Top Banner
The Exponential Formula for the Wasserstein Metric . Katy Craig UCLA SIAM Annual Meeting, Chicago July 8, 2014 1 / 22
93

The Exponential Formula for the Wasserstein Metrickcraig/math/curriculum_vitae... · 2016. 10. 20. · The Exponential Formula for the Wasserstein Metric. Katy Craig UCLA SIAMAnnual

Feb 09, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • The Exponential Formula for the Wasserstein Metric.Katy CraigUCLA

    SIAM Annual Meeting, ChicagoJuly 8, 2014

    1 / 22

  • Plan.

    • Gradient flow

    • Discrete gradient flow

    • Euler-Lagrange equation

    • Exponential formula

    2 / 22

  • Plan.

    • Gradient flow

    • Discrete gradient flow

    • Euler-Lagrange equation

    • Exponential formula

    3 / 22

  • Gradient Flow.∂u(t)

    ∂t= −∇E(u(t)), u(0) = u

    4 / 22

  • Gradient Flow.∂u(t)

    ∂t= −∇E(u(t)), u(0) = u

    Heat Equation as Gradient Flow on L2(Rd)

    4 / 22

  • Gradient Flow.∂u(t)

    ∂t= −∇E(u(t)), u(0) = u

    Heat Equation as Gradient Flow on L2(Rd)L2(Rd) gradient:

    (∇L2E(u), v)L2 = limh→0

    E(u+ hv)− E(u)h

    for all v ∈ L2(Rd)

    4 / 22

  • Gradient Flow.∂u(t)

    ∂t= −∇E(u(t)), u(0) = u

    Heat Equation as Gradient Flow on L2(Rd)L2(Rd) gradient:

    (∇L2E(u), v)L2 = limh→0

    E(u+ hv)− E(u)h

    for all v ∈ L2(Rd)

    Thus, for E(u) = 12∫|∇u|2,

    (∇L2E(u), v)L2 = limh→0

    1

    2

    ∫|∇(u+ hv)|2 −

    ∫|∇u|2

    h= (∇u,∇v)L2 = (−∆u, v)L2 .

    4 / 22

  • Gradient Flow.∂u(t)

    ∂t= −∇E(u(t)), u(0) = u

    Heat Equation as Gradient Flow on L2(Rd)L2(Rd) gradient:

    (∇L2E(u), v)L2 = limh→0

    E(u+ hv)− E(u)h

    for all v ∈ L2(Rd)

    Thus, for E(u) = 12∫|∇u|2,

    (∇L2E(u), v)L2 = limh→0

    1

    2

    ∫|∇(u+ hv)|2 −

    ∫|∇u|2

    h= (∇u,∇v)L2 = (−∆u, v)L2 .

    Hence, the L2 gradient flow of E is

    ∂u/∂t = −∇L2E(u) = −(−∆u) = ∆u .

    4 / 22

  • Gradient Flow.∂u(t)

    ∂t= −∇E(u(t)), u(0) = u

    Heat Equation as Gradient Flow on L2(Rd)L2(Rd) gradient:

    (∇L2E(u), v)L2 = limh→0

    E(u+ hv)− E(u)h

    for all v ∈ L2(Rd)

    Thus, for E(u) = 12∫|∇u|2,

    (∇L2E(u), v)L2 = limh→0

    1

    2

    ∫|∇(u+ hv)|2 −

    ∫|∇u|2

    h= (∇u,∇v)L2 = (−∆u, v)L2 .

    Hence, the L2 gradient flow of E is

    ∂u/∂t = −∇L2E(u) = −(−∆u) = ∆u .

    Note: ∇L2E(u) = δEδu4 / 22

  • Examples of Hilbert Space Gradient Flow.

    PDE Energy Functional MetricAllen-Cahn d

    dtu = ∆u− F ′(u) E(u) = 1

    2

    ∫ [|∇u|2 + F (u)

    ]L2

    Cahn-Hilliard ddtu = ∆(∆u− F ′(u)) E(u) = 1

    2

    ∫ [|∇u|2 + F (u)

    ]H−1

    Porous Media / ddtu = ∆um E(u) = 1

    m+1

    ∫um+1 H−1

    Fast Diffusion

    5 / 22

  • Examples of Hilbert Space Gradient Flow.

    PDE Energy Functional MetricAllen-Cahn d

    dtu = ∆u− F ′(u) E(u) = 1

    2

    ∫ [|∇u|2 + F (u)

    ]L2

    Cahn-Hilliard ddtu = ∆(∆u− F ′(u)) E(u) = 1

    2

    ∫ [|∇u|2 + F (u)

    ]H−1

    Porous Media / ddtu = ∆um E(u) = 1

    m+1

    ∫um+1 H−1

    Fast Diffusion

    Why gradient flow?• Free estimates, e.g. |u(t)− v(t)| ≤ e−λt|u(0)− v(0)|• Method to construct and approximate solutions (discrete gradient flow)

    5 / 22

  • Wasserstein Gradient Flow.∂µ(t)

    ∂t= −∇W2E(µ(t)), µ(0) = µ

    6 / 22

  • Wasserstein Gradient Flow.∂µ(t)

    ∂t= −∇W2E(µ(t)), µ(0) = µ

    Simplifying assumptions:∫|x|2dµ < +∞, µ

  • Wasserstein Gradient Flow.∂µ(t)

    ∂t= −∇W2E(µ(t)), µ(0) = µ

    Simplifying assumptions:∫|x|2dµ < +∞, µ

  • Wasserstein Gradient Flow.∂µ(t)

    ∂t= −∇W2E(µ(t)), µ(0) = µ

    Simplifying assumptions:∫|x|2dµ < +∞, µ

  • Wasserstein Gradient Flow.∂µ(t)

    ∂t= −∇W2E(µ(t)), µ(0) = µ

    Simplifying assumptions:∫|x|2dµ < +∞, µ

  • Geodesics and Convexity.Geodesics:

    µ(α) = (αtνµ + (1− α)id)#µ is the geodesic from µ to ν at time α,

    W2(µ(α), µ(β)) = |α− β|W2(µ, ν) .

    7 / 22

  • Geodesics and Convexity.Geodesics:

    µ(α) = (αtνµ + (1− α)id)#µ is the geodesic from µ to ν at time α,

    W2(µ(α), µ(β)) = |α− β|W2(µ, ν) .

    Convexity:

    E is convex in case

    E(µ(α)) ≤ (1− α)E(µ(0)) + αE(µ(1)) .

    7 / 22

  • Geodesics and Convexity.Geodesics:

    µ(α) = (αtνµ + (1− α)id)#µ is the geodesic from µ to ν at time α,

    W2(µ(α), µ(β)) = |α− β|W2(µ, ν) .

    Convexity:

    E is convex in case

    E(µ(α)) ≤ (1− α)E(µ(0)) + αE(µ(1)) .

    7 / 22

  • Geodesics and Convexity.Geodesics:

    µ(α) = (αtνµ + (1− α)id)#µ is the geodesic from µ to ν at time α,

    W2(µ(α), µ(β)) = |α− β|W2(µ, ν) .

    Convexity:

    E is convex in case

    E(µ(α)) ≤ (1− α)E(µ(0)) + αE(µ(1)) .

    Assumption: E is lower semicontinuous and convex.

    7 / 22

  • The Wasserstein Metric's ``Gradient''.

    By a similar computation as in the L2 case,(∇W2E(µ),

    ∂µ

    ∂t

    ∣∣∣∣t=0

    = limt→0

    E(µ(t))− E(µ)t

    for all ∂µ∂t

    ,

    implies∇W2E(µ) = −∇ ·

    (µ∇δE

    δµ

    ).

    8 / 22

  • The Wasserstein Metric's ``Gradient''.

    By a similar computation as in the L2 case,(∇W2E(µ),

    ∂µ

    ∂t

    ∣∣∣∣t=0

    = limt→0

    E(µ(t))− E(µ)t

    for all ∂µ∂t

    ,

    implies∇W2E(µ) = −∇ ·

    (µ∇δE

    δµ

    ).

    Therefore,

    ∂µ(t)

    ∂t= −∇W2E(µ(t)) ⇐⇒

    ∂µ(t)

    ∂t= ∇ ·

    (µ∇δE

    δµ

    ).

    8 / 22

  • Examples of Wasserstein Gradient Flow.

    PDE Energy FunctionalPorous Media / ∂

    ∂tµ = ∆µm E(µ) = 1

    m−1

    ∫ρ(x)mdx

    Fast DiffusionFokker Planck ∂

    ∂tµ = ∆µ+∇ · (µ∇V ) E(µ) =

    ∫ρ(x) log ρ(x) + V (x)ρ(x)dx

    Aggregation ∂∂tu = ∇ · (µ∇K ∗ µ) E(µ) = 1

    2

    ∫ ∫ρ(x)K(x− y)ρ(y)dxdy

    9 / 22

  • Examples of Wasserstein Gradient Flow.

    PDE Energy FunctionalPorous Media / ∂

    ∂tµ = ∆µm E(µ) = 1

    m−1

    ∫ρ(x)mdx

    Fast DiffusionFokker Planck ∂

    ∂tµ = ∆µ+∇ · (µ∇V ) E(µ) =

    ∫ρ(x) log ρ(x) + V (x)ρ(x)dx

    Aggregation ∂∂tu = ∇ · (µ∇K ∗ µ) E(µ) = 1

    2

    ∫ ∫ρ(x)K(x− y)ρ(y)dxdy

    Why gradient flow?• Free estimates, e.g. W2(µ(t), ν(t)) ≤ e−λtW2(µ(0), ν(0))• Method to construct and approximate solutions (discrete gradient flow)

    9 / 22

  • Plan.

    • Gradient flow

    • Discrete gradient flow

    • Euler-Lagrange equation

    • Exponential formula

    10 / 22

  • Discrete Gradient Flow: Euclidean Space.Gradient flow:

    du(t)

    dt= −∇E(u(t)), u(0) = u ∈ Rd

    11 / 22

  • Discrete Gradient Flow: Euclidean Space.Gradient flow:

    du(t)

    dt= −∇E(u(t)), u(0) = u ∈ Rd

    Implicit Euler method:

    un − un−1τ

    = −∇E(un), u0 = u

    11 / 22

  • Discrete Gradient Flow: Euclidean Space.Gradient flow:

    du(t)

    dt= −∇E(u(t)), u(0) = u ∈ Rd

    Implicit Euler method:

    un − un−1τ

    +∇E(un) = 0, u0 = u

    11 / 22

  • Discrete Gradient Flow: Euclidean Space.Gradient flow:

    du(t)

    dt= −∇E(u(t)), u(0) = u ∈ Rd

    Implicit Euler method:

    un − un−1τ

    +∇E(un) = 0, u0 = u

    Given un−1, compute un using that it is a critical point of

    Φ(v) =1

    2τ|v − un−1|2 + E(v) .

    11 / 22

  • Discrete Gradient Flow: Euclidean Space.Gradient flow:

    du(t)

    dt= −∇E(u(t)), u(0) = u ∈ Rd

    Implicit Euler method:

    un − un−1τ

    +∇E(un) = 0, u0 = u

    Given un−1, compute un using that it is a critical point the unique minimizer of

    Φ(v) =1

    2τ|v − un−1|2 + E(v) .

    11 / 22

  • Discrete Gradient Flow: Euclidean Space.Gradient flow:

    du(t)

    dt= −∇E(u(t)), u(0) = u ∈ Rd

    Implicit Euler method:

    un − un−1τ

    +∇E(un) = 0, u0 = u

    Given un−1, compute un using that it is a critical point the unique minimizer of

    Φ(v) =1

    2τ|v − un−1|2 + E(v) .

    Theorem (Exponential Formula)Let τ = t/n. Then limn→∞ un = u(t).

    11 / 22

  • Discrete Gradient Flow: Wasserstein Metric.Want to say... given µn−1, let µn be the unique minimizer of

    Φ(v) =1

    2τW 22 (ν, µn−1) + E(ν) .

    12 / 22

  • Discrete Gradient Flow: Wasserstein Metric.Want to say... given µn−1, let µn be the unique minimizer of

    Φ(v) =1

    2τW 22 (ν, µn−1) + E(ν) .

    Problem: ν 7→W 22 (ν, µn−1) is not convex, so Φ may not have a uniqueminimum.

    12 / 22

  • Discrete Gradient Flow: Wasserstein Metric.Want to say... given µn−1, let µn be the unique minimizer of

    Φ(v) =1

    2τW 22 (ν, µn−1) + E(ν) .

    Problem: ν 7→W 22 (ν, µn−1) is not convex, so Φ may not have a uniqueminimum.

    Need additional assumptions on E:• coercive• convex along generalized geodesics

    12 / 22

  • Discrete Gradient Flow: Wasserstein Metric.Want to say... given µn−1, let µn be the unique minimizer of

    Φ(v) =1

    2τW 22 (ν, µn−1) + E(ν) .

    Problem: ν 7→W 22 (ν, µn−1) is not convex, so Φ may not have a uniqueminimum.

    Need additional assumptions on E:• coercive• convex along generalized geodesics

    Proposition (AGS)For all τ > 0, there exists a unique minimizer of Φ(ν), so the discrete gradientflow is well defined.

    12 / 22

  • Plan.

    • Gradient flow

    • Discrete gradient flow

    • Euler-Lagrange equation

    • Exponential formula

    13 / 22

  • Euler-Lagrange Equation.In the Euclidean case,

    un = argminv

    {1

    2τ|v − un−1|2 + E(v)

    }⇐⇒ un − un−1

    τ= −∇E(un) .

    14 / 22

  • Euler-Lagrange Equation.In the Euclidean case,

    un = argminv

    {1

    2τ|v − un−1|2 + E(v)

    }⇐⇒ un − un−1

    τ= −∇E(un) .

    In the Wasserstein case,

    Proposition (AGS, C.)

    µn = argminν

    {1

    2τW 22 (ν, µn−1) + E(ν)

    }⇐⇒ 1

    τ(tµn−1µn − id) ∈ ∂sE(µn) .

    14 / 22

  • Euler-Lagrange Equation.In the Euclidean case,

    un = argminv

    {1

    2τ|v − un−1|2 + E(v)

    }⇐⇒ un − un−1

    τ= −∇E(un) .

    In the Wasserstein case,

    Proposition (AGS, C.)

    µn = argminν

    {1

    2τW 22 (ν, µn−1) + E(ν)

    }⇐⇒ 1

    τ(tµn−1µn − id) ∈ ∂sE(µn) .

    Key property of subdifferential: for E convex, 0 ∈ ∂E(µ) ⇐⇒ µ minimizes E.

    14 / 22

  • Sketch of Proof: Euler-Lagrange Equation.Proposition (AGS, C.)

    µn = argminν

    {1

    2τW 22 (ν, µn−1) + E(ν)

    }⇐⇒ 1

    τ(tµn−1µn − id) ∈ ∂sE(µn) .

    15 / 22

  • Sketch of Proof: Euler-Lagrange Equation.Proposition (AGS, C.)

    µn = argminν

    {1

    2τW 22 (ν, µn−1) + E(ν)

    }⇐⇒ 1

    τ(tµn−1µn − id) ∈ ∂sE(µn) .

    Proof:Let Φ(ν) = 12τW 22 (ν, µn−1) + E(ν).

    15 / 22

  • Sketch of Proof: Euler-Lagrange Equation.Proposition (AGS, C.)

    µn = argminν

    {1

    2τW 22 (ν, µn−1) + E(ν)

    }⇐⇒ 1

    τ(tµn−1µn − id) ∈ ∂sE(µn) .

    Proof:Let Φ(ν) = 12τW 22 (ν, µn−1) + E(ν).

    =⇒ [AGS, Otto]: minimality implies Φ(t#µn) ≥ Φ(µn); expand both sides.

    15 / 22

  • Sketch of Proof: Euler-Lagrange Equation.Proposition (AGS, C.)

    µn = argminν

    {1

    2τW 22 (ν, µn−1) + E(ν)

    }⇐⇒ 1

    τ(tµn−1µn − id) ∈ ∂sE(µn) .

    Proof:Let Φ(ν) = 12τW 22 (ν, µn−1) + E(ν).

    =⇒ [AGS, Otto]: minimality implies Φ(t#µn) ≥ Φ(µn); expand both sides.

    ⇐= want to say...• 1

    τ (tµn−1µn − id) ∈ ∂sE(µn)

    • hence 0 ∈ ∂Φ(µn)• hence by key property, µn minimizes Φ

    15 / 22

  • Sketch of Proof: Euler-Lagrange Equation.Proposition (AGS, C.)

    µn = argminν

    {1

    2τW 22 (ν, µn−1) + E(ν)

    }⇐⇒ 1

    τ(tµn−1µn − id) ∈ ∂sE(µn) .

    Proof:Let Φ(ν) = 12τW 22 (ν, µn−1) + E(ν).

    =⇒ [AGS, Otto]: minimality implies Φ(t#µn) ≥ Φ(µn); expand both sides.

    ⇐= want to say...• 1

    τ (tµn−1µn − id) ∈ ∂sE(µn)

    • hence 0 ∈ ∂Φ(µn)• hence by key property, µn minimizes Φ

    Problem: ν 7→W 22 (ν, µn−1) is not convex, so Φ may not be convex.

    15 / 22

  • Sketch of Proof: Euler-Lagrange Equation.Solution: generalized geodesics and transport metrics

    • [AGS] ν 7→W 22 (ν, µ) is not convex (along all geodesics)• [AGS] ν 7→W 22 (ν, µ) is convex along generalized geodesics with base µ• [C.] the generalized geodesics with base µ are not arbitrary curves: they are

    exactly the geodesics of the transport metric with base µ

    16 / 22

  • Sketch of Proof: Euler-Lagrange Equation.Solution: generalized geodesics and transport metrics

    • [AGS] ν 7→W 22 (ν, µ) is not convex (along all geodesics)• [AGS] ν 7→W 22 (ν, µ) is convex along generalized geodesics with base µ• [C.] the generalized geodesics with base µ are not arbitrary curves: they are

    exactly the geodesics of the transport metric with base µ

    WassersteinMetric: W2(µ, ν) =(∫

    |tνµ − id|2dµ)1/2

    TransportMetric: W2,ω(µ, ν) =(∫

    |tµω − tνω|2dω)1/2

    • ν 7→W 22,ω(ν, µ) is convex• W2(µ, ν) ≤W2,ω(µ, ν)

    16 / 22

  • Plan.

    • Gradient flow

    • Discrete gradient flow

    • Euler-Lagrange equation

    • Exponential formula

    17 / 22

  • Exponential Formula.Theorem (AGS)Let τ = t/n. Then limn→∞ µn = µ(t).

    18 / 22

  • Exponential Formula.Theorem (AGS)Let τ = t/n. Then limn→∞ µn = µ(t).

    • the limit exists• the limit is a solution to the gradient flow

    18 / 22

  • Exponential Formula.Theorem (AGS)Let τ = t/n. Then limn→∞ µn = µ(t).

    • the limit exists• the limit is a solution to the gradient flow

    SketchofProof, alaCrandallandLiggett:

    18 / 22

  • Exponential Formula.Theorem (AGS)Let τ = t/n. Then limn→∞ µn = µ(t).

    • the limit exists• the limit is a solution to the gradient flow

    SketchofProof, alaCrandallandLiggett:Let Jτ be the function Jτu = argminv

    {12τ |v − u|

    2 + E(v)}

    =⇒ Jnτ u0 = un.

    18 / 22

  • Exponential Formula.Theorem (AGS)Let τ = t/n. Then limn→∞ µn = µ(t).

    • the limit exists• the limit is a solution to the gradient flow

    SketchofProof, alaCrandallandLiggett:Let Jτ be the function Jτu = argminv

    {12τ |v − u|

    2 + E(v)}

    =⇒ Jnτ u0 = un.

    ..1 Contractioninequality

    18 / 22

  • Exponential Formula.Theorem (AGS)Let τ = t/n. Then limn→∞ µn = µ(t).

    • the limit exists• the limit is a solution to the gradient flow

    SketchofProof, alaCrandallandLiggett:Let Jτ be the function Jτu = argminv

    {12τ |v − u|

    2 + E(v)}

    =⇒ Jnτ u0 = un.

    ..1 ContractioninequalityBanach space: ∥Jτu− Jτv∥ ≤ ∥u− v∥

    18 / 22

  • Exponential Formula.Theorem (AGS)Let τ = t/n. Then limn→∞ µn = µ(t).

    • the limit exists• the limit is a solution to the gradient flow

    SketchofProof, alaCrandallandLiggett:Let Jτ be the function Jτu = argminv

    {12τ |v − u|

    2 + E(v)}

    =⇒ Jnτ u0 = un.

    ..1 ContractioninequalityBanach space: ∥Jτu− Jτv∥ ≤ ∥u− v∥

    18 / 22

  • Exponential Formula.Theorem (AGS)Let τ = t/n. Then limn→∞ µn = µ(t).

    • the limit exists• the limit is a solution to the gradient flow

    SketchofProof, alaCrandallandLiggett:Let Jτ be the function Jτu = argminv

    {12τ |v − u|

    2 + E(v)}

    =⇒ Jnτ u0 = un.

    ..1 ContractioninequalityBanach space: ∥Jτu− Jτv∥ ≤ ∥u− v∥

    Theorem (Carlen, C.)W 22 (Jτµ, Jτν) ≤W 22 (µ, ν) +O(τ2)

    18 / 22

  • Exponential Formula...2 Largevssmalltimesteps, 0 < h ≤ τ

    19 / 22

  • Exponential Formula...2 Largevssmalltimesteps, 0 < h ≤ τ

    Banach space: Jτu = Jh[τ−hτ Jτu+

    hτ u]

    19 / 22

  • Exponential Formula...2 Largevssmalltimesteps, 0 < h ≤ τ

    Banach space: Jτu = Jh[τ−hτ Jτu+

    hτ u]

    Lemma (Jost, Mayer, C.)Jτµ = Jh

    [(τ−hτ t

    Jτµµ +

    hτ id)

    #µ]

    19 / 22

  • Exponential Formula...2 Largevssmalltimesteps, 0 < h ≤ τ

    Banach space: Jτu = Jh[τ−hτ Jτu+

    hτ u]

    Lemma (Jost, Mayer, C.)Jτµ = Jh

    [(τ−hτ t

    Jτµµ +

    hτ id)

    #µ]

    19 / 22

  • Exponential Formula...3 Recursiveinequality:

    20 / 22

  • Exponential Formula...3 Recursiveinequality:Let µn = Jnτ µ and µm = Jmh µ.

    20 / 22

  • Exponential Formula...3 Recursiveinequality:Let µn = Jnτ µ and µm = Jmh µ.

    W 22 (µn, µm) =W22

    Jhν︷ ︸︸ ︷[(

    τ − hτ

    tµnµn−1 +h

    τid)

    #µn−1], Jhµm−1

    20 / 22

  • Exponential Formula...3 Recursiveinequality:Let µn = Jnτ µ and µm = Jmh µ.

    W 22 (µn, µm) =W22

    Jhν︷ ︸︸ ︷[(

    τ − hτ

    tµnµn−1 +h

    τid)

    #µn−1], Jhµm−1

    ≤W 22 (ν, µm−1) +O(h2)

    20 / 22

  • Exponential Formula...3 Recursiveinequality:Let µn = Jnτ µ and µm = Jmh µ.

    W 22 (µn, µm) =W22

    Jhν︷ ︸︸ ︷[(

    τ − hτ

    tµnµn−1 +h

    τid)

    #µn−1], Jhµm−1

    ≤W 22 (ν, µm−1) +O(h2)

    ≤W 22,µn−1(ν, µm−1) +O(h2)

    20 / 22

  • Exponential Formula...3 Recursiveinequality:Let µn = Jnτ µ and µm = Jmh µ.

    W 22 (µn, µm) =W22

    Jhν︷ ︸︸ ︷[(

    τ − hτ

    tµnµn−1 +h

    τid)

    #µn−1], Jhµm−1

    ≤W 22 (ν, µm−1) +O(h2)

    ≤W 22,µn−1(ν, µm−1) +O(h2)

    ≤ τ − hτ

    W 22,µn−1(µn, µm−1) +h

    τW 22,µn−1(µn−1, µm−1) +O(h

    2)

    20 / 22

  • Exponential Formula...3 Recursiveinequality:Let µn = Jnτ µ and µm = Jmh µ.

    W 22 (µn, µm) =W22

    Jhν︷ ︸︸ ︷[(

    τ − hτ

    tµnµn−1 +h

    τid)

    #µn−1], Jhµm−1

    ≤W 22 (ν, µm−1) +O(h2)

    ≤W 22,µn−1(ν, µm−1) +O(h2)

    ≤ τ − hτ

    W 22,µn−1(µn, µm−1) +h

    τW 22,µn−1(µn−1, µm−1) +O(h

    2)

    ≤ τ − hτ

    W 22 (µn, µm−1) +h

    τW 22 (µn−1, µm−1) +O(h2)

    20 / 22

  • Exponential Formula...3 Recursiveinequality:Let µn = Jnτ µ and µm = Jmh µ.

    W 22 (µn, µm) =W22

    Jhν︷ ︸︸ ︷[(

    τ − hτ

    tµnµn−1 +h

    τid)

    #µn−1], Jhµm−1

    ≤W 22 (ν, µm−1) +O(h2)

    ≤W 22,µn−1(ν, µm−1) +O(h2)

    ≤ τ − hτ

    W 22,µn−1(µn, µm−1) +h

    τW 22,µn−1(µn−1, µm−1) +O(h

    2)

    ≤ τ − hτ

    W 22 (µn, µm−1) +h

    τW 22 (µn−1, µm−1) +O(h2)

    W 22 (µn, µm) ≤τ − hτ

    W 22 (µn, µm−1) +h

    τW 22 (µn−1, µm−1) +O(h2)

    20 / 22

  • Exponential Formula...3 Recursiveinequality:Let µn = Jnτ µ and µm = Jmh µ.

    W 22 (µn, µm) ≤τ − hτ

    W 22 (µn, µm−1) +h

    τW 22 (µn−1, µm−1) +O(h2)

    20 / 22

  • Exponential Formula...3 Recursiveinequality:Let µn = Jnτ µ and µm = Jmh µ.

    W 22 (µn, µm) ≤τ − hτ

    W 22 (µn, µm−1) +h

    τW 22 (µn−1, µm−1) +O(h2)

    20 / 22

  • Exponential Formula.Iterating

    W 22 (µn, µm) ≤τ − hτ

    W 22 (µn, µm−1) +h

    τW 22 (µn−1, µm−1) +O(h2)

    with τ = t/n and h = t/m for n ≤ m gives

    W2(µn, µm) ≤ O(1√n)

    n,m→∞−−−−−→ 0 .

    Therefore, the limit exists.

    21 / 22

  • Thank you!

    22 / 22

  • Backup

    23 / 22

  • Wasserstein Gradient Flow.∂µ(t)

    ∂t= −∇W2E(µ(t)), µ(0) = µ

    Wasserstein Metric as ``Riemannian Manifold''*The Wasserstein metric is induced by this inner product (Benamou-Brenier):

    W2(µ0, µ1) =

    inf{∫ 1

    0

    ∥∇ψ(t)∥µ(t)dt : µ(0) = µ0, µ(1) = µ1,∂µ

    ∂t+∇ · (∇ψµ) = 0

    }.

    24 / 22

  • The Wasserstein Metric's ``Inner Product''* [Otto].

    25 / 22

  • The Wasserstein Metric's ``Inner Product''* [Otto].*DISCLAIMER: "given sufficient regularity," "in the limit", ...

    25 / 22

  • The Wasserstein Metric's ``Inner Product''* [Otto].*DISCLAIMER: "given sufficient regularity," "in the limit", ...

    Given µ(t), there exists a velocity field v(x, t) = ∇ψ(x, t) so that

    ∂µ

    ∂t+∇ · (∇ψµ) = 0 .

    25 / 22

  • The Wasserstein Metric's ``Inner Product''* [Otto].*DISCLAIMER: "given sufficient regularity," "in the limit", ...

    Given µ(t), there exists a velocity field v(x, t) = ∇ψ(x, t) so that

    ∂µ

    ∂t+∇ · (∇ψµ) = 0 .

    The tangent space at a measure µ is{∂µ

    ∂t

    ∣∣∣∣t=0

    : µ(0) = µ

    }={∇ψ : ψ ∈ C∞c (Rd)

    }.

    25 / 22

  • The Wasserstein Metric's ``Inner Product''* [Otto].*DISCLAIMER: "given sufficient regularity," "in the limit", ...

    Given µ(t), there exists a velocity field v(x, t) = ∇ψ(x, t) so that

    ∂µ

    ∂t+∇ · (∇ψµ) = 0 .

    The tangent space at a measure µ is{∂µ

    ∂t

    ∣∣∣∣t=0

    : µ(0) = µ

    }={∇ψ : ψ ∈ C∞c (Rd)

    }.

    The inner product is(∂µ

    ∂t,∂̃µ

    ∂t

    :=

    ∫∇ψ(x) · ∇ψ̃(x)dµ .

    25 / 22

  • Wasserstein Subdifferential.Wasserstein subdifferential of convex function:

    • ξ ∈ ∂E(µ) in case E(ν)− E(µ) ≥∫⟨ξ, tνµ − id⟩dµ for all ν

    • ξ ∈ ∂sE(µ) in case E(ν)− E(µ) ≥∫⟨ξ, t − id⟩dµ for all ν and all t#µ = ν.

    26 / 22

  • Generalized Geodesics.• µ(α) = (αtνµ + (1− α)id)#µ is the geodesic from µ to ν• µ(α) = (αtµω + (1− α)tνω)#ω is the gen. geodesic from µ to ν with base ω

    27 / 22

  • Generalized Geodesics.• µ(α) = (αtνµ + (1− α)id)#µ is the geodesic from µ to ν• µ(α) = (αtµω + (1− α)tνω)#ω is the gen. geodesic from µ to ν with base ω

    Proposition (AGS)ν 7→W 22 (ν, µ) is convex along gen. geodesics with base µ.

    27 / 22

  • Generalized Geodesics.• µ(α) = (αtνµ + (1− α)id)#µ is the geodesic from µ to ν• µ(α) = (αtµω + (1− α)tνω)#ω is the gen. geodesic from µ to ν with base ω

    Proposition (AGS)ν 7→W 22 (ν, µ) is convex along gen. geodesics with base µ.

    Thus, E convex along gen. geodesics =⇒Φ(ν) = 12τW

    22 (ν, µn−1) + E(ν) convex along gen. geodesics with base µn−1.

    27 / 22

  • Transport Metrics.The transport metric with base µ is W2,µ(ω, ν) :=

    (∫|tωµ − tνµ|2dµ

    )1/2.

    28 / 22

  • Transport Metrics.The transport metric with base µ is W2,µ(ω, ν) :=

    (∫|tωµ − tνµ|2dµ

    )1/2.

    Proposition (C.)..1 W2,µ is a metric

    28 / 22

  • Transport Metrics.The transport metric with base µ is W2,µ(ω, ν) :=

    (∫|tωµ − tνµ|2dµ

    )1/2.

    Proposition (C.)..1 W2,µ is a metric..2 W2(ω, ν) ≤W2,µ(ω, ν) with equality if µ = ω or µ = ν

    28 / 22

  • Transport Metrics.The transport metric with base µ is W2,µ(ω, ν) :=

    (∫|tωµ − tνµ|2dµ

    )1/2.

    Proposition (C.)..1 W2,µ is a metric..2 W2(ω, ν) ≤W2,µ(ω, ν) with equality if µ = ω or µ = ν..3 the geodesics of W2,µ are the gen. geodesics with base µ

    28 / 22

  • Transport Metrics.The transport metric with base µ is W2,µ(ω, ν) :=

    (∫|tωµ − tνµ|2dµ

    )1/2.

    Proposition (C.)..1 W2,µ is a metric..2 W2(ω, ν) ≤W2,µ(ω, ν) with equality if µ = ω or µ = ν..3 the geodesics of W2,µ are the gen. geodesics with base µ..4 ω 7→W 22,µ(ω, ν) is convex

    28 / 22

  • Transport Metrics.The transport metric with base µ is W2,µ(ω, ν) :=

    (∫|tωµ − tνµ|2dµ

    )1/2.

    Proposition (C.)..1 W2,µ is a metric..2 W2(ω, ν) ≤W2,µ(ω, ν) with equality if µ = ω or µ = ν..3 the geodesics of W2,µ are the gen. geodesics with base µ..4 ω 7→W 22,µ(ω, ν) is convex..5 ξ ∈ ∂sE(ν) =⇒ ξ ◦ tνµ ∈ ∂2,µE(ν)

    28 / 22

  • Transport Metrics.The transport metric with base µ is W2,µ(ω, ν) :=

    (∫|tωµ − tνµ|2dµ

    )1/2.

    Proposition (C.)..1 W2,µ is a metric..2 W2(ω, ν) ≤W2,µ(ω, ν) with equality if µ = ω or µ = ν..3 the geodesics of W2,µ are the gen. geodesics with base µ..4 ω 7→W 22,µ(ω, ν) is convex..5 ξ ∈ ∂sE(ν) =⇒ ξ ◦ tνµ ∈ ∂2,µE(ν)

    Proof of Euler-Lagrange equation:1τ (t

    µn−1µn − id) ∈ ∂sE(µn) =⇒ µn = argminν

    {12τW

    22 (ν, µn−1) + E(ν)

    }.

    28 / 22

  • Transport Metrics.The transport metric with base µ is W2,µ(ω, ν) :=

    (∫|tωµ − tνµ|2dµ

    )1/2.

    Proposition (C.)..1 W2,µ is a metric..2 W2(ω, ν) ≤W2,µ(ω, ν) with equality if µ = ω or µ = ν..3 the geodesics of W2,µ are the gen. geodesics with base µ..4 ω 7→W 22,µ(ω, ν) is convex..5 ξ ∈ ∂sE(ν) =⇒ ξ ◦ tνµ ∈ ∂2,µE(ν)

    Proof of Euler-Lagrange equation:1τ (t

    µn−1µn − id) ∈ ∂sE(µn) =⇒ µn = argminν

    {12τW

    22 (ν, µn−1) + E(ν)

    }.

    • E convex along gen. geodesics =⇒ convex in W2,µn−1

    28 / 22

  • Transport Metrics.The transport metric with base µ is W2,µ(ω, ν) :=

    (∫|tωµ − tνµ|2dµ

    )1/2.

    Proposition (C.)..1 W2,µ is a metric..2 W2(ω, ν) ≤W2,µ(ω, ν) with equality if µ = ω or µ = ν..3 the geodesics of W2,µ are the gen. geodesics with base µ..4 ω 7→W 22,µ(ω, ν) is convex..5 ξ ∈ ∂sE(ν) =⇒ ξ ◦ tνµ ∈ ∂2,µE(ν)

    Proof of Euler-Lagrange equation:1τ (t

    µn−1µn − id) ∈ ∂sE(µn) =⇒ µn = argminν

    {12τW

    22 (ν, µn−1) + E(ν)

    }.

    • E convex along gen. geodesics =⇒ convex in W2,µn−1• Φ(ν) = 12τW

    22 (ν, µn−1) + E(ν) convex in W2,µn−1

    28 / 22

  • Transport Metrics.The transport metric with base µ is W2,µ(ω, ν) :=

    (∫|tωµ − tνµ|2dµ

    )1/2.

    Proposition (C.)..1 W2,µ is a metric..2 W2(ω, ν) ≤W2,µ(ω, ν) with equality if µ = ω or µ = ν..3 the geodesics of W2,µ are the gen. geodesics with base µ..4 ω 7→W 22,µ(ω, ν) is convex..5 ξ ∈ ∂sE(ν) =⇒ ξ ◦ tνµ ∈ ∂2,µE(ν)

    Proof of Euler-Lagrange equation:1τ (t

    µn−1µn − id) ∈ ∂sE(µn) =⇒ µn = argminν

    {12τW

    22 (ν, µn−1) + E(ν)

    }.

    • E convex along gen. geodesics =⇒ convex in W2,µn−1• Φ(ν) = 12τW

    22 (ν, µn−1) + E(ν) convex in W2,µn−1

    • Since 1τ (tµn−1µn − id) ∈ ∂sE(µn), a computation shows 0 ∈ ∂2,µn−1Φ(µn)

    28 / 22

  • Transport Metrics.The transport metric with base µ is W2,µ(ω, ν) :=

    (∫|tωµ − tνµ|2dµ

    )1/2.

    Proposition (C.)..1 W2,µ is a metric..2 W2(ω, ν) ≤W2,µ(ω, ν) with equality if µ = ω or µ = ν..3 the geodesics of W2,µ are the gen. geodesics with base µ..4 ω 7→W 22,µ(ω, ν) is convex..5 ξ ∈ ∂sE(ν) =⇒ ξ ◦ tνµ ∈ ∂2,µE(ν)

    Proof of Euler-Lagrange equation:1τ (t

    µn−1µn − id) ∈ ∂sE(µn) =⇒ µn = argminν

    {12τW

    22 (ν, µn−1) + E(ν)

    }.

    • E convex along gen. geodesics =⇒ convex in W2,µn−1• Φ(ν) = 12τW

    22 (ν, µn−1) + E(ν) convex in W2,µn−1

    • Since 1τ (tµn−1µn − id) ∈ ∂sE(µn), a computation shows 0 ∈ ∂2,µn−1Φ(µn)

    • Therefore, µn minimizes Φ.28 / 22