt

N nt(N − nt)

nt with probability 1− dtN nt(N − nt)

〈nt+dt〉 = nt + dtN nt(N − nt), Variance(nt+dt) = dt

N nt(N − nt)

nt+dt = nt+dtN nt(N−nt)+Rt

√dtN nt(N − nt) with 〈Rt〉 = 0 and 〈R2

t 〉 = 1

∂tnt = nt (N−nt )N + ηt

√nt (N−nt )

N with 〈ηtηt′〉 = δ(t − t ′)

With h =ntN , ∂th =

∂2x h +

h(1− h) + ηt

√h(1− h)

N

Éric Brunet (Paris) FKPP Equation Banff 2010 17 / 50

Page 85: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Why the noise ?A and B diffuse, A + B → 2A with rate 1/N

Let h(x , t) = proportion of A. In the limit of infiniteconcentration; ∂th = ∂2x h + h(1− h)What to write for a finite concentration ?

N particles on one site, nt = number of A, and N − nt = number of B

Assuming nt given, nt+dt =

{nt + 1 with probability dt

N nt(N − nt)

nt with probability 1− dtN nt(N − nt)

〈nt+dt〉 = nt + dtN nt(N − nt), Variance(nt+dt) = dt

N nt(N − nt)

nt+dt = nt+dtN nt(N−nt)+Rt

√dtN nt(N − nt) with 〈Rt〉 = 0 and 〈R2

t 〉 = 1

∂tnt = nt (N−nt )N + ηt

√nt (N−nt )

N with 〈ηtηt′〉 = δ(t − t ′)

With h =ntN , ∂th =

∂2x h +

h(1− h) + ηt

√h(1− h)

N

Éric Brunet (Paris) FKPP Equation Banff 2010 17 / 50

Page 86: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Why the noise ?A and B diffuse, A + B → 2A with rate 1/N

Let h(x , t) = proportion of A. In the limit of infiniteconcentration; ∂th = ∂2x h + h(1− h)What to write for a finite concentration ?

N particles on one site, nt = number of A, and N − nt = number of B

Assuming nt given, nt+dt =

{nt + 1 with probability dt

N nt(N − nt)

nt with probability 1− dtN nt(N − nt)

〈nt+dt〉 = nt + dtN nt(N − nt), Variance(nt+dt) = dt

N nt(N − nt)

nt+dt = nt+dtN nt(N−nt)+Rt

√dtN nt(N − nt) with 〈Rt〉 = 0 and 〈R2

t 〉 = 1

∂tnt = nt (N−nt )N + ηt

√nt (N−nt )

N with 〈ηtηt′〉 = δ(t − t ′)

With h =ntN , ∂th =

∂2x h +

h(1− h) + ηt

√h(1− h)

N

Éric Brunet (Paris) FKPP Equation Banff 2010 17 / 50

Page 87: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Why the noise ?A and B diffuse, A + B → 2A with rate 1/N

Let h(x , t) = proportion of A. In the limit of infiniteconcentration; ∂th = ∂2x h + h(1− h)What to write for a finite concentration ?

N particles on one site, nt = number of A, and N − nt = number of B

Assuming nt given, nt+dt =

{nt + 1 with probability dt

N nt(N − nt)

nt with probability 1− dtN nt(N − nt)

〈nt+dt〉 = nt + dtN nt(N − nt), Variance(nt+dt) = dt

N nt(N − nt)

nt+dt = nt+dtN nt(N−nt)+Rt

√dtN nt(N − nt) with 〈Rt〉 = 0 and 〈R2

t 〉 = 1

∂tnt = nt (N−nt )N + ηt

√nt (N−nt )

N with 〈ηtηt′〉 = δ(t − t ′)

With h =ntN , ∂th =

∂2x h +

h(1− h) + ηt

√h(1− h)

N

Éric Brunet (Paris) FKPP Equation Banff 2010 17 / 50

Page 88: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Why the noise ?A and B diffuse, A + B → 2A with rate 1/N

Let h(x , t) = proportion of A. In the limit of infiniteconcentration; ∂th = ∂2x h + h(1− h)What to write for a finite concentration ?

N particles on one site, nt = number of A, and N − nt = number of B

Assuming nt given, nt+dt =

{nt + 1 with probability dt

N nt(N − nt)

nt with probability 1− dtN nt(N − nt)

〈nt+dt〉 = nt + dtN nt(N − nt), Variance(nt+dt) = dt

N nt(N − nt)

nt+dt = nt+dtN nt(N−nt)+Rt

√dtN nt(N − nt) with 〈Rt〉 = 0 and 〈R2

t 〉 = 1

∂tnt = nt (N−nt )N + ηt

√nt (N−nt )

N with 〈ηtηt′〉 = δ(t − t ′)

With h =ntN , ∂th =

∂2x h +

h(1− h) + ηt

√h(1− h)

N

Éric Brunet (Paris) FKPP Equation Banff 2010 17 / 50

Page 89: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Why the noise ?A and B diffuse, A + B → 2A with rate 1/N

Let h(x , t) = proportion of A. In the limit of infiniteconcentration; ∂th = ∂2x h + h(1− h)What to write for a finite concentration ?

N particles on one site, nt = number of A, and N − nt = number of B

Assuming nt given, nt+dt =

{nt + 1 with probability dt

N nt(N − nt)

nt with probability 1− dtN nt(N − nt)

〈nt+dt〉 = nt + dtN nt(N − nt), Variance(nt+dt) = dt

N nt(N − nt)

nt+dt = nt+dtN nt(N−nt)+Rt

√dtN nt(N − nt) with 〈Rt〉 = 0 and 〈R2

t 〉 = 1

∂tnt = nt (N−nt )N + ηt

√nt (N−nt )

N with 〈ηtηt′〉 = δ(t − t ′)

With h =ntN , ∂th =

∂2x h +

h(1− h) + ηt

√h(1− h)

NÉric Brunet (Paris) FKPP Equation Banff 2010 17 / 50

Page 90: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Why the noise ?A and B diffuse, A + B → 2A with rate 1/N

Let h(x , t) = proportion of A. In the limit of infiniteconcentration; ∂th = ∂2x h + h(1− h)What to write for a finite concentration ?

N particles on one site, nt = number of A, and N − nt = number of B

Assuming nt given, nt+dt =

{nt + 1 with probability dt

N nt(N − nt)

nt with probability 1− dtN nt(N − nt)

〈nt+dt〉 = nt + dtN nt(N − nt), Variance(nt+dt) = dt

N nt(N − nt)

nt+dt = nt+dtN nt(N−nt)+Rt

√dtN nt(N − nt) with 〈Rt〉 = 0 and 〈R2

t 〉 = 1

∂tnt = nt (N−nt )N + ηt

√nt (N−nt )

N with 〈ηtηt′〉 = δ(t − t ′)

With h =ntN , ∂th = ∂2x h + h(1− h) + ηt

√h(1− h)

NÉric Brunet (Paris) FKPP Equation Banff 2010 17 / 50

Page 91: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Other examplesN (= 3) particles, at each time step a particle at x gives two offspring atpositions x + ε1,2 with ε ∈ [0, 1] random. Keep only the N rightmost.

Position

Time

h(x , t) =number of particles on the right of x

N

h(x , t + 1) = min[1, 2

∫ 1

0dy h(x − y , t) + noise

]Branching Brownian Motion plus saturation

Particles do a Brownian motionWith rate 1, they split

plus

When a (N + 1)th particleappears, remove the leftmost tokeep only NOr two particles crossing have a1/N chance of coalescing

Éric Brunet (Paris) FKPP Equation Banff 2010 18 / 50

Page 92: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Other examplesN (= 3) particles, at each time step a particle at x gives two offspring atpositions x + ε1,2 with ε ∈ [0, 1] random. Keep only the N rightmost.

Position

Time

h(x , t) =number of particles on the right of x

N

h(x , t + 1) = min[1, 2

∫ 1

0dy h(x − y , t) + noise

]

Branching Brownian Motion plus saturationParticles do a Brownian motionWith rate 1, they split

plus

When a (N + 1)th particleappears, remove the leftmost tokeep only NOr two particles crossing have a1/N chance of coalescing

Éric Brunet (Paris) FKPP Equation Banff 2010 18 / 50

Page 93: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Other examplesN (= 3) particles, at each time step a particle at x gives two offspring atpositions x + ε1,2 with ε ∈ [0, 1] random. Keep only the N rightmost.

Position

Time

h(x , t) =number of particles on the right of x

N

h(x , t + 1) = min[1, 2

∫ 1

0dy h(x − y , t) + noise

]Branching Brownian Motion plus saturation

Particles do a Brownian motionWith rate 1, they split

plus

When a (N + 1)th particleappears, remove the leftmost tokeep only NOr two particles crossing have a1/N chance of coalescing

Éric Brunet (Paris) FKPP Equation Banff 2010 18 / 50

Page 94: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Other examplesN (= 3) particles, at each time step a particle at x gives two offspring atpositions x + ε1,2 with ε ∈ [0, 1] random. Keep only the N rightmost.

Position

Time

h(x , t) =number of particles on the right of x

N

h(x , t + 1) = min[1, 2

∫ 1

0dy h(x − y , t) + noise

]Branching Brownian Motion plus saturation

Particles do a Brownian motionWith rate 1, they split

plusWhen a (N + 1)th particleappears, remove the leftmost tokeep only N

Or two particles crossing have a1/N chance of coalescing

Éric Brunet (Paris) FKPP Equation Banff 2010 18 / 50

Page 95: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Other examplesN (= 3) particles, at each time step a particle at x gives two offspring atpositions x + ε1,2 with ε ∈ [0, 1] random. Keep only the N rightmost.

Position

Time

h(x , t) =number of particles on the right of x

N

h(x , t + 1) = min[1, 2

∫ 1

0dy h(x − y , t) + noise

]Branching Brownian Motion plus saturation

Particles do a Brownian motionWith rate 1, they split

plusWhen a (N + 1)th particleappears, remove the leftmost tokeep only NOr two particles crossing have a1/N chance of coalescingÉric Brunet (Paris) FKPP Equation Banff 2010 18 / 50

Page 96: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The noise term

growth term ≈ h noise term ≈√

hN

∂th = ∂2x h+h(1−h)+η

√h(1− h)

N with{〈ηx ,t〉 = 0〈ηx ,tηx ′,t′〉 = δ(t − t ′)δ(x − x ′)

The front (almost surely) reaches 0 and 1

x

h1

0h is continuous

For ∂th = h + ηt√

hN , if h(0) < 1/N,

then, probably, h(t)→ 0

h is discreteNh ' number of particlesif h 6= 0, then h ≥ 1/N

Éric Brunet (Paris) FKPP Equation Banff 2010 19 / 50

Page 97: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The noise term

growth term ≈ h noise term ≈√

hN

∂th = ∂2x h+h(1−h)+η

√h(1− h)

N with{〈ηx ,t〉 = 0〈ηx ,tηx ′,t′〉 = δ(t − t ′)δ(x − x ′)

The front (almost surely) reaches 0 and 1

x

h1

0

h is continuous

For ∂th = h + ηt√

hN , if h(0) < 1/N,

then, probably, h(t)→ 0

h is discreteNh ' number of particlesif h 6= 0, then h ≥ 1/N

Éric Brunet (Paris) FKPP Equation Banff 2010 19 / 50

Page 98: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The noise term

growth term ≈ h noise term ≈√

hN

∂th = ∂2x h+h(1−h)+η

√h(1− h)

N with{〈ηx ,t〉 = 0〈ηx ,tηx ′,t′〉 = δ(t − t ′)δ(x − x ′)

The front (almost surely) reaches 0 and 1

x

h1

0

h is continuous

For ∂th = h + ηt√

hN , if h(0) < 1/N,

then, probably, h(t)→ 0

h is discreteNh ' number of particlesif h 6= 0, then h ≥ 1/N

Éric Brunet (Paris) FKPP Equation Banff 2010 19 / 50

Page 99: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The noise term

growth term ≈ h noise term ≈√

hN

∂th = ∂2x h+h(1−h)+η

√h(1− h)

N with{〈ηx ,t〉 = 0〈ηx ,tηx ′,t′〉 = δ(t − t ′)δ(x − x ′)

The front (almost surely) reaches 0 and 1

x

h1

0h is continuous

For ∂th = h + ηt√

hN , if h(0) < 1/N,

then, probably, h(t)→ 0

h is discrete

Nh ' number of particlesif h 6= 0, then h ≥ 1/N

Éric Brunet (Paris) FKPP Equation Banff 2010 19 / 50

Page 100: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The noise term

growth term ≈ h noise term ≈√

hN

∂th = ∂2x h+h(1−h)+η

√h(1− h)

N with{〈ηx ,t〉 = 0〈ηx ,tηx ′,t′〉 = δ(t − t ′)δ(x − x ′)

The front (almost surely) reaches 0 and 1

x

h1

0h is continuous

For ∂th = h + ηt√

hN , if h(0) < 1/N,

then, probably, h(t)→ 0

h is discreteNh ' number of particlesif h 6= 0, then h ≥ 1/N

Éric Brunet (Paris) FKPP Equation Banff 2010 19 / 50

Page 101: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The noise term

growth term ≈ h noise term ≈√

hN

∂th = ∂2x h+h(1−h)+η

√h(1− h)

N with{〈ηx ,t〉 = 0〈ηx ,tηx ′,t′〉 = δ(t − t ′)δ(x − x ′)

The front (almost surely) reaches 0 and 1

x

h1

0h is continuous

For ∂th = h + ηt√

hN , if h(0) < 1/N,

then, probably, h(t)→ 0

h is discreteNh ' number of particlesif h 6= 0, then h ≥ 1/N

Éric Brunet (Paris) FKPP Equation Banff 2010 19 / 50

Page 102: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The cutoff approximation∂th = ∂2x h + h − h2///////////+ ηx ,t

√1N (h − h2)

Wherever h is of order 1N , it should go quickly to zero

∂th = ∂2x h +(h − h2

)a(Nh) with

{a(Nh) ≈ 1 if Nh� 1a(Nh)� 1 if Nh� 1

Other example in the discrete

h(x , t + 1) = min[1, 2

∫ 1

0dy h(x − y , t) + noise

]replaced by

h(x , t+1) =

2∫ 10 dy h(x − y , t) if that number is between 1

N and 11 if the number above is larger than 10 if the number above is smaller than 1

N

It looks likely that vnoiseN ≈ v cutoff

N

Éric Brunet (Paris) FKPP Equation Banff 2010 20 / 50

Page 103: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The cutoff approximation∂th = ∂2x h + h − h2///////////+ ηx ,t

√1N (h − h2)

Wherever h is of order 1N , it should go quickly to zero

∂th = ∂2x h +(h − h2

)a(Nh) with

{a(Nh) ≈ 1 if Nh� 1a(Nh)� 1 if Nh� 1

Other example in the discrete

h(x , t + 1) = min[1, 2

∫ 1

0dy h(x − y , t) + noise

]replaced by

h(x , t+1) =

2∫ 10 dy h(x − y , t) if that number is between 1

N and 11 if the number above is larger than 10 if the number above is smaller than 1

N

It looks likely that vnoiseN ≈ v cutoff

N

Éric Brunet (Paris) FKPP Equation Banff 2010 20 / 50

Page 104: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The cutoff approximation∂th = ∂2x h + h − h2///////////+ ηx ,t

√1N (h − h2)

Wherever h is of order 1N , it should go quickly to zero

∂th = ∂2x h +(h − h2

)a(Nh) with

{a(Nh) ≈ 1 if Nh� 1a(Nh)� 1 if Nh� 1

Other example in the discrete

h(x , t + 1) = min[1, 2

∫ 1

0dy h(x − y , t) + noise

]replaced by

h(x , t+1) =

2∫ 10 dy h(x − y , t) if that number is between 1

N and 11 if the number above is larger than 10 if the number above is smaller than 1

N

It looks likely that vnoiseN ≈ v cutoff

N

Éric Brunet (Paris) FKPP Equation Banff 2010 20 / 50

Page 105: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The cutoff approximation∂th = ∂2x h + h − h2///////////+ ηx ,t

√1N (h − h2)

Wherever h is of order 1N , it should go quickly to zero

∂th = ∂2x h +(h − h2

)a(Nh) with

{a(Nh) ≈ 1 if Nh� 1a(Nh)� 1 if Nh� 1

Other example in the discrete

h(x , t + 1) = min[1, 2

∫ 1

0dy h(x − y , t) + noise

]replaced by

h(x , t+1) =

2∫ 10 dy h(x − y , t) if that number is between 1

N and 11 if the number above is larger than 10 if the number above is smaller than 1

N

It looks likely that vnoiseN ≈ v cutoff

N

Éric Brunet (Paris) FKPP Equation Banff 2010 20 / 50

Page 106: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The cutoff approximation{v cutoff

N ≤ v∗

The shape of the front should “reach” h = 0

γ = γR + iγI v = v(γ) (real)

fv (z) = C sin(γIz

//

+ φ)e−γRz

Let L� 1 the value of z where thecutoff happens

γIL ≈ π e−γRL ≈ 1N

γI � 1 =⇒ γR ≈ γ∗ to have v(γ) real

L ≈ lnNγ∗

fv (z) ≈ ALπ

sin(πzL

)e−γ∗z

Éric Brunet (Paris) FKPP Equation Banff 2010 21 / 50

Page 107: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The cutoff approximation{v cutoff

N ≤ v∗

The shape of the front should “reach” h = 0

v < v ∗

x

h1

0

γ = γR + iγI v = v(γ) (real)

fv (z) = C sin(γIz

//

+ φ)e−γRz

Let L� 1 the value of z where thecutoff happens

γIL ≈ π e−γRL ≈ 1N

γI � 1 =⇒ γR ≈ γ∗ to have v(γ) real

L ≈ lnNγ∗

fv (z) ≈ ALπ

sin(πzL

)e−γ∗z

Éric Brunet (Paris) FKPP Equation Banff 2010 21 / 50

Page 108: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The cutoff approximation{v cutoff

N ≤ v∗

The shape of the front should “reach” h = 0

With cutoff

x

h1

0

γ = γR + iγI v = v(γ) (real)

fv (z) = C sin(γIz

//

+ φ)e−γRz

Let L� 1 the value of z where thecutoff happens

γIL ≈ π e−γRL ≈ 1N

γI � 1 =⇒ γR ≈ γ∗ to have v(γ) real

L ≈ lnNγ∗

fv (z) ≈ ALπ

sin(πzL

)e−γ∗z

Éric Brunet (Paris) FKPP Equation Banff 2010 21 / 50

Page 109: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The cutoff approximation{v cutoff

N ≤ v∗

The shape of the front should “reach” h = 0

With cutoff

x

h1

0

γ = γR + iγI v = v(γ) (real)

fv (z) = C sin(γIz

//

+ φ)e−γRz

Let L� 1 the value of z where thecutoff happens

γIL ≈ π e−γRL ≈ 1N

γI � 1 =⇒ γR ≈ γ∗ to have v(γ) real

L ≈ lnNγ∗

fv (z) ≈ ALπ

sin(πzL

)e−γ∗z

Éric Brunet (Paris) FKPP Equation Banff 2010 21 / 50

Page 110: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The cutoff approximation{v cutoff

N ≤ v∗

The shape of the front should “reach” h = 0

With cutoff

x

h1

0

γ = γR + iγI v = v(γ) (real)

fv (z) = C sin(γIz//

+ φ)e−γRz

Let L� 1 the value of z where thecutoff happens

γIL ≈ π e−γRL ≈ 1N

γI � 1 =⇒ γR ≈ γ∗ to have v(γ) real

L ≈ lnNγ∗

fv (z) ≈ ALπ

sin(πzL

)e−γ∗z

Éric Brunet (Paris) FKPP Equation Banff 2010 21 / 50

Page 111: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The cutoff approximation{v cutoff

N ≤ v∗

The shape of the front should “reach” h = 0

With cutoff

x

h1

0

γ = γR + iγI v = v(γ) (real)

fv (z) = C sin(γIz//

+ φ)e−γRz

Let L� 1 the value of z where thecutoff happens

γIL ≈ π e−γRL ≈ 1N

γI � 1 =⇒ γR ≈ γ∗ to have v(γ) real

L ≈ lnNγ∗

fv (z) ≈ ALπ

sin(πzL

)e−γ∗z

Éric Brunet (Paris) FKPP Equation Banff 2010 21 / 50

Page 112: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The cutoff approximation{v cutoff

N ≤ v∗

The shape of the front should “reach” h = 0

With cutoff

x

h1

0

γ = γR + iγI v = v(γ) (real)

fv (z) = C sin(γIz//

+ φ)e−γRz

Let L� 1 the value of z where thecutoff happens

γIL ≈ π e−γRL ≈ 1N

γI � 1 =⇒ γR ≈ γ∗ to have v(γ) real

L ≈ lnNγ∗

fv (z) ≈ ALπ

sin(πzL

)e−γ∗z

Éric Brunet (Paris) FKPP Equation Banff 2010 21 / 50

Page 113: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The cutoff approximation

L ≈ lnNγ∗

fv (z) ≈ ALπ

sin(πzL

)e−γ∗z

N = 109N = 1011N = 1013N = 1015N = 1017

z

f v(z

)eγ∗ z

14121086420-2-4

43.5

32.5

21.5

10.5

0

v cutoffN = v(γ) = v

(γ∗ + i πL

)= v∗ − π2v ′′(γ∗)

2L2

Éric Brunet (Paris) FKPP Equation Banff 2010 22 / 50

Page 114: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Beyond the cutoff approximationCutoff:

fv (z) ≈ Cste lnN sin(πγ∗zlnN

)e−γ∗z and v cutoff

N = v∗− aln2 N

+O( 1ln3 N

)

Deterministic equation =⇒ no fluctuation, no diffusion

Noisy equation:

Position of the front fluctuates:〈Position〉 ∼ vnoise

N t and Variance(Position) ∼ DnoiseN t

vnoiseN ≈ v∗ − a

(lnN + 3 ln lnN)2and Dnoise

N ≈ bln3 N

with a =π2γ∗2v ′′(γ∗)

2 b =π4γ∗v ′′(γ∗)

3

Éric Brunet (Paris) FKPP Equation Banff 2010 23 / 50

Page 115: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Beyond the cutoff approximationCutoff:

fv (z) ≈ Cste lnN sin(πγ∗zlnN

)e−γ∗z and v cutoff

N = v∗− aln2 N

+O( 1ln3 N

)Deterministic equation =⇒ no fluctuation, no diffusion

Noisy equation:

Position of the front fluctuates:〈Position〉 ∼ vnoise

N t and Variance(Position) ∼ DnoiseN t

vnoiseN ≈ v∗ − a

(lnN + 3 ln lnN)2and Dnoise

N ≈ bln3 N

with a =π2γ∗2v ′′(γ∗)

2 b =π4γ∗v ′′(γ∗)

3

Éric Brunet (Paris) FKPP Equation Banff 2010 23 / 50

Page 116: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Beyond the cutoff approximationCutoff:

fv (z) ≈ Cste lnN sin(πγ∗zlnN

)e−γ∗z and v cutoff

N = v∗− aln2 N

+O( 1ln3 N

)Deterministic equation =⇒ no fluctuation, no diffusion

Noisy equation:

Position of the front fluctuates:〈Position〉 ∼ vnoise

N t and Variance(Position) ∼ DnoiseN t

vnoiseN ≈ v∗ − a

(lnN + 3 ln lnN)2and Dnoise

N ≈ bln3 N

with a =π2γ∗2v ′′(γ∗)

2 b =π4γ∗v ′′(γ∗)

3

Éric Brunet (Paris) FKPP Equation Banff 2010 23 / 50

Page 117: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Beyond the cutoff approximationCutoff:

fv (z) ≈ Cste lnN sin(πγ∗zlnN

)e−γ∗z and v cutoff

N = v∗− aln2 N

+O( 1ln3 N

)Deterministic equation =⇒ no fluctuation, no diffusion

Noisy equation:

Position of the front fluctuates:〈Position〉 ∼ vnoise

N t and Variance(Position) ∼ DnoiseN t

vnoiseN ≈ v∗ − a

(lnN + 3 ln lnN)2and Dnoise

N ≈ bln3 N

with a =π2γ∗2v ′′(γ∗)

2 b =π4γ∗v ′′(γ∗)

3

Éric Brunet (Paris) FKPP Equation Banff 2010 23 / 50

Page 118: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Beyond the cutoff approximationCutoff:

fv (z) ≈ Cste lnN sin(πγ∗zlnN

)e−γ∗z and v cutoff

N = v∗− aln2 N

+O( 1ln3 N

)Deterministic equation =⇒ no fluctuation, no diffusion

Noisy equation:

Position of the front fluctuates:〈Position〉 ∼ vnoise

N t and Variance(Position) ∼ DnoiseN t

vnoiseN ≈ v∗ − a

(lnN + 3 ln lnN)2and Dnoise

N ≈ bln3 N

with a =π2γ∗2v ′′(γ∗)

2 b =π4γ∗v ′′(γ∗)

3

Éric Brunet (Paris) FKPP Equation Banff 2010 23 / 50

Page 119: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Watching the fluctuations

Éric Brunet (Paris) FKPP Equation Banff 2010 24 / 50

Page 120: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Main scenarioA Sine shape. Cutoff approximation mostly correct

Dynamics dominated by rare and large fluctuationsFluctuations relax almost deterministicallyA fluctuation relaxes before another occurs

Let...δ be the size of a fluctuationp(δ) the probability per unit time of observing a fluctuation of size δR(δ) the long term effect on the position of the front of a fluctuation

Then, with (time to relax)� ∆t � (time between two fluctuations)

Xt+∆t = Xt + v cutoffN ∆t +

{R(δ) proba. ∆t p(δ) dδ0 proba. 1−∆t

∫p(δ) dδ

vnoiseN = v cutoff

N +

∫dδ p(δ)R(δ), Dnoise

N =

∫dδ p(δ)R(δ)2

Éric Brunet (Paris) FKPP Equation Banff 2010 25 / 50

Page 121: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Main scenarioA Sine shape. Cutoff approximation mostly correctDynamics dominated by rare and large fluctuations

Fluctuations relax almost deterministicallyA fluctuation relaxes before another occurs

Let...δ be the size of a fluctuationp(δ) the probability per unit time of observing a fluctuation of size δR(δ) the long term effect on the position of the front of a fluctuation

Then, with (time to relax)� ∆t � (time between two fluctuations)

Xt+∆t = Xt + v cutoffN ∆t +

{R(δ) proba. ∆t p(δ) dδ0 proba. 1−∆t

∫p(δ) dδ

vnoiseN = v cutoff

N +

∫dδ p(δ)R(δ), Dnoise

N =

∫dδ p(δ)R(δ)2

Éric Brunet (Paris) FKPP Equation Banff 2010 25 / 50

Page 122: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Main scenarioA Sine shape. Cutoff approximation mostly correctDynamics dominated by rare and large fluctuationsFluctuations relax almost deterministically

A fluctuation relaxes before another occursLet...

δ be the size of a fluctuationp(δ) the probability per unit time of observing a fluctuation of size δR(δ) the long term effect on the position of the front of a fluctuation

Then, with (time to relax)� ∆t � (time between two fluctuations)

Xt+∆t = Xt + v cutoffN ∆t +

{R(δ) proba. ∆t p(δ) dδ0 proba. 1−∆t

∫p(δ) dδ

vnoiseN = v cutoff

N +

∫dδ p(δ)R(δ), Dnoise

N =

∫dδ p(δ)R(δ)2

Éric Brunet (Paris) FKPP Equation Banff 2010 25 / 50

Page 123: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Main scenarioA Sine shape. Cutoff approximation mostly correctDynamics dominated by rare and large fluctuationsFluctuations relax almost deterministicallyA fluctuation relaxes before another occurs

Let...δ be the size of a fluctuationp(δ) the probability per unit time of observing a fluctuation of size δR(δ) the long term effect on the position of the front of a fluctuation

Then, with (time to relax)� ∆t � (time between two fluctuations)

Xt+∆t = Xt + v cutoffN ∆t +

{R(δ) proba. ∆t p(δ) dδ0 proba. 1−∆t

∫p(δ) dδ

vnoiseN = v cutoff

N +

∫dδ p(δ)R(δ), Dnoise

N =

∫dδ p(δ)R(δ)2

Éric Brunet (Paris) FKPP Equation Banff 2010 25 / 50

Page 124: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Main scenarioA Sine shape. Cutoff approximation mostly correctDynamics dominated by rare and large fluctuationsFluctuations relax almost deterministicallyA fluctuation relaxes before another occurs

Let...δ be the size of a fluctuationp(δ) the probability per unit time of observing a fluctuation of size δR(δ) the long term effect on the position of the front of a fluctuation

Then, with (time to relax)� ∆t � (time between two fluctuations)

Xt+∆t = Xt + v cutoffN ∆t +

{R(δ) proba. ∆t p(δ) dδ0 proba. 1−∆t

∫p(δ) dδ

vnoiseN = v cutoff

N +

∫dδ p(δ)R(δ), Dnoise

N =

∫dδ p(δ)R(δ)2

Éric Brunet (Paris) FKPP Equation Banff 2010 25 / 50

Page 125: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Main scenarioA Sine shape. Cutoff approximation mostly correctDynamics dominated by rare and large fluctuationsFluctuations relax almost deterministicallyA fluctuation relaxes before another occurs

Let...δ be the size of a fluctuationp(δ) the probability per unit time of observing a fluctuation of size δR(δ) the long term effect on the position of the front of a fluctuation

Then, with (time to relax)� ∆t � (time between two fluctuations)

Xt+∆t = Xt + v cutoffN ∆t +

{R(δ) proba. ∆t p(δ) dδ0 proba. 1−∆t

∫p(δ) dδ

vnoiseN = v cutoff

N +

∫dδ p(δ)R(δ), Dnoise

N =

∫dδ p(δ)R(δ)2

Éric Brunet (Paris) FKPP Equation Banff 2010 25 / 50

Page 126: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Main scenarioA Sine shape. Cutoff approximation mostly correctDynamics dominated by rare and large fluctuationsFluctuations relax almost deterministicallyA fluctuation relaxes before another occurs

Let...δ be the size of a fluctuationp(δ) the probability per unit time of observing a fluctuation of size δR(δ) the long term effect on the position of the front of a fluctuation

Then, with (time to relax)� ∆t � (time between two fluctuations)

Xt+∆t = Xt + v cutoffN ∆t +

{R(δ) proba. ∆t p(δ) dδ0 proba. 1−∆t

∫p(δ) dδ

vnoiseN = v cutoff

N +

∫dδ p(δ)R(δ), Dnoise

N =

∫dδ p(δ)R(δ)2

Éric Brunet (Paris) FKPP Equation Banff 2010 25 / 50

Page 127: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

What does a fluctuation look like ?

0

1h(x)

xδL = lnN

γ∗

h ∝ 1/N0

Nh(x)

xδL = lnN

γ∗

h ∝ 1/N

0

1h(x)

xδL = lnN

γ∗

h ∝ 1/N

Éric Brunet (Paris) FKPP Equation Banff 2010 26 / 50

Page 128: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

What does a fluctuation look like ?

0

1h(x)

xδL = lnN

γ∗

h ∝ 1/N

0

Nh(x)

xδL = lnN

γ∗

h ∝ 1/N

0

Nh(x)

xδL = lnN

γ∗

h ∝ 1/N

Éric Brunet (Paris) FKPP Equation Banff 2010 26 / 50

Page 129: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

What does a fluctuation look like ?

0

1h(x)

xδL = lnN

γ∗

h ∝ 1/N0

Nh(x)

xδL = lnN

γ∗

h ∝ 1/N

0

h(x)eγ∗x

xδL = lnN

γ∗

Éric Brunet (Paris) FKPP Equation Banff 2010 26 / 50

Page 130: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Distribution of δ

p(δ) ≈ C1e−γ∗δ for large δ

Fluctuations build up at the tip of the frontFluctuations build up quickly

=⇒ We can ignore saturation ruleA diffuse, A→ 2A,

/ / / / / / /saturation rule

Branching Brownian MotionFluctuations ofδ = xrightmost − (position of the tip of the BBM)given by a Gumbel

Éric Brunet (Paris) FKPP Equation Banff 2010 27 / 50

Page 131: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Distribution of δ

p(δ) ≈ C1e−γ∗δ for large δ

Fluctuations build up at the tip of the frontFluctuations build up quickly

=⇒ We can ignore saturation ruleA diffuse, A→ 2A,

/ / / / / / /saturation rule

Branching Brownian MotionFluctuations ofδ = xrightmost − (position of the tip of the BBM)given by a Gumbel

Éric Brunet (Paris) FKPP Equation Banff 2010 27 / 50

Page 132: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Distribution of δ

p(δ) ≈ C1e−γ∗δ for large δ

Fluctuations build up at the tip of the frontFluctuations build up quickly

=⇒ We can ignore saturation ruleA diffuse, A→ 2A,

/ / / / / / /saturation rule

Branching Brownian MotionFluctuations ofδ = xrightmost − (position of the tip of the BBM)given by a Gumbel

Éric Brunet (Paris) FKPP Equation Banff 2010 27 / 50

Page 133: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Distribution of δ

p(δ) ≈ C1e−γ∗δ for large δ

Fluctuations build up at the tip of the frontFluctuations build up quickly

=⇒ We can ignore saturation ruleA diffuse, A→ 2A,

/ / / / / / /saturation rule

Branching Brownian MotionFluctuations ofδ = xrightmost − (position of the tip of the BBM)given by a Gumbel

Éric Brunet (Paris) FKPP Equation Banff 2010 27 / 50

Page 134: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Value of R(δ)

R(δ) ≈ 1γ∗

ln(1 + C2

eγ∗δ

ln3 N

)

h(X0 + z , 0) =z

δL = lnNγ∗

× e−γ∗z

= LG(z

L , 0)

e−γ∗z

h(Xt + z , t) −−−→t→∞ zL = lnN

γ∗

× e−γ∗z

= LG(z

L ,∞)

e−γ∗R(δ)e−γ∗z

h(Xt + z , t) = LG(z

L ,tL2)

e−γ∗(z+Xt−X0−vcutofft)

G ≈ G ′′ + π2G , G(0, τ) ≈ 0, G(1, τ) ≈ 0

G(y , 0) = sin(πy) + perturbation of width ∝ 1L and height ∝ eγ∗δ

LG(y ,∞) = sin(πy)eγ∗R(δ) eγ∗R(δ) = 2

∫ 1

0dy sin(πy)G(y , 0)

Éric Brunet (Paris) FKPP Equation Banff 2010 28 / 50

Page 135: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Value of R(δ)

R(δ) ≈ 1γ∗

ln(1 + C2

eγ∗δ

ln3 N

)

h(X0 + z , 0) =z

δL = lnNγ∗

× e−γ∗z

= LG(z

L , 0)

e−γ∗z

h(Xt + z , t) −−−→t→∞ zL = lnN

γ∗

× e−γ∗z

= LG(z

L ,∞)

e−γ∗R(δ)e−γ∗z

h(Xt + z , t) = LG(z

L ,tL2)

e−γ∗(z+Xt−X0−vcutofft)

G ≈ G ′′ + π2G , G(0, τ) ≈ 0, G(1, τ) ≈ 0

G(y , 0) = sin(πy) + perturbation of width ∝ 1L and height ∝ eγ∗δ

LG(y ,∞) = sin(πy)eγ∗R(δ) eγ∗R(δ) = 2

∫ 1

0dy sin(πy)G(y , 0)

Éric Brunet (Paris) FKPP Equation Banff 2010 28 / 50

Page 136: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Value of R(δ)

R(δ) ≈ 1γ∗

ln(1 + C2

eγ∗δ

ln3 N

)

h(X0 + z , 0) =z

δL = lnNγ∗

× e−γ∗z

= LG(z

L , 0)

e−γ∗z

h(Xt + z , t) −−−→t→∞ zL = lnN

γ∗

× e−γ∗z

= LG(z

L ,∞)

e−γ∗R(δ)e−γ∗z

h(Xt + z , t) = LG(z

L ,tL2)

e−γ∗(z+Xt−X0−vcutofft)

G ≈ G ′′ + π2G , G(0, τ) ≈ 0, G(1, τ) ≈ 0

G(y , 0) = sin(πy) + perturbation of width ∝ 1L and height ∝ eγ∗δ

LG(y ,∞) = sin(πy)eγ∗R(δ) eγ∗R(δ) = 2

∫ 1

0dy sin(πy)G(y , 0)

Éric Brunet (Paris) FKPP Equation Banff 2010 28 / 50

Page 137: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Value of R(δ)

R(δ) ≈ 1γ∗

ln(1 + C2

eγ∗δ

ln3 N

)

h(X0 + z , 0) =z

δL = lnNγ∗

× e−γ∗z = LG(z

L , 0)

e−γ∗z

h(Xt + z , t) −−−→t→∞ zL = lnN

γ∗

× e−γ∗z = LG(z

L ,∞)

e−γ∗R(δ)e−γ∗z

h(Xt + z , t) = LG(z

L ,tL2)

e−γ∗(z+Xt−X0−vcutofft)

G ≈ G ′′ + π2G , G(0, τ) ≈ 0, G(1, τ) ≈ 0

G(y , 0) = sin(πy) + perturbation of width ∝ 1L and height ∝ eγ∗δ

LG(y ,∞) = sin(πy)eγ∗R(δ) eγ∗R(δ) = 2

∫ 1

0dy sin(πy)G(y , 0)

Éric Brunet (Paris) FKPP Equation Banff 2010 28 / 50

Page 138: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Value of R(δ)

R(δ) ≈ 1γ∗

ln(1 + C2

eγ∗δ

ln3 N

)

h(X0 + z , 0) =z

δL = lnNγ∗

× e−γ∗z = LG(z

L , 0)

e−γ∗z

h(Xt + z , t) −−−→t→∞ zL = lnN

γ∗

× e−γ∗z = LG(z

L ,∞)

e−γ∗R(δ)e−γ∗z

h(Xt + z , t) = LG(z

L ,tL2)

e−γ∗(z+Xt−X0−vcutofft)

G ≈ G ′′ + π2G , G(0, τ) ≈ 0, G(1, τ) ≈ 0

G(y , 0) = sin(πy) + perturbation of width ∝ 1L and height ∝ eγ∗δ

LG(y ,∞) = sin(πy)eγ∗R(δ) eγ∗R(δ) = 2

∫ 1

0dy sin(πy)G(y , 0)

Éric Brunet (Paris) FKPP Equation Banff 2010 28 / 50

Page 139: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Value of R(δ)

R(δ) ≈ 1γ∗

ln(1 + C2

eγ∗δ

ln3 N

)

h(X0 + z , 0) =z

δL = lnNγ∗

× e−γ∗z = LG(z

L , 0)

e−γ∗z

h(Xt + z , t) −−−→t→∞ zL = lnN

γ∗

× e−γ∗z = LG(z

L ,∞)

e−γ∗R(δ)e−γ∗z

h(Xt + z , t) = LG(z

L ,tL2)

e−γ∗(z+Xt−X0−vcutofft)

G ≈ G ′′ + π2G , G(0, τ) ≈ 0, G(1, τ) ≈ 0

G(y , 0) = sin(πy) + perturbation of width ∝ 1L and height ∝ eγ∗δ

LG(y ,∞) = sin(πy)eγ∗R(δ)

eγ∗R(δ) = 2∫ 1

0dy sin(πy)G(y , 0)

Éric Brunet (Paris) FKPP Equation Banff 2010 28 / 50

Page 140: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Value of R(δ)

R(δ) ≈ 1γ∗

ln(1 + C2

eγ∗δ

ln3 N

)

h(X0 + z , 0) =z

δL = lnNγ∗

× e−γ∗z = LG(z

L , 0)

e−γ∗z

h(Xt + z , t) −−−→t→∞ zL = lnN

γ∗

× e−γ∗z = LG(z

L ,∞)

e−γ∗R(δ)e−γ∗z

h(Xt + z , t) = LG(z

L ,tL2)

e−γ∗(z+Xt−X0−vcutofft)

G ≈ G ′′ + π2G , G(0, τ) ≈ 0, G(1, τ) ≈ 0

G(y , 0) = sin(πy) + perturbation of width ∝ 1L and height ∝ eγ∗δ

LG(y ,∞) = sin(πy)eγ∗R(δ) eγ∗R(δ) = 2

∫ 1

0dy sin(πy)G(y , 0)

Éric Brunet (Paris) FKPP Equation Banff 2010 28 / 50

Page 141: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Putting things togetherR(δ) ≈ 1

γ∗ln(1 + C2

eγ∗δ

ln3 N

)p(δ) ≈ C1e−γ

∗δ

vnoiseN = v cutoff

N +

∫dδ p(δ)R(δ), Dnoise

N =

∫dδ p(δ)R(δ)2

This givesvnoise

N ≈ v cutoffN +

C1C2γ∗2

3 ln lnNln3 N

, DnoiseN ≈ C1C2

γ∗3π2

3 ln3 NTimescales

Relevant values of δ are ≈ 1γ∗ 3 ln lnN

Time between two relevant fluctuations is ln3 NRelaxation time is ln2 N

C1C2 ?

Cutoff theory gives v = v∗ − π2v ′′(γ∗)2L2 with L = 1

γ∗ lnN

Use instead the effective length L = 1γ∗ [lnN + 3 ln lnN]

Éric Brunet (Paris) FKPP Equation Banff 2010 29 / 50

Page 142: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Putting things togetherR(δ) ≈ 1

γ∗ln(1 + C2

eγ∗δ

ln3 N

)p(δ) ≈ C1e−γ

∗δ

vnoiseN = v cutoff

N +

∫dδ p(δ)R(δ), Dnoise

N =

∫dδ p(δ)R(δ)2

This givesvnoise

N ≈ v cutoffN +

C1C2γ∗2

3 ln lnNln3 N

, DnoiseN ≈ C1C2

γ∗3π2

3 ln3 NTimescales

Relevant values of δ are ≈ 1γ∗ 3 ln lnN

Time between two relevant fluctuations is ln3 NRelaxation time is ln2 N

C1C2 ?

Cutoff theory gives v = v∗ − π2v ′′(γ∗)2L2 with L = 1

γ∗ lnN

Use instead the effective length L = 1γ∗ [lnN + 3 ln lnN]

Éric Brunet (Paris) FKPP Equation Banff 2010 29 / 50

Page 143: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Putting things togetherR(δ) ≈ 1

γ∗ln(1 + C2

eγ∗δ

ln3 N

)p(δ) ≈ C1e−γ

∗δ

vnoiseN = v cutoff

N +

∫dδ p(δ)R(δ), Dnoise

N =

∫dδ p(δ)R(δ)2

This givesvnoise

N ≈ v cutoffN +

C1C2γ∗2

3 ln lnNln3 N

, DnoiseN ≈ C1C2

γ∗3π2

3 ln3 NTimescales

Relevant values of δ are ≈ 1γ∗ 3 ln lnN

Time between two relevant fluctuations is ln3 NRelaxation time is ln2 N

C1C2 ?

Cutoff theory gives v = v∗ − π2v ′′(γ∗)2L2 with L = 1

γ∗ lnN

Use instead the effective length L = 1γ∗ [lnN + 3 ln lnN]

Éric Brunet (Paris) FKPP Equation Banff 2010 29 / 50

Page 144: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Putting things togetherR(δ) ≈ 1

γ∗ln(1 + C2

eγ∗δ

ln3 N

)p(δ) ≈ C1e−γ

∗δ

vnoiseN = v cutoff

N +

∫dδ p(δ)R(δ), Dnoise

N =

∫dδ p(δ)R(δ)2

This givesvnoise

N ≈ v cutoffN +

C1C2γ∗2

3 ln lnNln3 N

, DnoiseN ≈ C1C2

γ∗3π2

3 ln3 NTimescales

Relevant values of δ are ≈ 1γ∗ 3 ln lnN

Time between two relevant fluctuations is ln3 NRelaxation time is ln2 N

C1C2 ?

Cutoff theory gives v = v∗ − π2v ′′(γ∗)2L2 with L = 1

γ∗ lnN

Use instead the effective length L = 1γ∗ [lnN + 3 ln lnN]

Éric Brunet (Paris) FKPP Equation Banff 2010 29 / 50

Page 145: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Putting things togetherR(δ) ≈ 1

γ∗ln(1 + C2

eγ∗δ

ln3 N

)p(δ) ≈ C1e−γ

∗δ

vnoiseN = v cutoff

N +

∫dδ p(δ)R(δ), Dnoise

N =

∫dδ p(δ)R(δ)2

This givesvnoise

N ≈ v cutoffN +

C1C2γ∗2

3 ln lnNln3 N

, DnoiseN ≈ C1C2

γ∗3π2

3 ln3 NTimescales

Relevant values of δ are ≈ 1γ∗ 3 ln lnN

Time between two relevant fluctuations is ln3 NRelaxation time is ln2 N

C1C2 ?

Cutoff theory gives v = v∗ − π2v ′′(γ∗)2L2 with L = 1

γ∗ lnN

Use instead the effective length L = 1γ∗ [lnN + 3 ln lnN]

Éric Brunet (Paris) FKPP Equation Banff 2010 29 / 50

Page 146: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Relation between N and L

A diffuse, A→ 2A,/ / / / / / / / / / / /keep only the N rightmost

a wall moving at velocity v absorbs the particles

replaced by������������������������������������������������

������������������������������������������������

vwall = 2− π2

L2

Start with one particle at x > 0Condition on the fact that thereis one living particle at largetime THow many particles at anintermediate time ?

Starts with a density looking likethe actual front

h(x , 0) ∝ L sin πxL e−x

Populate with N particlesProba to survive

∼ 1− e−KNL3e−L

L ≈ lnN + 3 ln lnN

Éric Brunet (Paris) FKPP Equation Banff 2010 30 / 50

Page 147: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Relation between N and L

A diffuse, A→ 2A, a wall moving at velocity v absorbs the particles

replaced by������������������������������������������������

������������������������������������������������

vwall = 2− π2

L2

Start with one particle at x > 0Condition on the fact that thereis one living particle at largetime THow many particles at anintermediate time ?

Starts with a density looking likethe actual front

h(x , 0) ∝ L sin πxL e−x

Populate with N particlesProba to survive

∼ 1− e−KNL3e−L

L ≈ lnN + 3 ln lnN

Éric Brunet (Paris) FKPP Equation Banff 2010 30 / 50

Page 148: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Relation between N and L

A diffuse, A→ 2A, a wall moving at velocity v absorbs the particles

replaced by������������������������������������������������

������������������������������������������������

vwall = 2− π2

L2

Start with one particle at x > 0Condition on the fact that thereis one living particle at largetime THow many particles at anintermediate time ?

Starts with a density looking likethe actual front

h(x , 0) ∝ L sin πxL e−x

Populate with N particlesProba to survive

∼ 1− e−KNL3e−L

L ≈ lnN + 3 ln lnN

Éric Brunet (Paris) FKPP Equation Banff 2010 30 / 50

Page 149: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Relation between N and L

A diffuse, A→ 2A, a wall moving at velocity v absorbs the particles

replaced by������������������������������������������������

������������������������������������������������

vwall = 2− π2

L2

Start with one particle at x > 0Condition on the fact that thereis one living particle at largetime THow many particles at anintermediate time ?

Starts with a density looking likethe actual front

h(x , 0) ∝ L sin πxL e−x

Populate with N particlesProba to survive

∼ 1− e−KNL3e−L

L ≈ lnN + 3 ln lnNÉric Brunet (Paris) FKPP Equation Banff 2010 30 / 50

Page 150: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Relation between N and L

A diffuse, A→ 2A, a wall moving at velocity v absorbs the particles

replaced by������������������������������������������������

������������������������������������������������

vwall = 2− π2

L2

Start with one particle at x > 0Condition on the fact that thereis one living particle at largetime THow many particles at anintermediate time ?

Starts with a density looking likethe actual front

h(x , 0) ∝ L sin πxL e−x

Populate with N particlesProba to survive

∼ 1− e−KNL3e−L

L ≈ lnN + 3 ln lnNÉric Brunet (Paris) FKPP Equation Banff 2010 30 / 50

Page 151: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Relation between N and L

A diffuse, A→ 2A, a wall moving at velocity v absorbs the particles

replaced by������������������������������������������������

������������������������������������������������

vwall = 2− π2

L2

Start with one particle at x > 0Condition on the fact that thereis one living particle at largetime THow many particles at anintermediate time ?

Starts with a density looking likethe actual front

h(x , 0) ∝ L sin πxL e−x

Populate with N particles

Proba to survive

∼ 1− e−KNL3e−L

L ≈ lnN + 3 ln lnNÉric Brunet (Paris) FKPP Equation Banff 2010 30 / 50

Page 152: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Relation between N and L

A diffuse, A→ 2A, a wall moving at velocity v absorbs the particles

replaced by������������������������������������������������

������������������������������������������������

vwall = 2− π2

L2

Start with one particle at x > 0Condition on the fact that thereis one living particle at largetime THow many particles at anintermediate time ?

Starts with a density looking likethe actual front

h(x , 0) ∝ L sin πxL e−x

Populate with N particlesProba to survive

∼ 1− e−KNL3e−L

L ≈ lnN + 3 ln lnNÉric Brunet (Paris) FKPP Equation Banff 2010 30 / 50

Page 153: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Relation between N and L

A diffuse, A→ 2A, a wall moving at velocity v absorbs the particles

replaced by������������������������������������������������

������������������������������������������������

vwall = 2− π2

L2

Start with one particle at x > 0Condition on the fact that thereis one living particle at largetime THow many particles at anintermediate time ?

Starts with a density looking likethe actual front

h(x , 0) ∝ L sin πxL e−x

Populate with N particlesProba to survive ∼ 1− e−KNL3e−L

L ≈ lnN + 3 ln lnNÉric Brunet (Paris) FKPP Equation Banff 2010 30 / 50

Page 154: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Conclusion

vnoiseN = v∗ − π2γ∗2v ′′(γ∗)

2(lnN + 3 ln lnN + · · · )2 DnoiseN =

π4γ∗v ′′(γ∗)3(lnN + · · · )3

A phenomenological theory gives a prediction for vN and DN

Agrees with simulationsWe still need a clean derivation

Exponential model

Éric Brunet (Paris) FKPP Equation Banff 2010 31 / 50

Page 155: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Outline1 Deterministic Fronts

x

h1

0

∂th = ∂2x h + h(1− h)

h(x , t + 1) = min[

1, 2∫ 1

0dε h(x − ε, t)

]. . .

2 Stochastic Fronts

x

h1

0

∂th = ∂2x h + h(1− h) + (small noise term)

h(x , t + 1) = min[

1, 2∫ 1

0dε h(x − ε, t) + · · ·

]. . .

3 Fronts and Branching Brownian Motion

Éric Brunet (Paris) FKPP Equation Banff 2010 32 / 50

Page 156: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The models

Position

t

Branching Random WalkAt each time step, particles split intotwoThe positions of the offspring are shiftedby random uncorrelated amounts

Branching Brownian MotionParticles do a Brownian motionWith rate 1, they split

Also: directed polymer on a Caley tree,evolution,GREM (?)

Positions of the rightmost particles ? (Energy spectrum ?)

Éric Brunet (Paris) FKPP Equation Banff 2010 33 / 50

Page 157: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The models

Position

t

Branching Random WalkAt each time step, particles split intotwoThe positions of the offspring are shiftedby random uncorrelated amounts

Branching Brownian MotionParticles do a Brownian motionWith rate 1, they split

Also: directed polymer on a Caley tree,evolution,GREM (?)

Positions of the rightmost particles ? (Energy spectrum ?)

Éric Brunet (Paris) FKPP Equation Banff 2010 33 / 50

Page 158: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The models

Position

t

Branching Random WalkAt each time step, particles split intotwoThe positions of the offspring are shiftedby random uncorrelated amounts

Branching Brownian MotionParticles do a Brownian motionWith rate 1, they split

Also: directed polymer on a Caley tree,evolution,GREM (?)

Positions of the rightmost particles ? (Energy spectrum ?)

Éric Brunet (Paris) FKPP Equation Banff 2010 33 / 50

Page 159: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The models

Position

t

Branching Random WalkAt each time step, particles split intotwoThe positions of the offspring are shiftedby random uncorrelated amounts

Branching Brownian MotionParticles do a Brownian motionWith rate 1, they split

Also: directed polymer on a Caley tree,evolution,GREM (?)

Positions of the rightmost particles ? (Energy spectrum ?)Éric Brunet (Paris) FKPP Equation Banff 2010 33 / 50

Page 160: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The rightmost particle

Branching Brownian MotionParticles do a Brownian motionWith rate 1, they split

Distribution of the rightmost

Q0(x , t) = Proba[X1(t) < x ]

Q0(x , t) =

(〈X1(t)〉

1

0

)

∂tQ0 = ∂2x Q0 − Q0 + Q02

Q0(x , 0) =

(0

0

1)

FKPP equation! (h = 1− Q)Position of the rightmost

X1(t) = 2t − 32 ln t +O(1)

Éric Brunet (Paris) FKPP Equation Banff 2010 34 / 50

Page 161: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The rightmost particle

Branching Brownian MotionParticles do a Brownian motionWith rate 1, they split

Distribution of the rightmost

Q0(x , t) = Proba[X1(t) < x ]

Q0(x , t) =

(〈X1(t)〉

1

0

)

∂tQ0 = ∂2x Q0 − Q0 + Q02

Q0(x , 0) =

(0

0

1)

FKPP equation! (h = 1− Q)Position of the rightmost

X1(t) = 2t − 32 ln t +O(1)

Éric Brunet (Paris) FKPP Equation Banff 2010 34 / 50

Page 162: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The rightmost particle

Branching Brownian MotionParticles do a Brownian motionWith rate 1, they split

Distribution of the rightmost

Q0(x , t) = Proba[X1(t) < x ]

Q0(x , t) =

(〈X1(t)〉

1

0

)

∂tQ0 = ∂2x Q0 − Q0 + Q02

Q0(x , 0) =

(0

0

1)

FKPP equation! (h = 1− Q)Position of the rightmost

X1(t) = 2t − 32 ln t +O(1)

Éric Brunet (Paris) FKPP Equation Banff 2010 34 / 50

Page 163: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The rightmost particle

Branching Brownian MotionParticles do a Brownian motionWith rate 1, they split

Distribution of the rightmost

Q0(x , t) = Proba[X1(t) < x ]

Q0(x , t) =

(〈X1(t)〉

1

0

)

∂tQ0 = ∂2x Q0 − Q0 + Q02

Q0(x , 0) =

(0

0

1)

FKPP equation! (h = 1− Q)Position of the rightmost

X1(t) = 2t − 32 ln t +O(1)

Éric Brunet (Paris) FKPP Equation Banff 2010 34 / 50

Page 164: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The rightmost particle

Branching Brownian MotionParticles do a Brownian motionWith rate 1, they split

Distribution of the rightmost

Q0(x , t) = Proba[X1(t) < x ]

Q0(x , t) =

(〈X1(t)〉

1

0

)

∂tQ0 = ∂2x Q0 − Q0 + Q02

Q0(x , 0) =

(0

0

1)

FKPP equation! (h = 1− Q)Position of the rightmost

X1(t) = 2t − 32 ln t +O(1)

Éric Brunet (Paris) FKPP Equation Banff 2010 34 / 50

Page 165: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The rightmost particle

Branching Brownian MotionParticles do a Brownian motionWith rate 1, they split

Distribution of the rightmost

Q0(x , t) = Proba[X1(t) < x ]

Q0(x , t) =

(〈X1(t)〉

1

0

)

∂tQ0 = ∂2x Q0 − Q0 + Q02

Q0(x , 0) =

(0

0

1)

FKPP equation! (h = 1− Q)Position of the rightmost

X1(t) = 2t − 32 ln t +O(1)

Éric Brunet (Paris) FKPP Equation Banff 2010 34 / 50

Page 166: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The rightmost particle

Branching Brownian MotionParticles do a Brownian motionWith rate 1, they split

Distribution of the rightmost

Q0(x , t) = Proba[X1(t) < x ]

Q0(x , t) =

(〈X1(t)〉

1

0

)

∂tQ0 = ∂2x Q0 − Q0 + Q02

Q0(x , 0) =

(0

0

1)

FKPP equation! (h = 1− Q)

Position of the rightmost

X1(t) = 2t − 32 ln t +O(1)

Éric Brunet (Paris) FKPP Equation Banff 2010 34 / 50

Page 167: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

The rightmost particle

Branching Brownian MotionParticles do a Brownian motionWith rate 1, they split

Distribution of the rightmost

Q0(x , t) = Proba[X1(t) < x ]

Q0(x , t) =

(〈X1(t)〉

1

0

)

∂tQ0 = ∂2x Q0 − Q0 + Q02

Q0(x , 0) =

(0

0

1)

FKPP equation! (h = 1− Q)Position of the rightmost

X1(t) = 2t − 32 ln t +O(1)

Éric Brunet (Paris) FKPP Equation Banff 2010 34 / 50

Page 168: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Why the FKPP equation ?In general, for any well-behaved function φ, let

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

What does happen between times 0 and dt ?

Hφ(x , t + dt) =⟨

(1− dt)Hφ

(x − η

√2dt, t

)⟩η︸ ︷︷ ︸

the initial particle did not branch

+ dt Hφ(x , t)2︸ ︷︷ ︸the initial particle did branch

∂tHφ = ∂2x Hφ − Hφ + H2φ Hφ(x , 0) = φ(x)

For φ(x) =

(0

0

1), Hφ is the probability Q0 that all the

particles are on the left of x

Hφ(Xt +z , t)→ F2(z) with Xt = 2t− 32 ln t +a0− 3√π√

t+

a1t +

a3/2t3/2 + · · ·

For φ(x) =

(0

1

0

), Hφ(Xt + z , t)→ F2(z),

Hφ(Xt + z , t)→ F2(z + δ[φ])

Éric Brunet (Paris) FKPP Equation Banff 2010 35 / 50

Page 169: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Why the FKPP equation ?In general, for any well-behaved function φ, let

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

What does happen between times 0 and dt ?

Hφ(x , t + dt) =⟨

(1− dt)Hφ

(x − η

√2dt, t

)⟩η︸ ︷︷ ︸

the initial particle did not branch

+ dt Hφ(x , t)2︸ ︷︷ ︸the initial particle did branch

∂tHφ = ∂2x Hφ − Hφ + H2φ Hφ(x , 0) = φ(x)

For φ(x) =

(0

0

1), Hφ is the probability Q0 that all the

particles are on the left of x

Hφ(Xt +z , t)→ F2(z) with Xt = 2t− 32 ln t +a0− 3√π√

t+

a1t +

a3/2t3/2 + · · ·

For φ(x) =

(0

1

0

), Hφ(Xt + z , t)→ F2(z),

Hφ(Xt + z , t)→ F2(z + δ[φ])

Éric Brunet (Paris) FKPP Equation Banff 2010 35 / 50

Page 170: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Why the FKPP equation ?In general, for any well-behaved function φ, let

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

What does happen between times 0 and dt ?

Hφ(x , t + dt) =⟨

(1− dt)Hφ

(x − η

√2dt, t

)⟩η︸ ︷︷ ︸

the initial particle did not branch

+ dt Hφ(x , t)2︸ ︷︷ ︸the initial particle did branch

∂tHφ = ∂2x Hφ − Hφ + H2φ

Hφ(x , 0) = φ(x)

For φ(x) =

(0

0

1), Hφ is the probability Q0 that all the

particles are on the left of x

Hφ(Xt +z , t)→ F2(z) with Xt = 2t− 32 ln t +a0− 3√π√

t+

a1t +

a3/2t3/2 + · · ·

For φ(x) =

(0

1

0

), Hφ(Xt + z , t)→ F2(z),

Hφ(Xt + z , t)→ F2(z + δ[φ])

Éric Brunet (Paris) FKPP Equation Banff 2010 35 / 50

Page 171: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Why the FKPP equation ?In general, for any well-behaved function φ, let

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

What does happen between times 0 and dt ?

Hφ(x , t + dt) =⟨

(1− dt)Hφ

(x − η

√2dt, t

)⟩η︸ ︷︷ ︸

the initial particle did not branch

+ dt Hφ(x , t)2︸ ︷︷ ︸the initial particle did branch

∂tHφ = ∂2x Hφ − Hφ + H2φ Hφ(x , 0) = φ(x)

For φ(x) =

(0

0

1), Hφ is the probability Q0 that all the

particles are on the left of x

Hφ(Xt +z , t)→ F2(z) with Xt = 2t− 32 ln t +a0− 3√π√

t+

a1t +

a3/2t3/2 + · · ·

For φ(x) =

(0

1

0

), Hφ(Xt + z , t)→ F2(z),

Hφ(Xt + z , t)→ F2(z + δ[φ])

Éric Brunet (Paris) FKPP Equation Banff 2010 35 / 50

Page 172: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Why the FKPP equation ?In general, for any well-behaved function φ, let

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

What does happen between times 0 and dt ?

Hφ(x , t + dt) =⟨

(1− dt)Hφ

(x − η

√2dt, t

)⟩η︸ ︷︷ ︸

the initial particle did not branch

+ dt Hφ(x , t)2︸ ︷︷ ︸the initial particle did branch

∂tHφ = ∂2x Hφ − Hφ + H2φ Hφ(x , 0) = φ(x)

For φ(x) =

(0

0

1), Hφ is the probability Q0 that all the

particles are on the left of x

Hφ(Xt +z , t)→ F2(z) with Xt = 2t− 32 ln t +a0− 3√π√

t+

a1t +

a3/2t3/2 + · · ·

For φ(x) =

(0

1

0

), Hφ(Xt + z , t)→ F2(z),

Hφ(Xt + z , t)→ F2(z + δ[φ])

Éric Brunet (Paris) FKPP Equation Banff 2010 35 / 50

Page 173: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Why the FKPP equation ?In general, for any well-behaved function φ, let

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

What does happen between times 0 and dt ?

Hφ(x , t + dt) =⟨

(1− dt)Hφ

(x − η

√2dt, t

)⟩η︸ ︷︷ ︸

the initial particle did not branch

+ dt Hφ(x , t)2︸ ︷︷ ︸the initial particle did branch

∂tHφ = ∂2x Hφ − Hφ + H2φ Hφ(x , 0) = φ(x)

For φ(x) =

(0

0

1), Hφ is the probability Q0 that all the

particles are on the left of x

Hφ(Xt +z , t)→ F2(z) with Xt = 2t− 32 ln t +a0− 3√π√

t+

a1t +

a3/2t3/2 + · · ·

For φ(x) =

(0

1

0

), Hφ(Xt + z , t)→ F2(z),

Hφ(Xt + z , t)→ F2(z + δ[φ])

Éric Brunet (Paris) FKPP Equation Banff 2010 35 / 50

Page 174: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Why the FKPP equation ?In general, for any well-behaved function φ, let

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

What does happen between times 0 and dt ?

Hφ(x , t + dt) =⟨

(1− dt)Hφ

(x − η

√2dt, t

)⟩η︸ ︷︷ ︸

the initial particle did not branch

+ dt Hφ(x , t)2︸ ︷︷ ︸the initial particle did branch

∂tHφ = ∂2x Hφ − Hφ + H2φ Hφ(x , 0) = φ(x)

For φ(x) =

(0

0

1), Hφ is the probability Q0 that all the

particles are on the left of x

Hφ(Xt +z , t)→ F2(z) with Xt = 2t− 32 ln t +a0− 3√π√

t+

a1t +

a3/2t3/2 + · · ·

For φ(x) =

(0

1

0

),

Hφ(Xt + z , t)→ F2(z),Hφ(Xt + z , t)→ F2(z + δ[φ])

Éric Brunet (Paris) FKPP Equation Banff 2010 35 / 50

Page 175: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Why the FKPP equation ?In general, for any well-behaved function φ, let

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

What does happen between times 0 and dt ?

Hφ(x , t + dt) =⟨

(1− dt)Hφ

(x − η

√2dt, t

)⟩η︸ ︷︷ ︸

the initial particle did not branch

+ dt Hφ(x , t)2︸ ︷︷ ︸the initial particle did branch

∂tHφ = ∂2x Hφ − Hφ + H2φ Hφ(x , 0) = φ(x)

For φ(x) =

(0

0

1), Hφ is the probability Q0 that all the

particles are on the left of x

Hφ(Xt +z , t)→ F2(z) with Xt = 2t− 32 ln t +a0− 3√π√

t+

a1t +

a3/2t3/2 + · · ·

For φ(x) =

(0

1

0

), Hφ(Xt + z , t)→ F2(z),

Hφ(Xt + z , t)→ F2(z + δ[φ])

Éric Brunet (Paris) FKPP Equation Banff 2010 35 / 50

Page 176: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Why the FKPP equation ?In general, for any well-behaved function φ, let

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

What does happen between times 0 and dt ?

Hφ(x , t + dt) =⟨

(1− dt)Hφ

(x − η

√2dt, t

)⟩η︸ ︷︷ ︸

the initial particle did not branch

+ dt Hφ(x , t)2︸ ︷︷ ︸the initial particle did branch

∂tHφ = ∂2x Hφ − Hφ + H2φ Hφ(x , 0) = φ(x)

For φ(x) =

(0

0

1), Hφ is the probability Q0 that all the

particles are on the left of x

Hφ(Xt +z , t)→ F2(z) with Xt = 2t− 32 ln t +a0− 3√π√

t+

a1t +

a3/2t3/2 + · · ·

For φ(x) =

(0

1

0

), Hφ(Xt + z , t)→ F2(z),

Hφ(Xt + z , t)→ F2(z + δ[φ])

Éric Brunet (Paris) FKPP Equation Banff 2010 35 / 50

Page 177: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Position, shape and delay

For φ(x) =

(0

0

1),

Hφ(Xt + z , t)→ F2(z)

For φ(x) =

(0

1

0

λ

),

Hφ(Xt + z , t)→ F2(z + δ[φ])

t = 0

1050-5

1

0.8

0.6

0.4

0.2

0

t = 20t = 10t = 5

454035302520151050-5

1

0.8

0.6

0.4

0.2

0

Éric Brunet (Paris) FKPP Equation Banff 2010 36 / 50

Page 178: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Position, shape and delay

For φ(x) =

(0

0

1),

Hφ(Xt + z , t)→ F2(z)

For φ(x) =

(0

1

0

λ

),

Hφ(Xt + z , t)→ F2(z + δ[φ])

t = 0

1050-5

1

0.8

0.6

0.4

0.2

0

t = 1

1050-5

1

0.8

0.6

0.4

0.2

0

t = 20t = 10t = 5

454035302520151050-5

1

0.8

0.6

0.4

0.2

0

Éric Brunet (Paris) FKPP Equation Banff 2010 36 / 50

Page 179: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Position, shape and delay

For φ(x) =

(0

0

1),

Hφ(Xt + z , t)→ F2(z)

For φ(x) =

(0

1

0

λ

),

Hφ(Xt + z , t)→ F2(z + δ[φ])

t = 0

1050-5

1

0.8

0.6

0.4

0.2

0

t = 1

1050-5

1

0.8

0.6

0.4

0.2

0

t = 2

1050-5

1

0.8

0.6

0.4

0.2

0

t = 20t = 10t = 5

454035302520151050-5

1

0.8

0.6

0.4

0.2

0

Éric Brunet (Paris) FKPP Equation Banff 2010 36 / 50

Page 180: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Position, shape and delay

For φ(x) =

(0

0

1),

Hφ(Xt + z , t)→ F2(z)

For φ(x) =

(0

1

0

λ

),

Hφ(Xt + z , t)→ F2(z + δ[φ])

t = 0

1050-5

1

0.8

0.6

0.4

0.2

0

t = 1

1050-5

1

0.8

0.6

0.4

0.2

0

t = 2

1050-5

1

0.8

0.6

0.4

0.2

0

t = 5

454035302520151050-5

1

0.8

0.6

0.4

0.2

0

t = 20t = 10t = 5

454035302520151050-5

1

0.8

0.6

0.4

0.2

0

Éric Brunet (Paris) FKPP Equation Banff 2010 36 / 50

Page 181: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Position, shape and delay

For φ(x) =

(0

0

1),

Hφ(Xt + z , t)→ F2(z)

For φ(x) =

(0

1

0

λ

),

Hφ(Xt + z , t)→ F2(z + δ[φ])

t = 0

1050-5

1

0.8

0.6

0.4

0.2

0

t = 1

1050-5

1

0.8

0.6

0.4

0.2

0

t = 2

1050-5

1

0.8

0.6

0.4

0.2

0

t = 10t = 5

454035302520151050-5

1

0.8

0.6

0.4

0.2

0

t = 20t = 10t = 5

454035302520151050-5

1

0.8

0.6

0.4

0.2

0

Éric Brunet (Paris) FKPP Equation Banff 2010 36 / 50

Page 182: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Position, shape and delay

For φ(x) =

(0

0

1),

Hφ(Xt + z , t)→ F2(z)

For φ(x) =

(0

1

0

λ

),

Hφ(Xt + z , t)→ F2(z + δ[φ])

t = 0

1050-5

1

0.8

0.6

0.4

0.2

0

t = 1

1050-5

1

0.8

0.6

0.4

0.2

0

t = 2

1050-5

1

0.8

0.6

0.4

0.2

0

t = 20t = 10t = 5

454035302520151050-5

1

0.8

0.6

0.4

0.2

0

Éric Brunet (Paris) FKPP Equation Banff 2010 36 / 50

Page 183: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Universality

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

Position

t

Branching Random WalkAt each time step, particles split intotwoThe positions of the offspring are shiftedby random uncorrelated amounts ε

Suppose ε is uniform in [0, 1]

Hφ(x , t + 1) =

[∫ 1

0dε Hφ(x − ε, t)

]2v = 0.815172 . . . γ = 5.26208 . . .

Binary search treeDuring dt, a particle at position x is replaced with probability dt bytwo particles at position x + 1

∂tHφ(x , t) = −Hφ(x , t) + Hφ(x − 1, t)2

v = 4.31107 . . . γ = 0.768039 . . .

Éric Brunet (Paris) FKPP Equation Banff 2010 37 / 50

Page 184: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Universality

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

Position

t

Branching Random WalkAt each time step, particles split intotwoThe positions of the offspring are shiftedby random uncorrelated amounts εSuppose ε is uniform in [0, 1]

Hφ(x , t + 1) =

[∫ 1

0dε Hφ(x − ε, t)

]2v = 0.815172 . . . γ = 5.26208 . . .

Binary search treeDuring dt, a particle at position x is replaced with probability dt bytwo particles at position x + 1

∂tHφ(x , t) = −Hφ(x , t) + Hφ(x − 1, t)2

v = 4.31107 . . . γ = 0.768039 . . .

Éric Brunet (Paris) FKPP Equation Banff 2010 37 / 50

Page 185: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Universality

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

Position

t

Branching Random WalkAt each time step, particles split intotwoThe positions of the offspring are shiftedby random uncorrelated amounts εSuppose ε is uniform in [0, 1]

Hφ(x , t + 1) =

[∫ 1

0dε Hφ(x − ε, t)

]2v = 0.815172 . . . γ = 5.26208 . . .

Binary search treeDuring dt, a particle at position x is replaced with probability dt bytwo particles at position x + 1

∂tHφ(x , t) = −Hφ(x , t) + Hφ(x − 1, t)2

v = 4.31107 . . . γ = 0.768039 . . .Éric Brunet (Paris) FKPP Equation Banff 2010 37 / 50

Page 186: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Average distances

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

with φ =

(0

1

0

λ

)

Hφ gives the average positions of the rightmost particles

Hφ(x , t) =⟨λN(x ,t)

⟩with N(x , t) =

[Number of particles on theright of x at time t

]Hφ(x , t) = Q0(x , t) + λQ1(x , t) + λ2Q2(x , t) + · · ·

with Qn(x , t) = proba to find n particles on the right of x{∂tHφ = ∂2x Hφ − Hφ + H2

φ ∂tQ0 = ∂2x Q0 − Q0 + Q20

∂tQ1 = ∂2x Q1 − Q1 + 2Q0Q1 ∂tQ2 = ∂2x Q2 − Q2 + 2Q0Q2 + Q21

Then ∂xQn(x , t) = pn+1(x , t)− pn(x , t)

with pn(x , t) = proba to find the nth rightmost particle at x

Éric Brunet (Paris) FKPP Equation Banff 2010 38 / 50

Page 187: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Average distances

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

⟩with φ =

(0

1

0

λ

)

Hφ gives the average positions of the rightmost particles

Hφ(x , t) =⟨λN(x ,t)

⟩with N(x , t) =

[Number of particles on theright of x at time t

]Hφ(x , t) = Q0(x , t) + λQ1(x , t) + λ2Q2(x , t) + · · ·

with Qn(x , t) = proba to find n particles on the right of x{∂tHφ = ∂2x Hφ − Hφ + H2

φ ∂tQ0 = ∂2x Q0 − Q0 + Q20

∂tQ1 = ∂2x Q1 − Q1 + 2Q0Q1 ∂tQ2 = ∂2x Q2 − Q2 + 2Q0Q2 + Q21

Then ∂xQn(x , t) = pn+1(x , t)− pn(x , t)

with pn(x , t) = proba to find the nth rightmost particle at x

Éric Brunet (Paris) FKPP Equation Banff 2010 38 / 50

Page 188: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Average distances

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

⟩with φ =

(0

1

0

λ

)

Hφ gives the average positions of the rightmost particles

Hφ(x , t) =⟨λN(x ,t)

⟩with N(x , t) =

[Number of particles on theright of x at time t

]

Hφ(x , t) = Q0(x , t) + λQ1(x , t) + λ2Q2(x , t) + · · ·with Qn(x , t) = proba to find n particles on the right of x{

∂tHφ = ∂2x Hφ − Hφ + H2φ ∂tQ0 = ∂2x Q0 − Q0 + Q2

0

∂tQ1 = ∂2x Q1 − Q1 + 2Q0Q1 ∂tQ2 = ∂2x Q2 − Q2 + 2Q0Q2 + Q21

Then ∂xQn(x , t) = pn+1(x , t)− pn(x , t)

with pn(x , t) = proba to find the nth rightmost particle at x

Éric Brunet (Paris) FKPP Equation Banff 2010 38 / 50

Page 189: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Average distances

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

⟩with φ =

(0

1

0

λ

)

Hφ gives the average positions of the rightmost particles

Hφ(x , t) =⟨λN(x ,t)

⟩with N(x , t) =

[Number of particles on theright of x at time t

]Hφ(x , t) = Q0(x , t) + λQ1(x , t) + λ2Q2(x , t) + · · ·

with Qn(x , t) = proba to find n particles on the right of x

{∂tHφ = ∂2x Hφ − Hφ + H2

φ ∂tQ0 = ∂2x Q0 − Q0 + Q20

∂tQ1 = ∂2x Q1 − Q1 + 2Q0Q1 ∂tQ2 = ∂2x Q2 − Q2 + 2Q0Q2 + Q21

Then ∂xQn(x , t) = pn+1(x , t)− pn(x , t)

with pn(x , t) = proba to find the nth rightmost particle at x

Éric Brunet (Paris) FKPP Equation Banff 2010 38 / 50

Page 190: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Average distances

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

⟩with φ =

(0

1

0

λ

)

Hφ gives the average positions of the rightmost particles

Hφ(x , t) =⟨λN(x ,t)

⟩with N(x , t) =

[Number of particles on theright of x at time t

]Hφ(x , t) = Q0(x , t) + λQ1(x , t) + λ2Q2(x , t) + · · ·

with Qn(x , t) = proba to find n particles on the right of x{∂tHφ = ∂2x Hφ − Hφ + H2

φ ∂tQ0 = ∂2x Q0 − Q0 + Q20

∂tQ1 = ∂2x Q1 − Q1 + 2Q0Q1 ∂tQ2 = ∂2x Q2 − Q2 + 2Q0Q2 + Q21

Then ∂xQn(x , t) = pn+1(x , t)− pn(x , t)

with pn(x , t) = proba to find the nth rightmost particle at x

Éric Brunet (Paris) FKPP Equation Banff 2010 38 / 50

Page 191: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Average distances

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

⟩with φ =

(0

1

0

λ

)

Hφ gives the average positions of the rightmost particles

Hφ(x , t) =⟨λN(x ,t)

⟩with N(x , t) =

[Number of particles on theright of x at time t

]Hφ(x , t) = Q0(x , t) + λQ1(x , t) + λ2Q2(x , t) + · · ·

with Qn(x , t) = proba to find n particles on the right of x{∂tHφ = ∂2x Hφ − Hφ + H2

φ ∂tQ0 = ∂2x Q0 − Q0 + Q20

∂tQ1 = ∂2x Q1 − Q1 + 2Q0Q1 ∂tQ2 = ∂2x Q2 − Q2 + 2Q0Q2 + Q21

Then ∂xQn(x , t) = pn+1(x , t)− pn(x , t)

with pn(x , t) = proba to find the nth rightmost particle at x

Éric Brunet (Paris) FKPP Equation Banff 2010 38 / 50

Page 192: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Average distancesSummary φ =

(0

1

0

λ

)⇒ Hφ(x , t) obeys the FKPP equation

⇒ deduce the equations on Qn(x , t) (proba n particles on the right of x)⇒ compute pn(x , t) (proba nth rightmost particle at x)⇒ compute 〈Xn(t)〉 (average position of nth particle)⇒ compute 〈dn,n+1(t)〉 (average distance between nth and (n + 1)th particles)

Measure the average distances by integrating p.d.e.Possible to reach large times (t ≈ 3000), no statistical noise∑

n≥1λn〈dn,n+1(t)〉 =

∫dx x∂x [Q0(x , t)− Hφ(x , t)] = Xt − Xt

Xt = 2t − 32 ln t + a0 − 3√π√

t + a1t +

a3/2t3/2 + · · ·

∑n≥1

λn〈dn,n+1(t)〉 = δ[φ] +A1t +

A3/2t3/2 + · · ·

Éric Brunet (Paris) FKPP Equation Banff 2010 39 / 50

Page 193: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Average distancesSummary φ =

(0

1

0

λ

)⇒ Hφ(x , t) obeys the FKPP equation⇒ deduce the equations on Qn(x , t) (proba n particles on the right of x)

⇒ compute pn(x , t) (proba nth rightmost particle at x)⇒ compute 〈Xn(t)〉 (average position of nth particle)⇒ compute 〈dn,n+1(t)〉 (average distance between nth and (n + 1)th particles)

Measure the average distances by integrating p.d.e.Possible to reach large times (t ≈ 3000), no statistical noise∑

n≥1λn〈dn,n+1(t)〉 =

∫dx x∂x [Q0(x , t)− Hφ(x , t)] = Xt − Xt

Xt = 2t − 32 ln t + a0 − 3√π√

t + a1t +

a3/2t3/2 + · · ·

∑n≥1

λn〈dn,n+1(t)〉 = δ[φ] +A1t +

A3/2t3/2 + · · ·

Éric Brunet (Paris) FKPP Equation Banff 2010 39 / 50

Page 194: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Average distancesSummary φ =

(0

1

0

λ

)⇒ Hφ(x , t) obeys the FKPP equation⇒ deduce the equations on Qn(x , t) (proba n particles on the right of x)⇒ compute pn(x , t) (proba nth rightmost particle at x)

⇒ compute 〈Xn(t)〉 (average position of nth particle)⇒ compute 〈dn,n+1(t)〉 (average distance between nth and (n + 1)th particles)

Measure the average distances by integrating p.d.e.Possible to reach large times (t ≈ 3000), no statistical noise∑

n≥1λn〈dn,n+1(t)〉 =

∫dx x∂x [Q0(x , t)− Hφ(x , t)] = Xt − Xt

Xt = 2t − 32 ln t + a0 − 3√π√

t + a1t +

a3/2t3/2 + · · ·

∑n≥1

λn〈dn,n+1(t)〉 = δ[φ] +A1t +

A3/2t3/2 + · · ·

Éric Brunet (Paris) FKPP Equation Banff 2010 39 / 50

Page 195: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Average distancesSummary φ =

(0

1

0

λ

)⇒ Hφ(x , t) obeys the FKPP equation⇒ deduce the equations on Qn(x , t) (proba n particles on the right of x)⇒ compute pn(x , t) (proba nth rightmost particle at x)⇒ compute 〈Xn(t)〉 (average position of nth particle)

⇒ compute 〈dn,n+1(t)〉 (average distance between nth and (n + 1)th particles)

Measure the average distances by integrating p.d.e.Possible to reach large times (t ≈ 3000), no statistical noise∑

n≥1λn〈dn,n+1(t)〉 =

∫dx x∂x [Q0(x , t)− Hφ(x , t)] = Xt − Xt

Xt = 2t − 32 ln t + a0 − 3√π√

t + a1t +

a3/2t3/2 + · · ·

∑n≥1

λn〈dn,n+1(t)〉 = δ[φ] +A1t +

A3/2t3/2 + · · ·

Éric Brunet (Paris) FKPP Equation Banff 2010 39 / 50

Page 196: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Average distancesSummary φ =

(0

1

0

λ

)⇒ Hφ(x , t) obeys the FKPP equation⇒ deduce the equations on Qn(x , t) (proba n particles on the right of x)⇒ compute pn(x , t) (proba nth rightmost particle at x)⇒ compute 〈Xn(t)〉 (average position of nth particle)⇒ compute 〈dn,n+1(t)〉 (average distance between nth and (n + 1)th particles)

Measure the average distances by integrating p.d.e.Possible to reach large times (t ≈ 3000), no statistical noise∑

n≥1λn〈dn,n+1(t)〉 =

∫dx x∂x [Q0(x , t)− Hφ(x , t)] = Xt − Xt

Xt = 2t − 32 ln t + a0 − 3√π√

t + a1t +

a3/2t3/2 + · · ·

∑n≥1

λn〈dn,n+1(t)〉 = δ[φ] +A1t +

A3/2t3/2 + · · ·

Éric Brunet (Paris) FKPP Equation Banff 2010 39 / 50

Page 197: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Average distancesSummary φ =

(0

1

0

λ

)⇒ Hφ(x , t) obeys the FKPP equation⇒ deduce the equations on Qn(x , t) (proba n particles on the right of x)⇒ compute pn(x , t) (proba nth rightmost particle at x)⇒ compute 〈Xn(t)〉 (average position of nth particle)⇒ compute 〈dn,n+1(t)〉 (average distance between nth and (n + 1)th particles)

Measure the average distances by integrating p.d.e.Possible to reach large times (t ≈ 3000), no statistical noise

∑n≥1

λn〈dn,n+1(t)〉 =

∫dx x∂x [Q0(x , t)− Hφ(x , t)] = Xt − Xt

Xt = 2t − 32 ln t + a0 − 3√π√

t + a1t +

a3/2t3/2 + · · ·

∑n≥1

λn〈dn,n+1(t)〉 = δ[φ] +A1t +

A3/2t3/2 + · · ·

Éric Brunet (Paris) FKPP Equation Banff 2010 39 / 50

Page 198: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Average distancesSummary φ =

(0

1

0

λ

)⇒ Hφ(x , t) obeys the FKPP equation⇒ deduce the equations on Qn(x , t) (proba n particles on the right of x)⇒ compute pn(x , t) (proba nth rightmost particle at x)⇒ compute 〈Xn(t)〉 (average position of nth particle)⇒ compute 〈dn,n+1(t)〉 (average distance between nth and (n + 1)th particles)

Measure the average distances by integrating p.d.e.Possible to reach large times (t ≈ 3000), no statistical noise∑

n≥1λn〈dn,n+1(t)〉 =

∫dx x∂x [Q0(x , t)− Hφ(x , t)] = Xt − Xt

Xt = 2t − 32 ln t + a0 − 3√π√

t + a1t +

a3/2t3/2 + · · ·

∑n≥1

λn〈dn,n+1(t)〉 = δ[φ] +A1t +

A3/2t3/2 + · · ·

Éric Brunet (Paris) FKPP Equation Banff 2010 39 / 50

Page 199: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Average distancesSummary φ =

(0

1

0

λ

)⇒ Hφ(x , t) obeys the FKPP equation⇒ deduce the equations on Qn(x , t) (proba n particles on the right of x)⇒ compute pn(x , t) (proba nth rightmost particle at x)⇒ compute 〈Xn(t)〉 (average position of nth particle)⇒ compute 〈dn,n+1(t)〉 (average distance between nth and (n + 1)th particles)

Measure the average distances by integrating p.d.e.Possible to reach large times (t ≈ 3000), no statistical noise∑

n≥1λn〈dn,n+1(t)〉 =

∫dx x∂x [Q0(x , t)− Hφ(x , t)] = Xt − Xt

Xt = 2t − 32 ln t + a0 − 3√π√

t + a1t +

a3/2t3/2 + · · ·

∑n≥1

λn〈dn,n+1(t)〉 = δ[φ] +A1t +

A3/2t3/2 + · · ·

Éric Brunet (Paris) FKPP Equation Banff 2010 39 / 50

Page 200: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Average distancesSummary φ =

(0

1

0

λ

)⇒ Hφ(x , t) obeys the FKPP equation⇒ deduce the equations on Qn(x , t) (proba n particles on the right of x)⇒ compute pn(x , t) (proba nth rightmost particle at x)⇒ compute 〈Xn(t)〉 (average position of nth particle)⇒ compute 〈dn,n+1(t)〉 (average distance between nth and (n + 1)th particles)

Measure the average distances by integrating p.d.e.Possible to reach large times (t ≈ 3000), no statistical noise∑

n≥1λn〈dn,n+1(t)〉 =

∫dx x∂x [Q0(x , t)− Hφ(x , t)] = Xt − Xt

Xt = 2t − 32 ln t + a0 − 3√π√

t + a1t +

a3/2t3/2 + · · ·

∑n≥1

λn〈dn,n+1(t)〉 = δ[φ] +A1t +

A3/2t3/2 + · · ·

Éric Brunet (Paris) FKPP Equation Banff 2010 39 / 50

Page 201: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Numerical results: average distancesThe results: average distances as a function of 1/t

⟨d3,4⟩

150

165

1100

1200

0

0.224

0.223

0.222

0.221

0.220

0.219

⟨d2,3⟩

150

165

1100

1200

0

0.309

0.308

0.307

0.306

0.305

0.304

0.303

⟨d1,2⟩

150

165

1100

1200

0

0.503

0.502

0.501

0.500

0.499

0.498

0.497

0.496

In the long time limit

〈d1,2〉st ' 0.496 〈d2,3〉st ' 0.303 〈d3,4〉st ' 0.219〈d4,5〉st ' 0.172 〈d5,6〉st ' 0.142 〈d6,7〉st ' 0.121

Éric Brunet (Paris) FKPP Equation Banff 2010 40 / 50

Page 202: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

P.d.f. of the distances between two particles

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

with φ =

(1

0

λµ0

λ

−a

)

Hφ(x , t) =⟨λN(x ,t)µN(x+a,t)

⟩with N(x , t) =

[Number of particles on theright of x at time t

]

⇒ Qmn(x , a, t) = Proba[N(x , t) = n and N(x + a, t) = m

]⇒ Rmn(x , a, t) = Proba

[N(x , t) < n and N(x + a, t) < m

]⇒ (∂x−∂a)Rmn(x , a, t)dx = Proba

[Xn(t) ∈ dx and N(x +a, t) < m

]⇒ (∂x − ∂a)Rmn(x , a, t)dx = Proba

[Xn(t) ∈ dx and Xm(t) < x + a

]⇒

∫dx (∂x − ∂a)Rmn(x , a, t) = Proba

[Xm(t)− Xn(t) < a

]Hφ gives the p.d.f. of the distance between mth and nth particles

Éric Brunet (Paris) FKPP Equation Banff 2010 41 / 50

Page 203: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

P.d.f. of the distances between two particles

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

⟩with φ =

(1

0

λµ0

λ

−a

)

Hφ(x , t) =⟨λN(x ,t)µN(x+a,t)

⟩with N(x , t) =

[Number of particles on theright of x at time t

]

⇒ Qmn(x , a, t) = Proba[N(x , t) = n and N(x + a, t) = m

]⇒ Rmn(x , a, t) = Proba

[N(x , t) < n and N(x + a, t) < m

]⇒ (∂x−∂a)Rmn(x , a, t)dx = Proba

[Xn(t) ∈ dx and N(x +a, t) < m

]⇒ (∂x − ∂a)Rmn(x , a, t)dx = Proba

[Xn(t) ∈ dx and Xm(t) < x + a

]⇒

∫dx (∂x − ∂a)Rmn(x , a, t) = Proba

[Xm(t)− Xn(t) < a

]Hφ gives the p.d.f. of the distance between mth and nth particles

Éric Brunet (Paris) FKPP Equation Banff 2010 41 / 50

Page 204: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

P.d.f. of the distances between two particles

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

⟩with φ =

(1

0

λµ0

λ

−a

)

Hφ(x , t) =⟨λN(x ,t)µN(x+a,t)

⟩with N(x , t) =

[Number of particles on theright of x at time t

]

⇒ Qmn(x , a, t) = Proba[N(x , t) = n and N(x + a, t) = m

]⇒ Rmn(x , a, t) = Proba

[N(x , t) < n and N(x + a, t) < m

]⇒ (∂x−∂a)Rmn(x , a, t)dx = Proba

[Xn(t) ∈ dx and N(x +a, t) < m

]⇒ (∂x − ∂a)Rmn(x , a, t)dx = Proba

[Xn(t) ∈ dx and Xm(t) < x + a

]⇒

∫dx (∂x − ∂a)Rmn(x , a, t) = Proba

[Xm(t)− Xn(t) < a

]Hφ gives the p.d.f. of the distance between mth and nth particles

Éric Brunet (Paris) FKPP Equation Banff 2010 41 / 50

Page 205: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

P.d.f. of the distances between two particles

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

⟩with φ =

(1

0

λµ0

λ

−a

)

Hφ(x , t) =⟨λN(x ,t)µN(x+a,t)

⟩with N(x , t) =

[Number of particles on theright of x at time t

]

⇒ Qmn(x , a, t) = Proba[N(x , t) = n and N(x + a, t) = m

]

⇒ Rmn(x , a, t) = Proba[N(x , t) < n and N(x + a, t) < m

]⇒ (∂x−∂a)Rmn(x , a, t)dx = Proba

[Xn(t) ∈ dx and N(x +a, t) < m

]⇒ (∂x − ∂a)Rmn(x , a, t)dx = Proba

[Xn(t) ∈ dx and Xm(t) < x + a

]⇒

∫dx (∂x − ∂a)Rmn(x , a, t) = Proba

[Xm(t)− Xn(t) < a

]Hφ gives the p.d.f. of the distance between mth and nth particles

Éric Brunet (Paris) FKPP Equation Banff 2010 41 / 50

Page 206: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

P.d.f. of the distances between two particles

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

⟩with φ =

(1

0

λµ0

λ

−a

)

Hφ(x , t) =⟨λN(x ,t)µN(x+a,t)

⟩with N(x , t) =

[Number of particles on theright of x at time t

]

⇒ Qmn(x , a, t) = Proba[N(x , t) = n and N(x + a, t) = m

]⇒ Rmn(x , a, t) = Proba

[N(x , t) < n and N(x + a, t) < m

]

⇒ (∂x−∂a)Rmn(x , a, t)dx = Proba[Xn(t) ∈ dx and N(x +a, t) < m

]⇒ (∂x − ∂a)Rmn(x , a, t)dx = Proba

[Xn(t) ∈ dx and Xm(t) < x + a

]⇒

∫dx (∂x − ∂a)Rmn(x , a, t) = Proba

[Xm(t)− Xn(t) < a

]Hφ gives the p.d.f. of the distance between mth and nth particles

Éric Brunet (Paris) FKPP Equation Banff 2010 41 / 50

Page 207: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

P.d.f. of the distances between two particles

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

⟩with φ =

(1

0

λµ0

λ

−a

)

Hφ(x , t) =⟨λN(x ,t)µN(x+a,t)

⟩with N(x , t) =

[Number of particles on theright of x at time t

]

⇒ Qmn(x , a, t) = Proba[N(x , t) = n and N(x + a, t) = m

]⇒ Rmn(x , a, t) = Proba

[N(x , t) < n and N(x + a, t) < m

]⇒ (∂x−∂a)Rmn(x , a, t)dx = Proba

[Xn(t) ∈ dx and N(x +a, t) < m

]

⇒ (∂x − ∂a)Rmn(x , a, t)dx = Proba[Xn(t) ∈ dx and Xm(t) < x + a

]⇒

∫dx (∂x − ∂a)Rmn(x , a, t) = Proba

[Xm(t)− Xn(t) < a

]Hφ gives the p.d.f. of the distance between mth and nth particles

Éric Brunet (Paris) FKPP Equation Banff 2010 41 / 50

Page 208: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

P.d.f. of the distances between two particles

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

⟩with φ =

(1

0

λµ0

λ

−a

)

Hφ(x , t) =⟨λN(x ,t)µN(x+a,t)

⟩with N(x , t) =

[Number of particles on theright of x at time t

]

⇒ Qmn(x , a, t) = Proba[N(x , t) = n and N(x + a, t) = m

]⇒ Rmn(x , a, t) = Proba

[N(x , t) < n and N(x + a, t) < m

]⇒ (∂x−∂a)Rmn(x , a, t)dx = Proba

[Xn(t) ∈ dx and N(x +a, t) < m

]⇒ (∂x − ∂a)Rmn(x , a, t)dx = Proba

[Xn(t) ∈ dx and Xm(t) < x + a

]

⇒∫

dx (∂x − ∂a)Rmn(x , a, t) = Proba[Xm(t)− Xn(t) < a

]Hφ gives the p.d.f. of the distance between mth and nth particles

Éric Brunet (Paris) FKPP Equation Banff 2010 41 / 50

Page 209: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

P.d.f. of the distances between two particles

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

⟩with φ =

(1

0

λµ0

λ

−a

)

Hφ(x , t) =⟨λN(x ,t)µN(x+a,t)

⟩with N(x , t) =

[Number of particles on theright of x at time t

]

⇒ Qmn(x , a, t) = Proba[N(x , t) = n and N(x + a, t) = m

]⇒ Rmn(x , a, t) = Proba

[N(x , t) < n and N(x + a, t) < m

]⇒ (∂x−∂a)Rmn(x , a, t)dx = Proba

[Xn(t) ∈ dx and N(x +a, t) < m

]⇒ (∂x − ∂a)Rmn(x , a, t)dx = Proba

[Xn(t) ∈ dx and Xm(t) < x + a

]⇒

∫dx (∂x − ∂a)Rmn(x , a, t) = Proba

[Xm(t)− Xn(t) < a

]Hφ gives the p.d.f. of the distance between mth and nth particles

Éric Brunet (Paris) FKPP Equation Banff 2010 41 / 50

Page 210: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Numerical results: p.d.f. of the distances

As of function of a, density of probability that X1 − X2 = a

2e−2adatapoints

32.521.510.50

2.01.81.61.41.21.00.80.60.40.20.0

e−(1+√

2)a2e−2a

datapoints110−50

10−100

10−150

10−200

10−250

10−300

10−350

10−400

4003002001000

Éric Brunet (Paris) FKPP Equation Banff 2010 42 / 50

Page 211: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Numerical results: p.d.f. of the distances

As of function of a, density of probability that X1 − X2 = a

2e−2adatapoints

32.521.510.50

2.01.81.61.41.21.00.80.60.40.20.0

e−(1+√

2)a2e−2a

datapoints110−50

10−100

10−150

10−200

10−250

10−300

10−350

10−400

4003002001000

Éric Brunet (Paris) FKPP Equation Banff 2010 42 / 50

Page 212: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Density at a distance a

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

with φ =

(1

0

−λe

0 a

)

Hφ(x , t) =⟨e−λN(x−a,t)

1N(x ,t)=0⟩

⇒ (∂x + ∂a)Hφ(x , t)dx =⟨e−λN(x−a,t)

1X1(t)∈dx⟩

⇒ 1 +

∫dx ∂aHφ(x , t) =

⟨e−λN(X1(t)−a,t)

⟩Hφ gives the generating function of the number ofparticles within a distance a of the rightmost particle

Éric Brunet (Paris) FKPP Equation Banff 2010 43 / 50

Page 213: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Density at a distance a

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

⟩with φ =

(1

0

−λe

0 a

)

Hφ(x , t) =⟨e−λN(x−a,t)

1N(x ,t)=0⟩

⇒ (∂x + ∂a)Hφ(x , t)dx =⟨e−λN(x−a,t)

1X1(t)∈dx⟩

⇒ 1 +

∫dx ∂aHφ(x , t) =

⟨e−λN(X1(t)−a,t)

⟩Hφ gives the generating function of the number ofparticles within a distance a of the rightmost particle

Éric Brunet (Paris) FKPP Equation Banff 2010 43 / 50

Page 214: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Density at a distance a

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

⟩with φ =

(1

0

−λe

0 a

)

Hφ(x , t) =⟨e−λN(x−a,t)

1N(x ,t)=0⟩

⇒ (∂x + ∂a)Hφ(x , t)dx =⟨e−λN(x−a,t)

1X1(t)∈dx⟩

⇒ 1 +

∫dx ∂aHφ(x , t) =

⟨e−λN(X1(t)−a,t)

⟩Hφ gives the generating function of the number ofparticles within a distance a of the rightmost particle

Éric Brunet (Paris) FKPP Equation Banff 2010 43 / 50

Page 215: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Density at a distance a

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

⟩with φ =

(1

0

−λe

0 a

)

Hφ(x , t) =⟨e−λN(x−a,t)

1N(x ,t)=0⟩

⇒ (∂x + ∂a)Hφ(x , t)dx =⟨e−λN(x−a,t)

1X1(t)∈dx⟩

⇒ 1 +

∫dx ∂aHφ(x , t) =

⟨e−λN(X1(t)−a,t)

⟩Hφ gives the generating function of the number ofparticles within a distance a of the rightmost particle

Éric Brunet (Paris) FKPP Equation Banff 2010 43 / 50

Page 216: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Density at a distance a

Hφ(x , t) =

⟨∏iφ[x − Xi (t)]

⟩with φ =

(1

0

−λe

0 a

)

Hφ(x , t) =⟨e−λN(x−a,t)

1N(x ,t)=0⟩

⇒ (∂x + ∂a)Hφ(x , t)dx =⟨e−λN(x−a,t)

1X1(t)∈dx⟩

⇒ 1 +

∫dx ∂aHφ(x , t) =

⟨e−λN(X1(t)−a,t)

⟩Hφ gives the generating function of the number ofparticles within a distance a of the rightmost particle

Éric Brunet (Paris) FKPP Equation Banff 2010 43 / 50

Page 217: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Numerical results: density at a distance aρ1(X1 − a)e−a as a function of a

302520151050

2018161412108642

ρ1(X1 − a) =1da

(Average number of particles in an interval daat a distance a of the rightmost particle

)

ρ1(X1 − a) ' aea

Éric Brunet (Paris) FKPP Equation Banff 2010 44 / 50

Page 218: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Numerical results: density at a distance aρ1(X1 − a)e−a as a function of a

302520151050

2018161412108642

ρ1(X1 − a) =1da

(Average number of particles in an interval daat a distance a of the rightmost particle

)

ρ1(X1 − a) ' aea

Éric Brunet (Paris) FKPP Equation Banff 2010 44 / 50

Page 219: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Analytical result: average distances

∂tHφ = ∂2x Hφ − Hφ + H2φ, Hφ(x , 0) = φ(x)

Xt is the position for φ(x) =

(0

0

1)

Xt is the position for φ(x) =

(0

1

0

λ

)∑n≥1

λn〈dn,n+1(t)〉 = Xt − Xt −−−→t→∞δ[φ]

For λ close to 1, δ[φ] = τλ − ln τλ +O(1) with τλ = − ln(1− λ)

〈dn,n+1〉st =1n −

1n ln n + · · · for large n

Éric Brunet (Paris) FKPP Equation Banff 2010 45 / 50

Page 220: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Analytical result: average distances

∂tHφ = ∂2x Hφ − Hφ + H2φ, Hφ(x , 0) = φ(x)

Xt is the position for φ(x) =

(0

0

1)

Xt is the position for φ(x) =

(0

1

0

λ

)∑n≥1

λn〈dn,n+1(t)〉 = Xt − Xt −−−→t→∞δ[φ]

For λ close to 1, δ[φ] = τλ − ln τλ +O(1) with τλ = − ln(1− λ)

〈dn,n+1〉st =1n −

1n ln n + · · · for large n

Éric Brunet (Paris) FKPP Equation Banff 2010 45 / 50

Page 221: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Analytical result: average distances

∂tHφ = ∂2x Hφ − Hφ + H2φ, Hφ(x , 0) = φ(x)

Xt is the position for φ(x) =

(0

0

1)

Xt is the position for φ(x) =

(0

1

0

λ

)∑n≥1

λn〈dn,n+1(t)〉 = Xt − Xt −−−→t→∞δ[φ]

For λ close to 1, δ[φ] = τλ − ln τλ +O(1) with τλ = − ln(1− λ)

〈dn,n+1〉st =1n −

1n ln n + · · · for large n

Éric Brunet (Paris) FKPP Equation Banff 2010 45 / 50

Page 222: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Analytical result: average distances

∂tHφ = ∂2x Hφ − Hφ + H2φ with Hφ(x , 0) =

(0

1

0

λ

)

For λ ' 1, δ[φ] = τλ − ln τλ +O(1) with τλ = − ln(1− λ)

τλ = time needed for Hφ(−∞, 0) to “reach” 0As long as t � τλ, one has 1− Hφ � 1

1− Hφ(x , t) ' 1− λ2 et erfc

( x√4t

)for t � τλ or x large enough

Xt is the position, let vt = ∂tXt be the velocity. For t large enough,Hφ(x , t) ' Fvt (x − Xt)

' 1− A1(vt)e−γt (x−Xt )

Matching in the range 1� x − Xt �√

t gives the resultAs a bonus: Xt ≈ 2t

√1− τλ/t.

Éric Brunet (Paris) FKPP Equation Banff 2010 46 / 50

Page 223: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Analytical result: average distances

∂tHφ = ∂2x Hφ − Hφ + H2φ with Hφ(x , 0) =

(0

1

0

λ

)

For λ ' 1, δ[φ] = τλ − ln τλ +O(1) with τλ = − ln(1− λ)

τλ = time needed for Hφ(−∞, 0) to “reach” 0As long as t � τλ, one has 1− Hφ � 1

1− Hφ(x , t) ' 1− λ2 et erfc

( x√4t

)for t � τλ or x large enough

Xt is the position, let vt = ∂tXt be the velocity. For t large enough,Hφ(x , t) ' Fvt (x − Xt)

' 1− A1(vt)e−γt (x−Xt )

Matching in the range 1� x − Xt �√

t gives the resultAs a bonus: Xt ≈ 2t

√1− τλ/t.

Éric Brunet (Paris) FKPP Equation Banff 2010 46 / 50

Page 224: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Analytical result: average distances

∂tHφ = ∂2x Hφ − Hφ + H2φ with Hφ(x , 0) =

(0

1

0

λ

)

For λ ' 1, δ[φ] = τλ − ln τλ +O(1) with τλ = − ln(1− λ)

τλ = time needed for Hφ(−∞, 0) to “reach” 0As long as t � τλ, one has 1− Hφ � 1

1− Hφ(x , t) ' 1− λ2 et erfc

( x√4t

)for t � τλ

or x large enough

Xt is the position, let vt = ∂tXt be the velocity. For t large enough,Hφ(x , t) ' Fvt (x − Xt)

' 1− A1(vt)e−γt (x−Xt )

Matching in the range 1� x − Xt �√

t gives the resultAs a bonus: Xt ≈ 2t

√1− τλ/t.

Éric Brunet (Paris) FKPP Equation Banff 2010 46 / 50

Page 225: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Analytical result: average distances

∂tHφ = ∂2x Hφ − Hφ + H2φ with Hφ(x , 0) =

(0

1

0

λ

)

For λ ' 1, δ[φ] = τλ − ln τλ +O(1) with τλ = − ln(1− λ)

τλ = time needed for Hφ(−∞, 0) to “reach” 0As long as t � τλ, one has 1− Hφ � 1

1− Hφ(x , t) ' 1− λ2 et erfc

( x√4t

)for t � τλ or x large enough

Xt is the position, let vt = ∂tXt be the velocity. For t large enough,Hφ(x , t) ' Fvt (x − Xt)

' 1− A1(vt)e−γt (x−Xt )

Matching in the range 1� x − Xt �√

t gives the resultAs a bonus: Xt ≈ 2t

√1− τλ/t.

Éric Brunet (Paris) FKPP Equation Banff 2010 46 / 50

Page 226: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Analytical result: average distances

∂tHφ = ∂2x Hφ − Hφ + H2φ with Hφ(x , 0) =

(0

1

0

λ

)

For λ ' 1, δ[φ] = τλ − ln τλ +O(1) with τλ = − ln(1− λ)

τλ = time needed for Hφ(−∞, 0) to “reach” 0As long as t � τλ, one has 1− Hφ � 1

1− Hφ(x , t) ' 1− λ2 et erfc

( x√4t

)for t � τλ or x large enough

Xt is the position, let vt = ∂tXt be the velocity. For t large enough,Hφ(x , t) ' Fvt (x − Xt)

' 1− A1(vt)e−γt (x−Xt )

Matching in the range 1� x − Xt �√

t gives the resultAs a bonus: Xt ≈ 2t

√1− τλ/t.

∂2x Fv + v∂xFv − Fv + F 2v = 0

Éric Brunet (Paris) FKPP Equation Banff 2010 46 / 50

Page 227: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Analytical result: average distances

∂tHφ = ∂2x Hφ − Hφ + H2φ with Hφ(x , 0) =

(0

1

0

λ

)

For λ ' 1, δ[φ] = τλ − ln τλ +O(1) with τλ = − ln(1− λ)

τλ = time needed for Hφ(−∞, 0) to “reach” 0As long as t � τλ, one has 1− Hφ � 1

1− Hφ(x , t) ' 1− λ2 et erfc

( x√4t

)for t � τλ or x large enough

Xt is the position, let vt = ∂tXt be the velocity. For t large enough,Hφ(x , t) ' Fvt (x − Xt) ' 1− A1(vt)e−γt (x−Xt )

Matching in the range 1� x − Xt �√

t gives the resultAs a bonus: Xt ≈ 2t

√1− τλ/t.

vt = γt +1γt, γt < 1, 1− Fv (z) = A1(vt)e−γtz + A2(vt)e−

1γt

z

Éric Brunet (Paris) FKPP Equation Banff 2010 46 / 50

Page 228: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Analytical result: average distances

∂tHφ = ∂2x Hφ − Hφ + H2φ with Hφ(x , 0) =

(0

1

0

λ

)

For λ ' 1, δ[φ] = τλ − ln τλ +O(1) with τλ = − ln(1− λ)

τλ = time needed for Hφ(−∞, 0) to “reach” 0As long as t � τλ, one has 1− Hφ � 1

1− Hφ(x , t) ' 1− λ2 et erfc

( x√4t

)for t � τλ or x large enough

Xt is the position, let vt = ∂tXt be the velocity. For t large enough,Hφ(x , t) ' Fvt (x − Xt) ' 1− A1(vt)e−γt (x−Xt )

Matching in the range 1� x − Xt �√

t gives the resultAs a bonus: Xt ≈ 2t

√1− τλ/t.

Éric Brunet (Paris) FKPP Equation Banff 2010 46 / 50

Page 229: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Analytical result: average distances

∂tHφ = ∂2x Hφ − Hφ + H2φ with Hφ(x , 0) =

(0

1

0

λ

)

For λ ' 1, δ[φ] = τλ − ln τλ +O(1) with τλ = − ln(1− λ)

τλ = time needed for Hφ(−∞, 0) to “reach” 0As long as t � τλ, one has 1− Hφ � 1

1− Hφ(x , t) ' 1− λ2 et erfc

( x√4t

)for t � τλ or x large enough

Xt is the position, let vt = ∂tXt be the velocity. For t large enough,Hφ(x , t) ' Fvt (x − Xt) ' 1− A1(vt)e−γt (x−Xt )

Matching in the range 1� x − Xt �√

t gives the resultAs a bonus: Xt ≈ 2t

√1− τλ/t.

Éric Brunet (Paris) FKPP Equation Banff 2010 46 / 50

Page 230: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Analytical result: distance and densityP.d.f. of the distances:φ =

(1

0

λµ0

λ

−a

)=⇒ Qmn(x , a, t) =⇒ Rmn(x , a, t) =⇒ . . .

Number of particles on the right of X1(t)− a: φ =(

1

0

−λe

0 a

)=⇒ . . .

∂tQ = ∂2x Q − Q + Q2 with Q(x , 0) =(

00

1)

∂tRa = ∂2x Ra − Ra + 2QRa with Ra(x , 0) = δ(x + a) =(

0−a 0

1)

∂t Ra = ∂2x Ra − Ra + 2QRa with Ra(x , 0) = δ(x − a) =(

00

1

a

)

Proba[X1(t)− X2(t) > a] =

∫dx Ra(x , t)

≈ e−(1+√2)a ?

⟨N(X1(t)− a, t)

⟩=

∫dx Ra(x , t)

≈ aea ?

Ra(x , t)→ λaQ′(x , t) for t large

Éric Brunet (Paris) FKPP Equation Banff 2010 47 / 50

Page 231: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Analytical result: distance and densityP.d.f. of the distances:φ =

(1

0

λµ0

λ

−a

)=⇒ Qmn(x , a, t) =⇒ Rmn(x , a, t) =⇒ . . .

Number of particles on the right of X1(t)− a: φ =(

1

0

−λe

0 a

)=⇒ . . .

∂tQ = ∂2x Q − Q + Q2 with Q(x , 0) =(

00

1)

∂tRa = ∂2x Ra − Ra + 2QRa with Ra(x , 0) = δ(x + a) =(

0−a 0

1)

∂t Ra = ∂2x Ra − Ra + 2QRa with Ra(x , 0) = δ(x − a) =(

00

1

a

)

Proba[X1(t)− X2(t) > a] =

∫dx Ra(x , t)

≈ e−(1+√2)a ?

⟨N(X1(t)− a, t)

⟩=

∫dx Ra(x , t)

≈ aea ?

Ra(x , t)→ λaQ′(x , t) for t large

Éric Brunet (Paris) FKPP Equation Banff 2010 47 / 50

Page 232: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Analytical result: distance and densityP.d.f. of the distances:φ =

(1

0

λµ0

λ

−a

)=⇒ Qmn(x , a, t) =⇒ Rmn(x , a, t) =⇒ . . .

Number of particles on the right of X1(t)− a: φ =(

1

0

−λe

0 a

)=⇒ . . .

∂tQ = ∂2x Q − Q + Q2 with Q(x , 0) =(

00

1)

∂tRa = ∂2x Ra − Ra + 2QRa with Ra(x , 0) = δ(x + a) =(

0−a 0

1)

∂t Ra = ∂2x Ra − Ra + 2QRa with Ra(x , 0) = δ(x − a) =(

00

1

a

)

Proba[X1(t)− X2(t) > a] =

∫dx Ra(x , t)

≈ e−(1+√2)a ?

⟨N(X1(t)− a, t)

⟩=

∫dx Ra(x , t)

≈ aea ?

Ra(x , t)→ λaQ′(x , t) for t large

Éric Brunet (Paris) FKPP Equation Banff 2010 47 / 50

Page 233: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Analytical result: distance and densityP.d.f. of the distances:φ =

(1

0

λµ0

λ

−a

)=⇒ Qmn(x , a, t) =⇒ Rmn(x , a, t) =⇒ . . .

Number of particles on the right of X1(t)− a: φ =(

1

0

−λe

0 a

)=⇒ . . .

∂tQ = ∂2x Q − Q + Q2 with Q(x , 0) =(

00

1)

∂tRa = ∂2x Ra − Ra + 2QRa with Ra(x , 0) = δ(x + a) =(

0−a 0

1)

∂t Ra = ∂2x Ra − Ra + 2QRa with Ra(x , 0) = δ(x − a) =(

00

1

a

)

Proba[X1(t)− X2(t) > a] =

∫dx Ra(x , t) ≈ e−(1+

√2)a ?⟨

N(X1(t)− a, t)⟩

=

∫dx Ra(x , t) ≈ aea ?

Ra(x , t)→ λaQ′(x , t) for t large

Éric Brunet (Paris) FKPP Equation Banff 2010 47 / 50

Page 234: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Analytical result: distance and densityP.d.f. of the distances:φ =

(1

0

λµ0

λ

−a

)=⇒ Qmn(x , a, t) =⇒ Rmn(x , a, t) =⇒ . . .

Number of particles on the right of X1(t)− a: φ =(

1

0

−λe

0 a

)=⇒ . . .

∂tQ = ∂2x Q − Q + Q2 with Q(x , 0) =(

00

1)

∂tRa = ∂2x Ra − Ra + 2QRa with Ra(x , 0) = δ(x + a) =(

0−a 0

1)

∂t Ra = ∂2x Ra − Ra + 2QRa with Ra(x , 0) = δ(x − a) =(

00

1

a

)

Proba[X1(t)− X2(t) > a] =

∫dx Ra(x , t) ≈ e−(1+

√2)a ?⟨

N(X1(t)− a, t)⟩

=

∫dx Ra(x , t) ≈ aea ?

Ra(x , t)→ λaQ′(x , t) for t largeÉric Brunet (Paris) FKPP Equation Banff 2010 47 / 50

Page 235: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Thank you !

Éric Brunet (Paris) FKPP Equation Banff 2010 48 / 50

Page 236: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Exponential model

N particles, discrete timeEach particle has infinitely many offspringgiven by a Poisson process of density ψ: foreach dx , there is an offspring with probabilityψ(x − xparent) dxOne only keep the N rightmost particles of a given generation

Usually a Fisher equation

v(γ) =1γln(∫

dε ψ(ε)eγε)

But not always: ψ(ε) = e−ε

Éric Brunet (Paris) FKPP Equation Banff 2010 49 / 50

Page 237: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Exponential model

N particles, discrete timeEach particle has infinitely many offspringgiven by a Poisson process of density ψ: foreach dx , there is an offspring with probabilityψ(x − xparent) dxOne only keep the N rightmost particles of a given generation

Usually a Fisher equation

v(γ) =1γln(∫

dε ψ(ε)eγε)

But not always: ψ(ε) = e−ε

Éric Brunet (Paris) FKPP Equation Banff 2010 49 / 50

Page 238: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Exponential model

N particles, discrete timeEach particle has infinitely many offspringgiven by a Poisson process of density ψ: foreach dx , there is an offspring with probabilityψ(x − xparent) dxOne only keep the N rightmost particles of a given generation

Usually a Fisher equation

v(γ) =1γln(∫

dε ψ(ε)eγε)

But not always: ψ(ε) = e−ε

Éric Brunet (Paris) FKPP Equation Banff 2010 49 / 50

Page 239: The Fisher-KPP Equation and other Pulled Frontsmath.stanford.edu/~ryzhik/BANFF/brunet.pdf · TheFisher-KPPEquationandotherPulledFronts ÉricBrunet LaboratoiredePhysiqueStatistique,É.N.S.,UPMC,Paris

Exponential model vs FisherExponential model Fisher case

vN ln(lnN + ln lnN) +O( 1lnN

)v∗ − A

(lnN + 3 ln lnN)2

DNπ2

3(lnN + ln lnN)+O

( 1ln2 N

) B(lnN+???)3

p(δ) e−δ C1e−γ∗δ

R(δ) ln(1 +

eδlnN

)1γ∗

ln(1 + C2

eγ∗δ

ln3 N

)Relaxation time 1 ln2 N

Fluctuation size ln lnN 1γ∗

3 ln lnN

Conclusion

Éric Brunet (Paris) FKPP Equation Banff 2010 50 / 50