Top Banner
The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT
67

The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Mar 28, 2015

Download

Documents

Isaiah Lee
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

The First-Order Variable Hierachy on Ordered Graphs

Benjamin Rossman

MIT

Page 2: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Bounded Variable Logics

The variable complexity of a first-order formula is the maximum number of free variables in a subformula of .

FOm = { first-order formulas with variable complexity m }

Example: (in the language {E,<} of ordered graphs)

9x1 9x2 ( x1<x2 Æ Ex1x2 Æ 9x3 ( x2<x3 Æ Ex2x3 Æ

9x4 ( x3<x4 Æ Ex3x4 Æ 9x5 ( x4<x5 Æ Ex4x5 ).

This sentence expresses "there is an increasing path of length 5". Its variable complexity is 2.

Page 3: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Bounded Variable Logics

The variable complexity of a first-order formula is the maximum number of free variables in a subformula of .

FOm = { first-order formulas with variable complexity

Example:9x 9y ( x<y Æ Exy Æ 9x ( y<x Æ Eyx Æ

9y ( x<y Æ Exy Æ 9x ( y<x Æ Eyx ).

This sentence expresses "there is an increasing path of length 5". Its variable complexity is 2.

Variable complexity 2 means we can rewrite the formula using only 2 distinct variables (quantified multiple times). Hence, FOm is called the m-variable fragment of first-order logic.

Page 4: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Bounded Variable Logics

The variable hierarchy refers to

FO1 ½ FO2 ½ ½ FOm ½ where FO = m¸1 FOm.

Question: Is the variable hierarchy strict/non-collapsing (in terms of expressive power) on a given class of structures?

The answer is YES on the class of all structures (or all finite structures): "the universe contains at least m elements" is expressible in FOm but not FOm-1.

Page 5: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Bounded Variable Logics

Some collapse results: FO ´ FO2 on finite linear orders. FO ´ FO3 on finite linear orders with any

number of unary relations [Poizat '82]. Question: What about ordered graphs

(= finite simple graphs with a linear order)? k-CLIQUE is a natural candidate property for

proving the separation FOk-1 < FOk on ordered graphs.

Page 6: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Bounded Variable Logics

One can show 3-CLIQUE is not definable in FO2 by playing the 2-pebble Ehrenfeucht-Fraisse game on (seq. of) ordered graphs:

It had been an open question (since [Immerman '82]) whether FO ´ FO3 on ordered graphs.

G1

G2

Page 7: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Bounded Variable Logics

One can show 3-CLIQUE is not definable in FO2 by playing the 2-pebble Ehrenfeucht-Fraisse game on (seq. of) ordered graphs:

It had been an open question (since [Immerman '82]) whether FO ´ FO3 on ordered graphs.

G1

G2

Games on ordered graphs become difficult with ¸ 3 pebbles/variables.

One explanation may be that every finite ordered graph is defined up to isomorphism by a sentence of FO3.

Page 8: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Bounded Variable Logics

Theorem [R. '08]. k-CLIQUE is not definable in FObk/4c.

Corollary. FObk/4c < FOk on ordered graphs.

Lemma [Immerman '08]. On ordered graphs,

FOk-1 ´ FOk ) FOk ´ FOk+1

(i.e., if the variable hierarchy does not collapse, then it is strict).

Corollary. The variable hierarchy is strict (i.e., FOk < FOk+1) on ordered graphs.

Page 9: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Bounded Variable Logics

Theorem [R. '08]. k-CLIQUE is not definable in FObk/4c.

Corollary. FObk/4c < FOk on ordered graphs.

Lemma [Immerman '08]. On ordered graphs,

FOk-1 ´ FOk ) FOk ´ FOk+1

(i.e., if the variable hierarchy does not collapse, then it is strict).

Corollary. The variable hierarchy is strict (i.e., FOk < FOk+1) on ordered graphs.

These results hold not only for ordered graphs, but for classes of finite graphs with arbitrary numerical predicates (e.g., arithmetic + and £).

Page 10: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Bounded Variable Logics

Theorem [R. '08]. k-CLIQUE is not definable in FObk/4c.

Corollary. FObk/4c < FOk on ordered graphs.

Lemma [Immerman '08]. On ordered graphs,

FOk-1 ´ FOk ) FOk ´ FOk+1

(i.e., if the variable hierarchy does not collapse, then it is strict).

Corollary. The variable hierarchy is strict (i.e., FOk < FOk+1) on ordered graphs.

Moreover, we show that k/4 variables cannot distinguish classes {ordered graphs with no k-cliques} and {ordered graphs with a K-clique} for all k < K.

Page 11: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Circuits

Circuits are comprised of AND, OR, NOT gates (with unbounded fan-in).

We consider polynomial-size, constant-depth (i.e. AC0) circuits with input variables (representing potential edges in an n-vertex graph).

Descriptive Complexity: {m-variable, quantifier-depth d formulas} (on structures with arbitrary

numerical predicates, e.g., linear order)

´ {non-uniform AC0 circuits with size O(nm) and depth d}. [Immerman '82]

Page 12: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

AC0 Circuit (in normal form)

Æ

Æ Æ

Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç

ÆÆ Æ Æ Æ Æ

Ç Ç Ç.......

.....

....

Ç

Æ

1,2 n-1,n1,2 1,3 1,3 1,4 1,4 i, j i, j n-1,nn-2,n n-2,n......

size nO(1)

depth O(1)

Ç

Page 13: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

AC0 Lower Bound for k-Clique

The k-clique problem (on graphs of size n) requires depth-d circuits of what size?

Trivial upper bound: O(nk) (acheived in depth 2)

J. Lynch '86: (np(k/d3))

P. Beame '90: (nk/89d2)

Page 14: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

AC0 Lower Bound for k-Clique

The k-clique problem (on graphs of size n) requires depth-d circuits of what size?

Trivial upper bound: O(nk) (acheived by depth 2)

J. Lynch '86: (np(k/d3))

P. Beame '90: (nk/89d2)

These lower bounds degrade in the exponent of n as the depth d increases, becoming trivial when d > pk.

Page 15: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

AC0 Lower Bound for k-Clique

The k-clique problem (on graphs of size n) requires depth-d circuits of what size?

Trivial upper bound: O(nk) (acheived in depth 2)

J. Lynch '86: (np(k/d3))

P. Beame '90: (nk/89d2)

We show: (nk/4)

Page 16: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

k-Clique Lower Bound

The k-clique problem (on graphs of size n) requires depth-d circuits of what size?

Trivial upper bound: O(nk) (acheived in depth 2)

J. Lynch '86: (np(k/d3))

P. Beame '90: (nk/89d2)

We show: (nk/4)

We eliminate dependence on d in the exponent of n. Result holds up to depth d = O(plog n) and potentially up to clique-size k = o(log n).

Page 17: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Erdos-Renyi Random Graphs

The random graph ErdosRenyi(n,p),

p = p(n) 2 [0,1], has n vertices. Edges are independently included with probability p.

We parameterize p(n) = n– where > 0 (so small ! large p ! denser graph).

= 2/(k-1) is the threshold for the appearance of k-cliques. That is, ER(n,n-) almost surely has k-cliques if < 2/(k-1). ER(n,n-) almost surely has no k-clique if > 2/(k-1).

Page 18: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

ErdosRenyi(n,p)

n = 50

p = n–0.68

(p is above the threshold

n-2/3 for the appearance

of 4-cliques)

Erdos-Renyi Random Graphs

Page 19: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

A Bit of Notation

Notation 1. For an ordered graph G = hV, E, <i and a set A µ V, let

G[A] = G [ (clique on A) = hV, E [ , <i.

Notation 2. For ordered graphs G and H,

, G and H satisfy the same FOm

sentences of quantifier-depth d

, 9 winning strategy for Duplicator in

the d-round m-pebble game on G,H

HG md

Page 20: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Random Graph + Random Cliques

Let G = Erdos-Renyi(n,1/2) with linear order. Let e = random 2-element subset of {1,...,n}.

Theorem. [Ajtai, Furst-Saxe-Sipser, Hastad, Boppana, ...]

For every (quantifier-depth) d,

almost surely as n ! 1.

NB. This is a disguised way of saying that

AC0 functions have average sensitivity no(1).

G[e]G d

Page 21: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Random Graph + Random Cliques

Let G = Erdos-Renyi(n,n –

2/(k

1.5)) with lin. order.

NB. With high probability, G has no k-clique

but n(1) many (k–1)-cliques.

X µ {1,...,n} random of size |X| = k–1.

Obs 1. For every (quantifier-depth) d,

asymptotically almost surelyG[X]G d

Page 22: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Random Graph + Random Cliques

Let G = Erdos-Renyi(n,n –

2/(k

1.5)) with lin. order.

NB. With high probability, G has no k-clique

but n(1) many (k–1)-cliques.

X, A µ {1,...,n} random of size |X| = k–1, |A| = k.

Obs 1. For every (quantifier-depth) d,

asymptotically almost surely

Obs 2. a.a.s.

G[X]G d

G[A]G k/

Page 23: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Random Graph + Random Cliques

Let G = Erdos-Renyi(n,n –

2/(k

1.5)) with lin. order.

NB. With high probability, G has no k-clique

but n(1) many (k–1)-cliques.

X, A µ {1,...,n} random of size |X| = k–1, |A| = k.

Obs 1. For every (quantifier-depth) d,

asymptotically almost surely

Obs 2. a.a.s.

Main Theorem. For every (quantifier-depth) d,

a.a.s.

G[X]G d

G[A]G k/

G[A]G k/4d

Page 24: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Theorem. G = Erdos-Renyi(n, n–2/(k–1.5)), |A| = k.

Then a.a.s. for every d.G[A]G k/4d

Proof Idea. For each k/4-tuple of vertices v = (v1,...,vk/4), we

identify a small subset B(v) µ A (of size · k/2, but empty for most v).

Key Property: For every B(v) µ C µ A such that |C| · k/2,

hG[B(v)], vi ´d hG[C], vi.

Page 25: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Theorem. G = Erdos-Renyi(n, n–2/(k–1.5)), |A| = k.

Then a.a.s. for every d.G[A]G k/4d

Proof Idea. For each k/4-tuple of vertices v = (v1,...,vk/4), we

identify a small subset B(v) µ A (of size · k/2, but empty for most v).

Key Property: For every B(v) µ C µ A such that |C| · k/2,

hG[B(v)], vi ´d hG[C], vi.

In other words: Once you add the clique on B(v) to the pebbled

structure hG, vi, adding a larger subclique of A up to size · k/2 does

not change the ´d-theory.

Page 26: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Theorem. G = Erdos-Renyi(n, n–2/(k–1.5)), |A| = k.

Then a.a.s. for every d.G[A]G k/4d

Proof Idea. For each k/4-tuple of vertices v = (v1,...,vk/4), we

identify a small subset B(v) µ A (of size · k/2, but empty for most v).

Key Property: For every B(v) µ C µ A such that |C| · k/2,

hG[B(v)], vi ´d hG[C], vi.

Duplicator's Strategy: "Mentally substitute" the pebbled structure hG[B(v)], vi for hG[A], vi.

Page 27: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Theorem. G = Erdos-Renyi(n, n–2/(k–1.5)), |A| = k.

Then a.a.s. for every d.

Def. Call v = (v1,...,vk/4), w = (w1,...,wk/4) 2 [n]k/4

neighbors if vi wi for exactly one i 2 {1,...,k/4}.

Suppose we could show (with high probability):

There exist sets B(v) µ A for all v 2 [n]k/4 s.t.

1. B(u) = ; for some u,

2. B(v) ¶ A Å {v1,...,vk/4} for all v,

3. hG[B(v)], vi ´d hG[B(w)], vi for all nbrs v, w.

Then the conclusion follows easily!

G[A]G k/4d

G[A]G k/4d

Page 28: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Assume: There exist sets B(v) µ A, v 2 [n]k/4, such that

1. B(u) = ; for some u, 2. B(v) ¶ A Å {v1,...,vk/4} for all v,

3. hG[B(v)], vi ´d hG[B(w)], vi for all neighbors v, w.

Winning strategy for Duplicator in hG, ui hG[A], ui (k=12)

k/4d

u1 u2 u3 u1 u2 u30123456

G G[A]Round

Page 29: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Winning strategy for Duplicator in hG, ui hG[A], ui (k=12)

k/4d

u1 u2 u3

x u2 u3

u1 u2 u3

x u2 u3

0123456

G G[A]Round

Duplicator matches Spoilerexactly in Round 1.

Assume: There exist sets B(v) µ A, v 2 [n]k/4, such that

1. B(u) = ; for some u, 2. B(v) ¶ A Å {v1,...,vk/4} for all v,

3. hG[B(v)], vi ´d hG[B(w)], vi for all neighbors v, w.

Page 30: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Winning strategy for Duplicator in hG, ui hG[A], ui (k=12)

k/4d

u1 u2 u3

x u2 u3

u1 u2 u3

x u2 u3

0123456

G G[A]Round hG[B(u1,u2,u3)], x, u2, u3i´d hG[B(x,u2,u3)], x, u2, u3i

We have:

• G = G[B(u1,u2,u3)] by (1)

• ´d above by (3)

Assume: There exist sets B(v) µ A, v 2 [n]k/4, such that

1. B(u) = ; for some u, 2. B(v) ¶ A Å {v1,...,vk/4} for all v,

3. hG[B(v)], vi ´d hG[B(w)], vi for all neighbors v, w.

Page 31: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Winning strategy for Duplicator in hG, ui hG[A], ui (k=12)

k/4d

u1 u2 u3

x u2 u3

x y u3

u1 u2 u3

x u2 u3

0123456

G G[A]Round

Suppose Spoiler movespebble 2 to y in G.

hG[B(u1,u2,u3)], x, u2, u3i´d hG[B(x,u2,u3)], x, u2, u3i

Assume: There exist sets B(v) µ A, v 2 [n]k/4, such that

1. B(u) = ; for some u, 2. B(v) ¶ A Å {v1,...,vk/4} for all v,

3. hG[B(v)], vi ´d hG[B(w)], vi for all neighbors v, w.

Page 32: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Winning strategy for Duplicator in hG, ui hG[A], ui (k=12)

k/4d

u1 u2 u3

x u2 u3

x y u3

u1 u2 u3

x u2 u3

0123456

G G[A]Round hG[B(u1,u2,u3)], x, y, u3i´d-1 hG[B(x,u2,u3)], x, y', u3i

Assume: There exist sets B(v) µ A, v 2 [n]k/4, such that

1. B(u) = ; for some u, 2. B(v) ¶ A Å {v1,...,vk/4} for all v,

3. hG[B(v)], vi ´d hG[B(w)], vi for all neighbors v, w.

Duplicator plays an auxiliary game to

find vertex y'.

Page 33: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Winning strategy for Duplicator in hG, ui hG[A], ui (k=12)

k/4d

u1 u2 u3

x u2 u3

x y u3

u1 u2 u3

x u2 u3

x y' u3

0123456

G G[A]Round hG[B(u1,u2,u3)], x, y, u3i´d-1 hG[B(x,u2,u3)], x, y', u3i

Duplicator replies by movingpebble 2 to y' in G[A].

Assume: There exist sets B(v) µ A, v 2 [n]k/4, such that

1. B(u) = ; for some u, 2. B(v) ¶ A Å {v1,...,vk/4} for all v,

3. hG[B(v)], vi ´d hG[B(w)], vi for all neighbors v, w.

Page 34: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Winning strategy for Duplicator in hG, ui hG[A], ui (k=12)

k/4d

u1 u2 u3

x u2 u3

x y u3

u1 u2 u3

x u2 u3

x y' u3

0123456

G G[A]RoundhG[B(u1,u2,u3)], x,

y, u3i´d-1 hG[B(x,u2,u3)], x, y', u3i´d hG[B(x,y',u3)], x, y', u3i

assumption (3)

Assume: There exist sets B(v) µ A, v 2 [n]k/4, such that

1. B(u) = ; for some u, 2. B(v) ¶ A Å {v1,...,vk/4} for all v,

3. hG[B(v)], vi ´d hG[B(w)], vi for all neighbors v, w.

Page 35: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Winning strategy for Duplicator in hG, ui hG[A], ui (k=12)

k/4d

u1 u2 u3

x u2 u3

x y u3

u1 u2 u3

x u2 u3

x y' u3

x y' z''

0123456

G G[A]RoundhG[B(u1,u2,u3)], x,

y, u3i´d-1 hG[B(x,u2,u3)], x, y', u3i´d hG[B(x,y',u3)], x, y', u3i

Suppose Spoiler movespebble 3 to z'' in G[A].

Assume: There exist sets B(v) µ A, v 2 [n]k/4, such that

1. B(u) = ; for some u, 2. B(v) ¶ A Å {v1,...,vk/4} for all v,

3. hG[B(v)], vi ´d hG[B(w)], vi for all neighbors v, w.

Page 36: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Winning strategy for Duplicator in hG, ui hG[A], ui (k=12)

k/4d

u1 u2 u3

x u2 u3

x y u3

u1 u2 u3

x u2 u3

x y' u3

x y' z''

0123456

G G[A]RoundhG[B(u1,u2,u3)],

x, y, z i´d-2 hG[B(x,u2,u3)], x, y', z' i´d-1 hG[B(x,y',u3)], x, y', z''i

Assume: There exist sets B(v) µ A, v 2 [n]k/4, such that

1. B(u) = ; for some u, 2. B(v) ¶ A Å {v1,...,vk/4} for all v,

3. hG[B(v)], vi ´d hG[B(w)], vi for all neighbors v, w.

Duplicator plays two auxiliary games to

find vertex z.

Page 37: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Winning strategy for Duplicator in hG, ui hG[A], ui (k=12)

k/4d

u1 u2 u3

x u2 u3

x y u3

x y z

u1 u2 u3

x u2 u3

x y' u3

x y' z''

0123456

G G[A]RoundhG[B(u1,u2,u3)],

x, y, z i´d-2 hG[B(x,u2,u3)], x, y', z' i´d-1 hG[B(x,y',u3)], x, y', z'' i

Duplicator replies by movingpebble 1 to z in G.

Assume: There exist sets B(v) µ A, v 2 [n]k/4, such that

1. B(u) = ; for some u, 2. B(v) ¶ A Å {v1,...,vk/4} for all v,

3. hG[B(v)], vi ´d hG[B(w)], vi for all neighbors v, w.

Page 38: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Winning strategy for Duplicator in hG, ui hG[A], ui (k=12)

k/4d

u1 u2 u3

x u2 u3

x y u3

x y z

u1 u2 u3

x u2 u3

x y' u3

x y' z''

0123456

G G[A]RoundhG[B(u1,u2,u3)],

x, y, z i´d-2 hG[B(x,u2,u3)], x, y', z' i´d-1 hG[B(x,y',u3)], x, y', z'' i´d hG[B(x,y',z'')], x, y', z'' i

assumption (3)

Assume: There exist sets B(v) µ A, v 2 [n]k/4, such that

1. B(u) = ; for some u, 2. B(v) ¶ A Å {v1,...,vk/4} for all v,

3. hG[B(v)], vi ´d hG[B(w)], vi for all neighbors v, w.

Page 39: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Winning strategy for Duplicator in hG, ui hG[A], ui (k=12)

k/4d

u1 u2 u3

x u2 u3

x y u3

x y z

t y z

u1 u2 u3

x u2 u3

x y' u3

x y' z''

0123456

G G[A]RoundhG[B(u1,u2,u3)],

x, y, z i´d-2 hG[B(x,u2,u3)], x, y', z' i´d-1 hG[B(x,y',u3)], x, y', z'' i´d hG[B(x,y',z'')], x, y', z'' i

Spoiler

Assume: There exist sets B(v) µ A, v 2 [n]k/4, such that

1. B(u) = ; for some u, 2. B(v) ¶ A Å {v1,...,vk/4} for all v,

3. hG[B(v)], vi ´d hG[B(w)], vi for all neighbors v, w.

Page 40: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Winning strategy for Duplicator in hG, ui hG[A], ui (k=12)

k/4d

u1 u2 u3

x u2 u3

x y u3

x y z

t y z

u1 u2 u3

x u2 u3

x y' u3

x y' z''

t''' y' z''

0123456

G G[A]RoundhG[B(u1,u2,u3)],

t, y, z i´d-3 hG[B(x,u2,u3)], t', y', z' i´d-2 hG[B(x,y',u3)], t'',y', z'' i´d-1 hG[B(x,y',z'')], t''',y',z'' i´d hG[B(t''',y',z'')], t''',y',z'' i

Duplicator

Assume: There exist sets B(v) µ A, v 2 [n]k/4, such that

1. B(u) = ; for some u, 2. B(v) ¶ A Å {v1,...,vk/4} for all v,

3. hG[B(v)], vi ´d hG[B(w)], vi for all neighbors v, w.

Page 41: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Winning strategy for Duplicator in hG, ui hG[A], ui (k=12)

k/4d

u1 u2 u3

x u2 u3

x y u3

x y z

t y z

u1 u2 u3

x u2 u3

x y' u3

x y' z''

t''' y' z''

t''' y' j''''

0123456

G G[A]RoundhG[B(u1,u2,u3)],

t, y, z i´d-3 hG[B(x,u2,u3)], t', y', z' i´d-2 hG[B(x,y',u3)], t'',y', z'' i´d-1 hG[B(x,y',z'')], t''',y',z'' i´d hG[B(t''',y',z'')], t''',y',z'' i

Spoiler

Assume: There exist sets B(v) µ A, v 2 [n]k/4, such that

1. B(u) = ; for some u, 2. B(v) ¶ A Å {v1,...,vk/4} for all v,

3. hG[B(v)], vi ´d hG[B(w)], vi for all neighbors v, w.

Page 42: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Winning strategy for Duplicator in hG, ui hG[A], ui (k=12)

k/4d

u1 u2 u3

x u2 u3

x y u3

x y z

t y z

t y j

u1 u2 u3

x u2 u3

x y' u3

x y' z''

t''' y' z''

t''' y' j''''

0123456

G G[A]RoundhG[B(u1,u2,u3)],

t, y, j i´d-4 hG[B(x,u2,u3)], t', y', j' i´d-3 hG[B(x,y',u3)], t'',y', j'' i´d-2 hG[B(x,y',z'')], t''',y',j''' i´d-1 hG[B(t''',y',z'')], t''',y',j'''' i´d hG[B(t''',y',j'''')], t''',y',j'''' i

Duplicator

Assume: There exist sets B(v) µ A, v 2 [n]k/4, such that

1. B(u) = ; for some u, 2. B(v) ¶ A Å {v1,...,vk/4} for all v,

3. hG[B(v)], vi ´d hG[B(w)], vi for all neighbors v, w.

Page 43: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Winning strategy for Duplicator in hG, ui hG[A], ui (k=12)

k/4d

u1 u2 u3

x u2 u3

x y u3

x y z

t y z

t y j

u1 u2 u3

x u2 u3

x y' u3

x y' z''

t''' y' z''

t''' y' j''''

0123456

G G[A]RoundhG[B(u1,u2,u3)],

t, y, j i´d-4 hG[B(x,u2,u3)], t', y', j' i´d-3 hG[B(x,y',u3)], t'',y', j'' i´d-2 hG[B(x,y',z'')], t''',y',j''' i´d-1 hG[B(t''',y',z'')], t''',y',j'''' i´d hG[B(t''',y',j'''')], t''',y',j'''' i

Auxiliary games on G + various small cliques give strategy for G versus G + large clique

Assume: There exist sets B(v) µ A, v 2 [n]k/4, such that

1. B(u) = ; for some u, 2. B(v) ¶ A Å {v1,...,vk/4} for all v,

3. hG[B(v)], vi ´d hG[B(w)], vi for all neighbors v, w.

Page 44: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Winning strategy for Duplicator in hG, ui hG[A], ui (k=12)

k/4d

u1 u2 u3

x u2 u3

x y u3

x y z

t y z

t y jet cet era

u1 u2 u3

x u2 u3

x y' u3

x y' z''

t''' y' z''

t''' y' j''''

et cet era

0123456

G G[A]Round...and so on, for d rounds.

NB. Assumption (2) implies this is a winning strategy for Duplicator (i.e., quantifier-free types are preserved in each round).

Assume: There exist sets B(v) µ A, v 2 [n]k/4, such that

1. B(u) = ; for some u, 2. B(v) ¶ A Å {v1,...,vk/4} for all v,

3. hG[B(v)], vi ´d hG[B(w)], vi for all neighbors v, w.

Page 45: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Assume: There exist sets B(v) µ A, v 2 [n]k/4, such that

1. B(u) = ; for some u, 2. B(v) ¶ A Å {v1,...,vk/4} for all v,

3. hG[B(v)], vi ´d hG[B(w)], vi for all neighbors v, w.

Alas, this assumption is too strong!

We cannot actually find sets B(v) µ A, v 2 [n]k/4, meeting these conditions.

Page 46: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Assume: There exist sets B(v) µ A, v 2 [n]k/4, such that

1. B(u) = ; for some u, 2. B(v) ¶ A Å {v1,...,vk/4} for all v,

3. hG[B(v)], vi ´d hG[B(w)], vi for all neighbors v, w.

Alas, this assumption is too strong!

We cannot actually find sets B(v) µ A, v 2 [n]k/4, meeting these conditions.

So we weaken this assumption (by simply restricting the notion of neighboring tuples).

The weaker assumption will still imply G[A]G k/4d

Page 47: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

What actually works

For a sufficiently small constant > 0, we fix an arbitrary tree T with vertices 1,...,n and degree n and diameter 2/ (plus all self-loops).

Call v = (v1,...,vm), w = (w1,...,wm) 2 [n]m T-neighbors if 9i 2 {1,...,m} such that (vi,wi) is an edge of T and vj = wj for all j i.

T-guarded d-round Ehrenfeucht-Fraisse game on ordered graphs H1,H2 with vertex set [n]:

Spoiler and Duplicator are constrained to move along edges of T. (Notation. )2dT,1 HH

Page 48: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

We are able to show:

Lemma. W.h.p. 9 sets B(v) µ A, v 2 [n]k/4, s.t.

1. B(u) = ; for some u,

2. B(v) ¶ A Å {v1,...,vk/4} for all v,

3. hG[B(v)], vi ´T, 2d/ hG[B(w)], vi for all

T-neighbors v and w.

It follows that (by same argument).

We conclude that since 2/ = Diam(T)

T-guarded rounds simulate one unguarded round.

G[A]G k/42d/ T,

G[A]G k/4d

What actually works

Page 49: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

We are able to show:

Lemma. W.h.p. 9 sets B(v) µ A, v 2 [n]k/4, s.t.

1. B(u) = ; for some u,

2. B(v) ¶ A Å {v1,...,vk/4} for all v,

3. hG[B(v)], vi ´T, 2d/ hG[B(w)], vi for all

T-neighbors v and w.

It follows that (by same argument).

We conclude that since 2/ = Diam(T)

T-guarded rounds simulate one unguarded round.

G[A]G k/42d/ T,

G[A]G k/4d

What actually works

These sets B(v) have a nifty definition!

Main challenge: Proving 8v, |B(v)| · k/2 with high probability.

Arguments involve Hastad's Switching Lemma & new results on randomly restrictly AC0 functions.

Page 50: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Main Theorem (circuit version)

Let > 0 and k 2 N.

Suppose C is a sequence of constant-depth circuits of size O(n(1+)/2) on inputs.

Then almost surely C has the same value on

1. a random graph G = ErdosRenyi(n,n –

),

2. the graph G [ (random k-clique).

Page 51: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Full Sensitivity

A Boolean function

f : n ! is fully sensitive if it depends on all n input bits.

Formally: for every i 2 [n] = {1,...,n}, there exists x 2 {0,1}n such that

f(x) f(x with ith bit flipped).

Page 52: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Random Restrictions

Fix a Boolean function

f : n ! A restriction is a function

: n! ¤.That is, for each input bit of f, the restriction either fixes a value (0 or 1) or leaves the input bit "unassigned" (¤).

We can apply to f to get a function

fd : -1¤ ! .

Page 53: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Random Restrictions

Suppose f : n ! is an AC0 function (computed by poly-size constant-depth circuits).

Let : n! ¤ be a random restriction subject to

1. |-1(¤)| = k (for a fixed constant k)

2. Pr[(i) = 1 | (i) ¤] = 1/2

So restriction fd : k ! has k input bits.

Page 54: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Random Restrictions

Suppose f : n ! is an AC0 function (computed by poly-size constant-depth circuits).

Let : n! ¤ be a random restriction subject to

1. |-1(¤)| = k (for a fixed constant k)

2. Pr[(i) = 1 | (i) ¤] = 1/2

So restriction fd : k ! has k input bits.

Lemma 1.

Pr[fd is fully sensitive] · 1/nk - o(1)

Page 55: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Random Restrictions

Suppose f : n ! is an AC0 function (computed by poly-size constant-depth circuits).

Let : n! ¤ be a random restriction subject to

1. |-1(¤)| = k (for a fixed constant k)

2. Pr[(i) = 1 | (i) ¤] = 1/2.

So restriction fd : k ! has k input bits.

Lemma 1.

Pr[fd is fully sensitive] · 1/nk - o(1)

Proof uses a standard application of Hastad's Switching Lemma.

In the special case k = 1, lemma says that AC0 functions have average sensitivity no(1).

Page 56: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Lemma 1. Pr[fd is fully sensitive] · 1/nk - o(1)

Proof.

Consider an AC0 circuit computing f.

f

Fix small > 0 and hit f with a random restriction

: [n] ! {0,1,¤} such that Pr[(i) = ¤] = n–

Pr[(i) = 1 | (i) ¤] = 1/2

Page 57: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Lemma 1. Pr[fd is fully sensitive] · 1/nk - o(1)

Proof.

fd

Fix small > 0 and hit f with a random restriction

: [n] ! {0,1,¤} such that Pr[(i) = ¤] = n–

Pr[(i) = 1 | (i) ¤] = 1/2

expected size n1-

¤0 0 ¤¤¤¤¤1 1 0 1 1 0 ¤1 0 ¤¤¤¤¤1 0 1 1 0 0 1 0 1 0 ¤

Page 58: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Lemma 1. Pr[fd is fully sensitive] · 1/nk - o(1)

Proof.

fd

expected size n1-

¤0 0 ¤¤¤¤¤1 1 0 1 1 0 ¤1 0 ¤¤¤¤¤1 0 1 1 0 0 1 0 1 0 ¤

Hastad's Switching Lemma ) there is a constant c such that fd is computed by a decision tree of depth c (and hence depends on at most 2c = O(1) inputs) with high probability (better than 1 - 1/nk).

2c

Page 59: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Lemma 1. Pr[fd is fully sensitive] · 1/nk - o(1)

Proof.

expected size n1-

0 0 ¤¤¤1 1 0 1 1 01 0 1 0 1 1 0 0 1 0 1 0

Pick : [n] ! {0,1,¤} by randomly setting all but k variables in -1(¤) to 0 or 1.

2c

1 1 0 1 1 0 0 0 1 0

fd

Assuming fd has a small decision tree, we have

Page 60: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Random Restrictions

Suppose f : n ! is an AC0 function. Let : n! ¤ be a random restriction

subject to

1. |-1(¤)| = k

2. Pr[(i) = 1 | (i) ¤] = 1/2

So restriction fd : k ! has k input bits.

Lemma 1.

Pr[fd is fully sensitive] · 1/nk - o(1)

Page 61: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Random Restrictions

Suppose f : n ! is an AC0 function. Let : n! ¤ be a random restriction

subject to

1. |-1(¤)| = k

2. Pr[(i) = 1 | (i) ¤] = n –

So restriction fd : k ! has k input bits.

Lemma 2.

Pr[fd is fully sensitive] · 1/nk – k – o(1)

Page 62: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Lemma 2. Pr[fd is fully sensitive] · 1/nk – k – o(1)

Proof.

f

Apply Lemma 1 to this modified circuit, which generates an n- biased distribution on n bits from the uniform distribution on n log(n) bits.

Æ

log(n)

ÆÆ ................. ........

Page 63: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Full Vertex Sensitivity

A Boolean function

f : ! (taking graphs as inputs) is fully vertex sensitive if every "vertex" belongs to a sensitive "edge".

Formally: for every i 2 [n], there exist j 2 [n] - {i} and a graph G with vertex set [n] such that

f(G) f(G © {i,j}).

Page 64: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Random Restrictions

Suppose f : ! is an AC0 function. Let : ! ¤ be a random restriction

subject to

-1(¤) µ is a k-clique

2. Pr[(i) = 1 | (i) ¤] = n –

So restriction fd : ! has inputs.

Lemma 3.

Pr[fd is fully vertex sensitive] · 1/nk – – o(1)

Proof. Same idea as in lemmas of 1 and 2.

Page 65: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Random Restrictions

Suppose f : ! is an AC0 function. Let : ! ¤ be a random restriction

subject to

-1(¤) µ is a k-clique

2. Pr[(i) = 1 | (i) ¤] = n –

So restriction fd : ! has inputs.

Lemma 3.

Pr[fd is fully vertex sensitive] · 1/nk – – o(1)

Obs: nk – is roughly the expected number of k-cliques in G(n,n

– ).

Page 66: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Open Questions

Is k-CLIQUE definable in k-1 variables? (We showed that k/4 are required.)

Does k-CLIQUE require constant-depth circuits of size (nk–

) for every ?

Page 67: The First-Order Variable Hierachy on Ordered Graphs Benjamin Rossman MIT.

Thank you!