Top Banner

of 20

The Dynamics of Four Species Food Web Model With Stage Structure

Jul 05, 2018

Download

Documents

ijteee
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/16/2019 The Dynamics of Four Species Food Web Model With Stage Structure

    1/20

  • 8/16/2019 The Dynamics of Four Species Food Web Model With Stage Structure

    2/20

    INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 4, ISSUE 3 14ISSN 2347-4289

    Copyright © 2016 IJTEEE. 

    3.  When the top predator exists in the third level, it is

    assumed that the top predator consumes both thepreys in the first level according to Lotka-Volterra typeof the functional response with maximum attack rates

    01 c   and 02  c   for )(1   t  N    and )(2   t  N    respectively,

    while it attacks the immature predator at the secondlevel with maximum attack rate 0   . Further, it is

    assumed that there is enter-specific competitionbetween the mature predator and top predator with

    intensity of competition rates 01     and 02     

    respectively. Finally  both the predators (maturepredator and top predator) are decay exponentially with

    natural death rates 01 d    and 02  d   respectively in

    the absence of their food.

    According to these assumptions the dynamics of the abovedescribed food web system can be formulatedmathematically with the following set of differentialequations:

    52

    542535522451135

    41541

    4222411134

    533422241113

    5224222122

    22

    5114112111

    11

    )1()1(

    1

    1

     N d 

     N  N  N  N e N  N ce N  N cedT 

    dN 

     N d  N  N 

     N  N bem N  N ben N dT 

    dN 

     N  N  N  N  N bme N  N bnedT 

    dN 

     N  N c N  N b N  N a L

     N  sN 

    dT 

    dN 

     N  N c N  N b N  N a K 

     N 

    rN dT 

    dN 

     

      

     

     

     

     

     

       

     

     

       

    ….…..(1)

    Here 0)0(1    N  , 0)0(2    N  , 0)0(3    N  , 0)0(4    N    and

    0)0(5    N  . Note that the above model contains 23 positive

    parameters in all, which makes the analysis of the systemvery difficult. So, in order to reduce the number ofparameters and determine which parameters represent thecontrol parameters, the following dimensionless variablesare used.

    d u

    bu

    a

    ecu

     Kecu

    d u

    cu

    a

    ebu

    e Kbu

    bu

    cu

    r u

    ba

    ebu

     K eu

    c

    cu

    b

    bu

     Kau

     La

    r u

     su N 

    c x N 

    b x

     N r 

     x N r 

    a x

     K 

     N  xrT t 

    218

    1

    217

    1

    4216

    3115

    114

    1

    113

    1

    2212

    1111

    110

    198

    11

    227

    16

    1

    25

    1

    24

    23

    1215

    154

    14

    3321

    21

    1

    ,,,

    ,,,,

    ,,,,

    ,,,,

    ,,,,

    ,,,,

     

     

      

          

      

      

     

    Accordingly, the dimensionless of system (1) becomes

    )(

    )(

    )1()1(

    )(

    )(

    )1(

    )()1(

    5

    5185417535521651155

    44145413

    421241113104

    3539384274163

    2

    52542421322212

    1514121111

     f  

     xu x xu x xe x xu x xudt 

    dx

     f   xu x xu

     x xum x xun xudt 

    dx

     f   x xu xu x xmu x xnudt 

    dx

     f  

     x xu x xu x xu xu xudt 

    dx

     f   x x x x x x x xdt 

    dx

     

    ……(2)

     

    Here ,),,,,( 54321T  x x x x x   0)0(1    x , 0)0(2    x

    0)0(3    x , 0)0(4    x  and 0)0(5    x . Clearly, the interaction

    functions 4321   ,,,   f   f   f   f    and 5 f    of system (2) are continuous

    and have continuous partial derivatives on the state space

    }.0)0(,0)0(,0)0(

    ,0)0(,0)0(:{

    543

    2155

     x x x

     x x R R

     

    Hence these functions are Lipschizian on 5 R  and then the

    solution of the system (2) with nonnegative initial conditionexists and is a unique. Further, all the solutions of system

    (2) which initiate in 5 R  are uniformly bounded as shown in

    the following theorem.

    Theorem (1): All the solutions of system (2), which initiate

    in 5 R , are uniformly bounded.

    Proof: From the first equation of system (2) we get:

    )1( 111  x x

    dt 

    dx  

    Then according to the comparison theorem [18], the abovedifferential inequality gives that

    1)(suplim 1  

    t  xt 

    , hence 1)(1   t  x ; 0t   

    Similarly, from the second equation of system (2) we obtain

    that

    22

    1)(suplim

    ut  x

    ,hence2

    2

    1)(

    ut  x   ; 0t   

    Now define the function

    )()()()()()( 54321   t  xt  xt  xt  xt  xt  M      and then take the

    time derivative of )(t  M    along the solution of system (2

    gives:

     M  H dt 

    dM        H  M 

    dt 

    dM     

  • 8/16/2019 The Dynamics of Four Species Food Web Model With Stage Structure

    3/20

    INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 4, ISSUE 3 15ISSN 2347-4289

    Copyright © 2016 IJTEEE. 

    Where },,,1min{ 181411   uuu       , 211   22   xu x H     with

    108   uu     . Now, it is easy to verify that the solution ofthe above linear differential inequalities can be written

    t e

     H  M 

     H t  M 

       

      

     

      

        0)(  

    Where ))0(),0(),0(),0(),0(( 543210   x x x x x M    ,So that

     

     H t  M 

    )(suplim     0;)(     t  H t  M  

    .

    Thus all solutions are uniformly bounded and the proof iscomplete.

    ■ 

    3. Existence of equilibrium pointsIt is observed that, system (2) has at most elevenbiologically feasible equilibrium points, namely

    10,...,2,1,0;   i E i . The existence conditions for each of these

    equilibrium points are derived in the following. Thevanishing equilibrium point )0,0,0,0,0(0   E    and the axial

    equilibrium points )0,0,0,0,1(1  E    and )0,0,0,,0(2

    12 u

     E     

    always exist. The first two species equilibrium point

    )0,0,0,,( 213   x x E    , where

    213

    211

    )1(

    uuu

    uu x

    , 12   1   x x     (3a)

    exists under one set of the following sets of conditions

    13  uu   & 1

    2 u   (3b)

    Or

    13   uu   & 12  u   (3c)

    The second two species equilibrium point

    )ˆ,0,0,0,ˆ( 514   x x E    , with

    ,ˆ15

    181

    u

    u x    and 15   ˆ1ˆ   x x     (4a)

    exists under the condition

    1518   uu     (4b)

    The third two species equilibrium point ),0,0,,0( 525   x x E     

    ,

    where

    )1( 225

    15   xu

    u

    u x

        

     and16

    182

    u

    u x    

      (5a)

    exists under the condition

    16182   uuu     (5b)

    Moreover, the first three species equilibrium poin

    )0,,,0,( 4316   x x x E     where

    14

    118

    63

    118106

    1481

    1

    )1(,)1(

     x x

     x xu

    nu x

    uununu

    uu x

      (6a)

    exists if the following condition holds

    118106148   )1(   uununuuu     (6b)

    The second three species equilibrium point

    )0,~,~,~,0( 4327   x x x E     where

    )~1(~

    ),~1(~~

    ,)1(

    ~

    222

    14

    22228

    173

    128107

    1482

     xuu

    u x

     xu xuu

    umu x

    uumumu

    uu x

      (7a)

    exists under the condition

    1281071482   )1(   uumumuuuu     (7b)

    The third three species equilibrium point

    )~~,0,0,

    ~~,~~( 5218   x x x E    , where

    215

    152151653

    151518532

    15

    216181

    ~~~~1~~

    ,)()(

    )()(~~

    ,

    ~~~~

     x x x

    uuuuuuu

    uuuuuu x

    u xuu x

      (8a)

    exists if the following condition holds

    1615

    1815

    152151653

    15151853

    )()(

    )()(0

    uu

    uu

    uuuuuuu

    uuuuuu

      (8b)

    The top predator free equilibrium point

    )0,,,,( 43219   x x x x E   

      

      

      

    ,which is given by

  • 8/16/2019 The Dynamics of Four Species Food Web Model With Stage Structure

    4/20

  • 8/16/2019 The Dynamics of Four Species Food Web Model With Stage Structure

    5/20

  • 8/16/2019 The Dynamics of Four Species Food Web Model With Stage Structure

    6/20

    INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 4, ISSUE 3 18ISSN 2347-4289

    Copyright © 2016 IJTEEE. 

    Straightforward computation shows that all the eigenvalues

    of )( 2 E  J   have negative real parts if the following conditions

    hold:

    1482

    107128

    18216

    2

    )1(

    1

    uuu

    umuuum

    uuu

    u

      (14e)

    Hence 2 E    is locally asymptotically stable. However, it is a

    saddle point otherwise. The Jacobian matrix of system (2)

    at 3 E   can be written as

    )(

    0000

    000

    000

    0

    0

    )(

    55

    4410

    27168

    254422123

    1111

    3

    ijd 

    d u

     xmu xnuu

     xu xu xuu xu

     x x x x

     E  J 

     

     

     

     

    …….(15a) 

    Here

    1821611555

    1421211144   ,)1()1(

    u xu xud 

    u xum xund 

     

    Then the characteristic equation of )( 3 E  J   is given by

      0)( 18216115212212           u xu xu B B A A …..(15b)

    where

    22111   xuu x A     and 0)( 213212     x xuuu A   under the

    second condition of the existence of 3 E  . While

    ])1()1[( 8142121111   uu xum xun B   ,

    22111482   x xuu B         

    with 1061181   )1(   unuuun     , 1071282   )1(   umuuum     . 

    Therefore the eigenvalues can be written as:

    18216115

    221

    1

    2

    2

    1

    1

    5

    43

    21

    42

    1

    2,

    42

    1

    2,

    u xu xu

     B B B

     A A

     A

     x

     x x

     x x

     

      

      

      (15c)

    Accordingly, it is easy to verify that all these eigenvalueshave negative real parts if the following conditions aresatisfied

    148212111

    1482211

    18216115

    )1()1(   uu xum xun

    uu x x

    u xu xu

         (15d)

    Hence, 3 E   is locally asymptotically stable. However, it is a

    saddle point otherwise.

    The Jacobian matrix of system (2) at 4 E   can be written as

    )ˆ(

    0ˆˆˆ

    0ˆ00

    0ˆ00

    000ˆ0

    ˆˆ0ˆˆ

    )(

    517555161815

    4410

    168

    22

    1111

    4

    ijd 

     xu xe xuuu

    d u

     xunu

     x x x x

     E  J 

     

     

     

     

    ….(16a) 

    Here 5513122   ˆˆˆ  xu xuud      1451311144   ˆˆ)1(

    ˆ u xu xund     

    The characteristic equation of )( 4 E  J   is given by

      0ˆˆˆˆˆˆˆˆ)ˆˆ( 21221222     B B A Ad            (16b)

    Where 11   ˆˆ  x A     and 118152   ˆ)(

    ˆ  xuu A   , while

    1115131481   ˆ)1(ˆˆ  xun xuuu B     and

    110611851381482   ˆ])1[(ˆˆ  xunuuun xuuuu B   . Therefore

    the eigenvalues are:

    221

    1

    2211

    55131

    ˆ4ˆ2

    1

    2

    ˆˆ,ˆ

    ˆ4

    ˆ

    2

    1

    2

    ˆˆ

    ˆˆˆ

    43

    51

    2

     B B B

     A A A

     xu xuu

     x x

     x x

     x

      

      

     

      (16c)

    Hence, all these eigenvalues have negative real parts if thefollowing conditions are satisfied

    51381481106118

    55131

    ˆˆ])1[(

    ˆˆ

     xuuuu xunuuun

     xu xuu  (16d)

    Thus, 4 E    is locally asymptotically sable in the5 R

    however, it is a saddle point otherwise.

    The Jacobian matrix of system (2) at 5 E   can be written as

    )(

    0

    000

    000

    0

    00001

    )(

    51755516515

    4410

    278

    252422123

    52

    5

    ijd 

     xu xe xu xu

    d u

     xmuu

     xu xu xuu xu

     x x

     E  J 

     

        

     

     

        

      

     

     

     

     

    …..(17a)

  • 8/16/2019 The Dynamics of Four Species Food Web Model With Stage Structure

    7/20

    INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 4, ISSUE 3 19ISSN 2347-4289

    Copyright © 2016 IJTEEE. 

    Here 1451321244   )1(   u xu xumd        

     

    . So the characteristic

    equation of )( 5 E  J   is given by:

      021221211     B B A Ad           

            (17b)

    Where 2211   xuu A   

     

      and 521652   x xuu A    

     

    , while

    2125131481   )1(ˆ

     xum xuuu B    

    ,

    210712851381482   ])1[(ˆ  xumuuum xuuuu B

        

    . Thus the

    eigenvalues of )( 5 E  J   can be written as:

    221

    1

    221

    1

    52

    42

    1

    2,

    42

    1

    2,

    1

    43

    52

    1

     B B B

     A A A

     x x

     x x

     x x

     x

      

     

      

      

     

      

       

      

      

     

      (17c)

    Now straightforward computation shows that all theeigenvalues of )( 5 E  J    have negative real parts provided

    that the following conditions are satisfied

     

    51381482107128

    52

    )1(

    1

     xuuuu xumuuum

     x x  

      

      (17d)

    Hence 5 E   is locally asymptotically stable in the 5 R ,

    however it is a saddle point otherwise. The Jacobian matrix

    of system (2) at 6 E   can be written as

    )(

    0000

    )1()1(

    0000

    0

    )(

    55

    4134410412411

    391684746

    22

    1111

    6

    ijd 

     xud u xum xun

     xu xnuu xmu xnu

     x x x x

     E  J 

     

     

     

     

    ....(18a)

    Here

    14111444413122   )1(,   u xund  xu xuud   

    184173511555   u xu xe xud    .

    Hence the characteristic equation of )( 6 E  J   is given by

    0])[)((   322

    13

    5522     A A Ad d          ……(18b)

    Where

    ][

    ;);(

    3142113

    21331124433111

     Rd  Rd  A

     R Rd d  Ad d d  A

     

    With

    413343313

    433444332411444111   ;;

    d d d d  R

    d d d d  Rd d d d  R

     

    While

    31424433133111321   )()(   Rd  Rd d  Rd d  A A A A    

    So the eigenvalues in the 2 x  and 5 x -directions are given

    by

    1841735115

    44131

    5

    2  ;

    u xu xe xu

     xu xuu

     x

     x

     

       (18c)

    However the other three eigenvalues represent the roots othe third order polynomial in Eq. (18b), which have negative

    real parts if and only if 01  A , 03   A   and 0 . So

    straightforward computation shows that all the eigenvalues

    of )( 6 E  J   have negative real parts if the following conditionsare satisfied:

    31424433133111

    106118

    148

    11

    141

    1841735115

    44131

    )()(

    )1(,

    )1(min

     Rd  Rd d  Rd d  A

    unuuun

    uu

    un

    u x

    u xu xe xu

     xu xuu

    …..(18d)

    So, 6 E   is locally asymptotically stable, however, it is saddle

    point otherwise. The Jacobian matrix of system (2) at 7 E 

    can be written as

    )~

    (

    ~0000

    ~~)1(~)1(

    ~~~~

    ~~0~~0000~~1

    )(

    55

    41310412411

    392784746

    252422123

    42

    7

    ijd 

     xuu xum xun

     xu xmuu xmu xnu

     xu xu xuu xu

     x x

     E  J 

     

     

     

     

    …..(19a)

    Here

    1421244   ˆ)1(~

    u xumd      184173521655~

    ˆˆ~

    u xu xe xud    .

    The characteristic equation of )( 7 E  J   is written as:

    0]~~~~~~

    )[~~

    )(~~

    ( 322

    13

    5511     A A Ad d          ……(19b)

    Where

    ]~~~~

    [~

    ;~~~~~

    );~~~

    (~

    3242223

    21332224433221

     Rd  Rd  A

     R Rd d  Ad d d  A

     

    423343323

    433444332422444221

    ~~~~~;

    ~~~~~;

    ~~~~~

    d d d d  R

    d d d d  Rd d d d  R

     

  • 8/16/2019 The Dynamics of Four Species Food Web Model With Stage Structure

    8/20

    INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 4, ISSUE 3 20ISSN 2347-4289

    Copyright © 2016 IJTEEE. 

    While

    32424433133221321~~~

    )~~

    (]~~~

    [~~~~~

     Rd  Rd d  Rd d  A A A A    

    Therefore the eigenvalues in the 1 x  and 5 x -directions are

    given by

    1841735216

    42

    ~~~~

    ,~~1~

    5

    1

    u xu xe xu

     x x

     x

     x

     

     

      (19c)

    However the other three eigenvalues represent the roots ofthe third order polynomial in Eq. (19b), which have negative

    real parts if and only if 0~1  A , 0

    ~3  A   and 0

    ~ . So

    straightforward computation shows that all the eigenvalues

    of )( 7 E  J   have negative real parts if the following conditions

    are satisfied:

    24433133221324

    107128

    148

    12

    142

    1841735216

    42

    ~)

    ~~(]

    ~~~[

    ~~~

    )1(,

    )1(min~

    ~~~

    ~~1

     Rd d  Rd d  A Rd 

    umuuum

    uu

    um

    u x

    u xu xe xu

     x x

    ……(19d)

    So, 7 E   is locally asymptotically stable, however, it is saddle

    point otherwise. Now, since the stability analysis of theremaining equilibrium points of system (2), usinglinearization method, became more complicated, thereforewe will study them with the help of Lyapunov method. In thefollowing we will start first to specify the region of global

    stability of the equilibrium points 7,,2,1;   i E i .

    Theorem (2):  Assume that 1 E    is locally asymptotically

    stable in 5 R  and the following conditions hold

    119164

    5615912511755

    )1(

    )()1()1(

    uuuun

    enuuuuumuuuenm

    …..(20a)

    1065118515109   )1(   uuneuuenuuu     (20b) 

    15149151191465   )1(   uuuuuunuune     (20c)

    21

    2

    1 )1(4

      x 

       (20d)

    Where155

    1611551

    uu

    uuuu      and161155

    16212

    uuuu

    uuu

      . Then the

    equilibrium point 1 E   is globally asymptotically stable.

    Proof:  Consider the following function

    5544

    33221115211   )ln1()...,,(

     xr  xr 

     xr  xr  x xr  x x x L

     

    Here 5,,2,1;   ir i  are positive constants to be determined.

    It is easy to see that

    ),,()...,,(   515211   R RC  x x x L in addition ,0)0,0,0,0,1(1    L  while

    0)...,,( 5211    x x x L ,5

    51   ),...,(   R x x   and

    )0,0,0,0,1(),...,( 51    x x . Further more by taking the derivative

    with respect to the time and simplifying the resulting termswe get that

    518551155154175134

    41144535593

    3104835216552

    421247342

    4111463122212

    2121213212111

    )()(

    )()(

    )()(

    ])1([

    ])1([

    )()()1(

     xur  x xur r  x xur ur 

     xr ur  x xer ur 

     xur ur  x xur ur 

     x xumr mur ur 

     x xunr nur r  xuur 

     xur r  x xur r  xr dt dL

     

    Now by choosing the positive constants 5,,2,1;   ir i   as

    follows

    155

    15119

    561594

    159

    53

    155

    1621

    1,

    )1(

    ,,,1

    ur 

    uuun

    enuuur 

    uu

    e

    r uu

    u

    r r 

     

    and then substituting them in the above equation , we get

    415119

    6515914

    315119

    5615910

    159

    85

    42)1(

    )()1()()1(

    51855415

    17

    15119

    6515913

    222121155

    16321

    1

    1)1(

    )(

    )1(

    )(

    )1(

    )(

    11)1(

    151195

    55615912755169411

     xuuun

    uneuuu

     xuuun

    unuuuu

    uu

    ue

     x x

     xuu x xu

    u

    uuun

    uneuuu

     x x x xuu

    uu x

    dt 

    dL

    uuuun

    uenuuuumuumeuuuun

     

      

     

      

     

    Now, due to the boundedness of the logistic term

    ]1[ 2221   x x          by the 21   4   , then its easy to verify tha

    dt 

    dL1   is negative definite under the sufficient conditions

    (20a)-(20d). Hence the solution of system (2) will approach

    asymptotically to 1 E    from any initial point satisfies the

    above condition and then the proof is complete.■

     

    Theorem(3):Assume that )0,0,0,,0( 22   x E     

    ;

    22

    1

    u x       

    islocally asymptotically stable in 5 R   then it is a

    globally asymptotically stable provided that the following

      119164

    5615912511755

    1

    11

    uunuu

    enuuuuumuuuenm

    ……..(21a)

      1065118515109   1   uuneuuenuuu     (21b) 

  • 8/16/2019 The Dynamics of Four Species Food Web Model With Stage Structure

    9/20

    INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 4, ISSUE 3 21ISSN 2347-4289

    Copyright © 2016 IJTEEE. 

      151495216119414655   1   uuuu xuuuunuuune      

      

      (21c)

    18216   u xu       

      (21d)

    155

    1621

    2

    1

    4   uu

    uuu

      

        (21e)

    Here

    155

    21631551

    uu

     xuuuu    

        and

    2163155

    1552

     xuuuu

    uu    

       .

    Proof:  Consider the following functions

    554433

    2

    22222115212   ln,.......,,

     xc xc xc

     x

     x x x xc xc x x x L

     

     

     

         

      

        

        

     

    Where 5,....,1,   ici  are positive constants to be determined.

    It is easy to see that     ,,,.....,   51512   R RC  x x L   and   00,0,0,,0 22    x L

        

      while   551512   ,....,;0,....,   R x x x x L  

    and   .0,0,0,,0,..., 251   x x x    

    . Further more by taking the

    derivative with respect to the time and simplifying theresulting terms, we get that

     

      518554175134

    525242425216552

    421247342

    2132310483

    535593511551

    4111463121321

    4144

    2

    222121112

    1

    1

    1

     xuc x xucuc

     x xuc x xuc x xucuc x xumcmucuc

     x xuc xucuc

     x xecuc x xucc

     x xuncnucc x xucc

     xuc x xuuc x xcdt 

    dL

        

        

        

        

     

    So by choosing the constants 5,.....,2,1,   ici as follow

      155

    15119

    651594

    159

    53

    155

    1621

    1,

    1

    ,,,1

    uc

    uuun

    uneuuc

    uu

    ec

    uu

    ucc

     

    Thus by substituting these constants in the above equation,we get that

     

    515

    2161821

    155

    163

    5415

    17

    15119

    6515913

    315119

    65159101185

    421

    11

    4151195

    216119465159145

    2

    22155

    16211211

    2

    1

    1

    11

    1

    1

    1

    151195

    56515912755169411

     xu

     xuu x x

    uu

    uu

     x xu

    u

    uuun

    uneuuu

     xuuun

    uneuuuuuen

     x x

     xuuuun

     xnuuuuuneuuuu

     x xuu

    uuu x x

    dt 

    dL

    uuuun

    uuneuuumuumeuuuun

     

     

      

     

        

        

        

        

     

    Now, due to the boundedness of the logistic term

    ]1[ 1211   x x           by the 21   4     , then its easy to verify that

    dt 

    dL2   is negative definite under the sufficient conditions

    (21a)-(21e). Hence the solution of system (2) will approachasymptotically to 2 E    from any initial point satisfies the

    above condition and then the proof is complete.■ 

    Theorem (4):  Assume that 3 E    is locally asymptotically

    stable in 5 R . Then, it is a globally asymptotically stable

    provided that the following conditions hold.

      12655161194

    15129511755

    11

    11

    uuuemnuuuun

    uuuumuuuenm

      ……(22a)

      10

    118565159

    14

    21196411511965

    1)1(1

    u

    uuen

    uneuu

    u

     xuuuun xuuun

    unu (22b)

    18216115   u xu xu     (22c)

    5

    1615212

    5

    16315   4

    u

    uuuu

    u

    uuu  

     

      

        (22d)

    Proof: Consider the following functions

    5544332

    12222

    1

    11111513

    ln

    ln,....,

     xc xc xc x

     x x x xc

     x

     x x x xc x x L

     

      

     

     

     

     

     

     

    Where 5,....,1,   ici  are positive constants to be determined

    It is easy to verify that   ,,,.....,   51513   R RC  x x L   and   00,0,0,, 213    x x L   while   0,...., 513    x x L   for al

      551,....,  R x x   and 0,0,0,,,..., 2151   x x x x   . Moreover bytaking the derivative with respect to the time and simplifyingthe resulting terms, we get that

  • 8/16/2019 The Dynamics of Four Species Food Web Model With Stage Structure

    10/20

    INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 4, ISSUE 3 22ISSN 2347-4289

    Copyright © 2016 IJTEEE. 

       

      424211144

    525211185

    51155154175134

    535593310483

    421247342

    41114631

    52165522

    22212

    22113212

    1113

    )1(

    )1(

     x xuc xcuc

     x xuc xcuc x xucc x xucuc

     x xecuc xucuc

     x xumcmucuc

     x xuncnucc

     x xucuc x xuuc

     x x x xucc x xcdt 

    dL

     

    So by choosing the positive constants as below

      1,

    1

    ,,,

    5119

    651594

    9

    53

    5

    162151

    cuun

    uneuuc

    u

    ec

    u

    ucuc

     

    and then substituting these constants in the above

    equation, we get that

      521611518

    5417119

    6515913

    41

    1

    3119

    65159101185

    421

    11

    22115

    16315

    222

    5

    162121115

    3

    1

    1

    1

    1195

    2164115511965159145

    1195

    65159125755169411

     x xu xuu

     x xuuun

    uneuuu

     x

     xuun

    uneuuuuuen

     x x

     x x x xu

    uuu

     x xu

    uuu x xu

    dt 

    dL

    uuun

     xuu xuuuununeuuuu

    uuun

    uneuuuumuumeuuuun

     

      

     

     

    So, by using condition (22d) we obtain that

      521611518

    5417119

    6515913

    3119

    65159101185

    41

    1

    421

    11

    2

    225

    16211115

    3

    1

    1

    1

    1195

    2164115511965159145

    1195

    65159125755169411

     x xu xuu

     x xuuun

    uneuuu

     xuun

    uneuuuuuen

     x

     x x

     x xu

    uuu x xu

    dt 

    dL

    uuun

     xuu xuuuununeuuuu

    uuun

    uneuuuumuumeuuuun

     

    Now its easy to verify thatdt 

    dL3   is negative definite under

    the sufficient conditions (22a)-(22c). Hence the solution of

    system (2) will approach asymptotically to 3 E    from any

    initial point satisfies the above condition and then the proois complete. ■ 

    Theorem (5):  Assume that 4 E    is locally asymptotically

    stable in 5 R , then it is globally asymptotically stable

    provided that the following conditions hold:

      12655161194

    15129511755

    1111

    uuuemnuuuunuuuumuuuenm

      (23a)

    52161611155   ˆˆ   xuuu xuu     (23b)

    6510

    859115159

    15914

    1711511965

    )ˆ(1

    )ˆ(1

    uneu

    u xuuenuu

    uuu

    u xuuunune

      (23c)

    211515

    18ˆˆ   x x x

    u

    u   (23d)

    Proof: Consider the following function

     

      

     

     

      

     

    5

    555554433

    221

    11111514

    ˆlnˆˆˆˆˆ

    ˆˆ

    lnˆˆˆ,....,

     x

     x x x xc xc xc

     xc x

     x x x xc x x L

     

    Where 5,....,1,ˆ   ici  are positive constants to be determined

    It is easy to see that     ,,,.....,   51514   R RC  x x L   and   0

    ˆ,0,0,0,ˆ 514    x x L   while   0,...., 514    x x L   for al   551,....,  R x x   and   .ˆ,0,0,0,ˆ,..., 5151   x x x x     Further moreby taking the derivative with respect to the time andsimplifying the resulting terms, we get that

     

      51854517511144518541114631

    421247342

    5216552212115162

    535593310483555

    2113255111551

    5417513422212

    2111

    4

    ˆˆˆˆˆˆˆ

    ˆ1ˆˆˆ

    1ˆˆˆ

    ˆˆˆˆˆˆˆ

    ˆˆˆˆˆˆ

    ˆˆˆˆˆˆ

    ˆˆˆˆˆ

     xuc x xuc xcuc

     xuc x xuncnucc

     x xumcmucuc

     x xucuc xuc xc xuc

     x xecuc xucuc xec

     x xcuc x x x xucc

     x xucuc xuuc x xcdt 

    dL

     

    Therefore by choosing the positive constants as below

      155

    15119

    651594

    159

    53

    155

    1621

    1ˆ,

    ,ˆ,ˆ,1ˆ

    uc

    uuun

    uneuuc

    uu

    ec

    uu

    ucc

     

  • 8/16/2019 The Dynamics of Four Species Food Web Model With Stage Structure

    11/20

  • 8/16/2019 The Dynamics of Four Species Food Web Model With Stage Structure

    12/20

    INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 4, ISSUE 3 24ISSN 2347-4289

    Copyright © 2016 IJTEEE. 

    39

    539  xu

    e xu

      (25c)

    417

    4115  xu

     x xu   (25d)

      417125431375416134

    417125341375

    1

    1

     xuuum x xuumu xuuu

     xuuum x xuumu

      ..(25e)

      1582

    46   uu xnu     (25f)

     

    413

    117111714152

    13

    171115

    11

     xu

     xuunuuu

    u

    uunu

     

    (25g)

    413

    11711171482

    413

    171016

    1

     xu

     xuunuuu

     xu

    uu xnu

     

      ...(25h)

    Proof: Consider the following function

      552

    4442

    333

    221

    11111516

    22

    ,....,

     xc x xc

     x xc

     xc x

     x L x x xc x x L n

     

      

     

     

    Where 5,....,1,   ici  are positive constants to be determined.

    It is easy to see that   ,,,.....,   51516   R RC  x x L   and   00,,,0, 4316    x x x L   while   0,...., 516    x x L   for all

      551,....,  R x x  and   0,,,0,,..., 43151   x x x x x   . Further more

    by taking the derivative with respect to the time andsimplifying the resulting terms, we get that

        544134175242124432735355393

    5241343311463

    5115515216552

    42412437342

    2

    33832132211

    441141141

    52393

    2

    441114144

    5114433104163

    22212211211

    2

    1116

    1

    1

    1

    1

     x x xucuc x xumc

     x x xmuc x xec xuc

     x xuc x x x x xnuc

     x xucc x xucuc

     x x xumc xmucuc

     x xuc x xuc xuc

     x x x x xuncc

     x xuc x x xuncuc

     x xc x x x xuc xnuc

     xuuc x xc x xc x xcdt 

    dL

     

    Now by choosing the positive constants as below

    1,,, 53413

    174

    5

    162151     cc

     xu

    uc

    u

    ucuc  

    and then substituting these constants in the above equationand using the conditions (25a),(25f)-(25h), we get that 

     

     

    42

    4121413

    1737

    12113

    17374

    5

    16

    5353939511524

    4

    17

    21151152215

    16213

    5

    1615

    2

    )44(4132

    111114173328

    2

    )44(4132

    1111141711

    2

    15

    2

    )33(2

    1811

    2

    156

     x x

     xum xu

    u xmu

    umu

    u xmuu

    u

    u

     x xe xu xu x xu x x

    u

     xuu xu xuuu

    u x xu

    u

    uu

     x x xu

     xunuu x xu

     x x xu

     xunuu x x

    u

     x xu

     x xu

    dt 

    dL

     

    Now its easy to verify thatdt 

    dL6   is negative definite unde

    the sufficient conditions (25b)-(25e). Hence the solution o

    system (2) will approach asymptotically to 6 E    from any

    initial point satisfies the above condition and then the proois complete. ■ Note that the stated sub region in the abovetheorem represents the basin of attraction of the equilibrium

    point 6 E  .

    Theorem (8):  Assume that 7 E    is locally asymptotically

    stable in 5 R , then it is globally asymptotically stable in the

    sub region of 5 R  that satisfies the following conditions:

    1155

    2163155~

     xuu

     xuuuu

      (26a)

      12

    142

    1   um

    u x

      (26b)

    39

    539~

     xu

    e xu

      (26c)

    417

    4216~~

     xu

     x xu   (26d)

     

    417114313641513

    4171134136

    ~1~~~1~

     xuun x xunu xuu

     xuun x xunu  (26e)

    5

    16821247

    ~

    u

    uuuu xmu     (26f)

    4135

    2171217141621

    2

    13

    1712

    5

    164

    ~1

    1

     xuu

     xuumuuuuu

    mu

    uu

    u

    uu

      (26g)

  • 8/16/2019 The Dynamics of Four Species Food Web Model With Stage Structure

    13/20

    INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 4, ISSUE 3 25ISSN 2347-4289

    Copyright © 2016 IJTEEE. 

    413

    2171217148

    2

    413

    171027

    ~1

    ~

     xu

     xuumuuu

     xu

    uu xmu

      (26h)

    Proof: Consider the following function

      552

    4442

    333

    2

    2222211517

    ~~

    2

    ~~

    2

    ~

    ~~~~~,...,

     xc x xc

     x xc

     x x L x x xc xc x x L n

      

      

     

    where 5,....,1,~ ici  are positive constants to be determined.

    It is easy to see that     ,,,.....,   51517   R RC  x x L   and   00,~,~,~,0 4327    x x x L   while   0,...., 517    x x L   for all

      551,....,  R x x  and 0,~,~,~,0,..., 43251   x x x x x   . Further more

    by taking the derivative with respect to the time andsimplifying the resulting terms, we get that

     

       

     

    44224124

    5355393393

    413634114

    41143631

    2441445216552

    233834433104

    4422422

    22212

    5115513322473

    24421245252

    24134

    5441341754433273

    213211232111

    7

    ~~~1~

    ~~~~

    ~1~

    ~1~~~~

    ~~~~

    ~~~~~

    ~~~~~

    ~~~~~~

    ~1~~~~

    ~~~~~~

    ~~~~~~

     x x x x xumc

     x xec xuc xuc

     x x xnuc xunc

     xunc xnucc

     x xuc x xucuc

     x xuc x x x xuc

     x x x xuc x xuuc

     x xucc x x x x xmuc

     x x xumc x xuc xuc

     x x xucuc x x x x xmuc

     x xucc x xucc xcdt 

    dL

     

    So by choosing the positive constants as below

    1~~,~~,~,~ 53

    413

    174

    5

    162151     cc

     xu

    uc

    u

    ucuc  

    and then substituting these constants in the above equationand using the conditions (26b),(26f)-(26h), we get that 

     

      413641114

    ~13

    17

    113

    17113

    ~615

    5353~

    93952~

    1624

    4~17

    215

    1631512

    ~

    5

    16315115

    2

    4~

    44

    ~132

    212114173

    ~3

    2

    8

    2

    4

    ~

    44~132

    21211417

    2~

    252

    1621

    2

    3~

    32

    82

    ~2

    52

    16217

     x x xnu xun xu

    u

    nu

    uu xnuu

     x xe xu xu x xu x x

    u

     x xu

    uuu x x

    u

    uuu xu

     x x xu

     xumuu x x

    u

     x x xu

     xumuu

     x xu

    uuu

     x xu

     x xu

    uuu

    dt 

    dL

     

    Now its easy to verify thatdt 

    dL7   is negative definite unde

    the sufficient conditions (26a), (26c)-(25e). Hence the

    solution of system (2) will approach asymptotically to 7 E 

    from any initial point satisfies the above condition and thenthe proof is complete. ■ Theorem (9):  Assume that the third three species

    equilibrium point 8 E    exists, then it is a globallyasymptotically stable in 5 R , if the following conditions hold

    muuuneuuuun

    uuuumuuuenm

    11

    11

    12655161194

    15129511755  (27a)

       

     

    10

    598115

    145

    517524119

    14

    1151191465

    ~~165159

    ~~~~1~~1

    u

     xuuuen

    uu

     xuu xuuun

    u

     xuuunuune

    uneuu

      (27b)

    5

    1615212

    5

    163155 4u

    uuuu

    u

    uuuu

        (27c)

    Proof: Consider the following function

     

     

     

     

     

     

     

     

     

     

     

     

    5

    55555

    2

    22222

    4433

    1

    11111518

    ~~ln

    ~~~~~~~~

    ln~~~~~~

    ~~~~~~

    ln~~~~~~,...,

     x

     x x x xc

     x

     x x x xc

     xc xc x

     x x x xc x x L

     

    where 5,....,1,~~ ici  are positive constants to be determined

    It is easy to see that   ,,,.....,   51518   R RC  x x L   and   0~~,0,0,~~,~~ 5218    x x x L   while   0,...., 518    x x L   for al

      551,....,  R x x  and   52151~~,0,0,

    ~~,

    ~~,...,   x x x x x   . Further more

    by taking the derivative with respect to the time andsimplifying the resulting terms, we get that

           

      355510483

    41114631

    552216552

    421247342

    4517524211144

    54175134535593

    2

    2221255111551

    2211321

    2

    1118

    ~~~~~~~~

    1~~~~~~

    ~~~~~~~~

    1~~~~~~

    ~~~~~~~~~~~~~~

    ~~~~~~~~

    ~~~~~~~~~~~~

    ~~~~~~~~~~~~

     x xecucuc

     x xuncnucc

     x x x xucuc

     x xumcmucuc

     x xuc xuc xcuc

     x xucuc x xecuc

     x xuuc x x x xucc

     x x x xucc x xcdt 

    dL

     

    So by choosing the positive constants as below

      1

    ~~,1

    ~~

    ,~~,

    ~~,~~

    5119

    561594

    9

    53

    5

    162151

    cuun

    enuuuc

    u

    ec

    u

    ucuc

     

    Then substituting these constants in the above equationand using the condition (27c), we get that 

  • 8/16/2019 The Dynamics of Four Species Food Web Model With Stage Structure

    14/20

    INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 4, ISSUE 3 26ISSN 2347-4289

    Copyright © 2016 IJTEEE. 

         

         

            411951

    2~~

    119415~~

    171~~

    1511951

    11951

    14565159145

    54171191

    6515913

    31191

    56159105~~981151

    4211951

    561591251

    11951

    7551694111

    2

    2~~

    25

    16211~~

    1158

     xuuun

     xuuun xu xuuuun

    uuun

    uuuneuuuu

     x xuuun

    uneuuu

     xuun

    enuuuu xuuuen

     x xuuun

    enuuuuum

    uuun

    uumeuuuun

     x xu

    uuu x xu

    dt 

    dL

     

    Now its easy to verify thatdt 

    dL8   is negative definite under

    the sufficient conditions (27a)-(27b). Hence the solution ofsystem (2) will approach asymptotically to 8 E    from any

    initial point satisfies the above condition and then the proofis complete. ■ Theorem (10):  Assume that the top predator free

    equilibrium point 9 E    exists, then it is a globally

    asymptotically stable in the sub region of 5 R  that satisfies

    the following conditions:

    39

    539  xu

    e xu

      

      (28a)

    18216115   u xu xu       

      

      (28b)

      14212111   11   u xum xun 

      (28c)

    5

    16521212

    9

    4

    u

    uuuud      (28d)

    44152

    149

    4d ud      (28e)

    445

    1621224

    9

    4d 

    u

    uuud      (28f)

    4482

    349

    4d ud      (28g)

      1582

    469

    4uu xnu  

      

      (28h)

      168212

    47 9

    4

    uuuu xmu  

      

      (28i)

    where

    5

    16315512

    u

    uuuud 

      ,

    13

    1711151324

    1

    u

    uunuud 

      ,

    135

    171251613424

    1

    uu

    uuumuuud 

      ,

    413

    1710241371413634

     xu

    uu x xumu x xunud     

     

      

      

      and

    413

    212111141744

    11

     xu

     xum xunuud     

     

     

    Proof: Consider the following function

     

      552

    444

    2

    22222

    2

    333

    1

    11111519

    2ln

    2ln,...,

     xc x xc

     x

     x x x xc

     x xc

     x

     x x x xc x x L

      

      

      

      

      

      

      

      

      

      

      

      

      

     

     

     

     

     

     

     

     

     

    where 5,....,1,   ici  

     are positive constants to be determined

    It is easy to see that   ,,,.....,   51519   R RC  x x L   and   00,,,, 43219    x x x x L

      

      

      

      

      while   0,...., 519    x x L   for al

      551,....,  R x x   and   0,,,,,..., 432151   x x x x x x  

      

      

      

    . Furthe

    more by taking the derivative with respect to the time andsimplifying the resulting terms, we get that

     

      524134544134175

    441141141

    4422412442

    2

    33833322473

    2

    222123311463

    5216552525211185

    4433104273163

    5115515355393393

    2

    4421241114144

    2211321

    2

    1119

    1

    1

    11

     x xuc x x xucuc

     x x x x xuncc

     x x x x xumcuc

     x xuc x x x x xmuc

     x xuuc x x x x xnuc

     x xucuc x xuc xcuc

     x x x xuc xmuc xnuc

     x xucc x xec xuc xuc

     x x xumc xuncuc

     x x x xucc x xcdt 

    dL

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

    So by choosing the positive constants as below

    1,,, 53413

    174

    5

    162151     cc

     xu

    uc

    u

    ucuc

      

      

      

      

      

      

     

    Then substituting these constants in the above equationand using the condition (28c)-(28i), we get that 

      5353939

    524

    4

    17521611518

    2

    338

    1115

    2

    4444

    338

    2

    4444

    1115

    2

    338

    225

    1621

    2

    4444

    225

    1621

    2

    225

    162111

    159

    33

    33

    33

    33

    33

    33

     x xe xu xu

     x x x

    u x xu xuu

     x xu

     x xu

     x xd 

     x xu

     x xd 

     x xu

     x xu

     x xu

    uuu

     x xd 

     x xu

    uuu

     x xu

    uuu x x

    u

    dt 

    dL

     

  • 8/16/2019 The Dynamics of Four Species Food Web Model With Stage Structure

    15/20

    INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 4, ISSUE 3 27ISSN 2347-4289

    Copyright © 2016 IJTEEE. 

    Now its easy to verify thatdt 

    dL9   is negative definite under

    the sufficient conditions (28a)-(28b). Hence the solution of

    system (2) will approach asymptotically to 9 E    from any

    initial point satisfies the above condition and then the proofis complete. ■ 

    Theorem (11): Assume that the positive equilibrium 10 E   

    exists, then it is a globally asymptotically stable in the subregion of 5 R  that satisfies the following conditions:

    39

    5  xu

    e   (29a)

      *513212111   11   xu xum xun     (29b)

    *55

    *44

    *33

    *55

    *44

    *33

     with,

    OR 

     with,

     x x x x x x

     x x x x x x

      (29c)

    5

    161521212

    9

    4

    u

    uuuuq     (29d)

    44152

    149

    4 quq     (29e)

    445

    1621224

    9

    4q

    u

    uuuq     (29f)

       44*5982349

    4q xuuq     (29g)

          *598152*

    469

    4 xuuu xnu     (29h)

        5

    *5981621

    2*47

    9

    4

    u

     xuuuuu xmu

        (29i)

    where5

    3161512

    u

    uuuq   ,   *4111514   1   xunuq   ,

      *4125

    16424   1   xum

    u

    uuq   ,   10271634   u xmu xnuq    

    and   212111*51344   11   xum xun xuq   .

    Proof: Consider the following function

    2*33*3

    *5

    5*5

    *55

    *5

    2*44

    *4

    *2

    2*2

    *22

    *2

    *1

    1*111

    *15110

    2

    ln

    2ln

    ln,...,

     x xc

     x

     x x x xc

     x xc

     x

     x x x xc

     x

     x x x xc x x L

     

     

     

     

     

     

     

     

     

     

     

       

     

    where 5,....,1,* ici  are positive constants to be determined.

    It is easy to see that

      ,,,.....,   515110   R RC  x x L and     0,,,,   *5*4*3*2*110    x x x x x L  while   0,...., 5110    x x L   for all

      551,....,  R x x   and

        *5*4*3*2*151   ,,,,,...,   x x x x x x x   . Further more by taking thederivative with respect to the time and simplifying theresulting terms, we get that

     

     

    ))((

    ))((

    ))((

    )()1(

    )1(

    1

    1

    )(

    332247*3

    331146*3

    *55

    *1115

    *5

    *1

    *55

    *335

    *539

    *3

    *55

    *2216

    *55

    *2

    554417*5413

    *4

    244

    212*4

    111*4513

    *4

    *44

    *11

    *411

    *4

    *1

    *44

    *22

    *412

    *44

    *2

    2*2221

    *2

    23359

    *38

    *3

    *44

    *3310

    *427

    *316

    *3

    *22

    *113

    *2

    *1

    2*11

    *1

    10

     x x x x xmuc

     x x x x xnuc

     x x x xucc

     x x x xec xuc

     x x x xucuc

     x x x xuc xuc

     x x xumc

     xunc xuc

     x x x x xuncc

     x x x x xumcuc

     x xuuc x x xucuc

     x x x xuc xmuc xnuc

     x x x xucc x xcdt 

    dL

     

    By choosing the positive constants as below

    1,,   *5*4*35

    16*215*1     cccu

    ucuc  

    Then substituting these constants in the above equationand using the condition (29b) and (29d)-(29i), we get that 

    *55*33539

    *55

    *4417413

    2

    *44

    44*11

    15

    2

    *44

    44*22

    5

    1621

    2

    *44

    44*33

    *598

    2

    *33

    *598*

    1115

    2

    *33

    *598*

    225

    1621

    2

    *22

    5

    1621*11

    1510

    33

    33

    33

    33

    33

    33

     x x x xe xu

     x x x xu xu

     x xq

     x xu

     x xq

     x xu

    uuu

     x xq

     x x xuu

     x x xuu

     x xu

     x x xuu

     x xu

    uuu

     x xu

    uuu x x

    u

    dt 

    dL

     

    Now its easy to verify thatdt 

    dL10  is negative definite unde

    the sufficient conditions (29a) and (29c). Hence the solution

    of system (2) will approach asymptotically to 10 E   from any

    initial point satisfies the above condition and then the proois complete. ■ 

    5. Numerical Simulation:In this section, the dynamics behavior of system (2) isstudied numerically. The objectives of this study are

  • 8/16/2019 The Dynamics of Four Species Food Web Model With Stage Structure

    16/20

    INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 4, ISSUE 3 28ISSN 2347-4289

    Copyright © 2016 IJTEEE. 

    confirming our obtained analytical results and understandthe effects of some parameters on the dynamics of system(2). Consequently, the system (2) is solved numerically fordifferent sets of initial conditions and for different sets ofparameters. Recall that system (2) contains two enter-specific competitions interactions, the first one between thetwo preys at the first level while the second one betweenthe mature predator in the second level and the top

    predator at the third level. Although, the competitiveexclusion principle states that “two species that compete forthe exactly same resources cannot stably coexist”; theexistence of predator makes the coexistence of all speciespossible. Therefore we can’t find  hypothetical set of datasatisfy the coexistence of all the species together, ratherthan that we found the set of data that satisfy thecoexistence for four populations of them as given below.Moreover since we presents the conditions that make thesystem has an asymptotically stable positive equilibriumpoint analytically, hence still there is possibility to have sucha data. It is observed that, for the following set ofhypothetical parameters values, system (2) has an

    asymptotically stable top predator free equilibrium point 9 E   

    as shown in Fig. (1).

    25.0,1.0,9.0,3.0,15.0

    ,05.0,1,3.0,3.0,1.0

    ,44.0,1.0,3.0,5.0,3.0

    ,15.1,15.1,19.1,5.1,2.1

    518171615

    1413121110

    9876

    54321

    euuuu

    uuuuu

    uuunmu

    uuuuu

      … …(30)

    0 0.5 1 1.5 2 2.5

    x 104

    0

    0.5

    1

    (a)

    Time

       P  o  p  u   l  a   t   i  o  n  s

     

    x1

    x2

    x3

    x4

    x5

    0 0.5 1 1.5 2 2.5 3

    x 104

    0

    0.5

    1

    (b)

    Time

       F   i  r  s   t  p  e  r  y

       (  x   1

       )

     

    started at 0.4

    started at 0.6

    started at 0.9

     

    0 0.5 1 1.5 2 2.5 3

    x 104

    0

    0.5

    1

    (c)

    Time

       S  e  c  o  n   d  p  r  e  y   (  x   2   )

     

    started at 0.2

    started at 0.4

    started at 0.9

     

    0 0.5 1 1.5 2 2.5 3

    x 104

    0

    0.5

    1

    (d)

    Time

       I  m  m  a   t  u  r  e  p  r  e   d  a   t  o  r   (  x   3   )

     

    started at 0.1

    started at 0.9

    started at 0.6

     

    0 0.5 1 1.5 2 2.5 3

    x 104

    0

    0.5

    1

    (e)

    Time

       M  a   t  u  r  e  p  r  e   d  a   t  o  r   (  x   4   )

     

    started at 0.7

    started at 0.1

    started at 0.5

    0 0.5 1 1.5 2 2.5 3

    x 104

    0

    0.5

    1

    Time

       T  o  p  p  r  e   d  a   t  o  r   (  x   5

       )

    (f)

     

    started at 0.7

    started at 0.1

    started at 0.5

     Fig. 1:  Time series of the solution of system (2) for data given by (30).

    (a) The trajectories of all species starting at )5.0,5.0,6.0,9.0,9.0( . (b)

    The trajectories of 1 x - species starting from three different initial

     points. (c) The trajectories of 2 x - species starting from three

    different initial points. (d) The trajectories of 3 x - species starting from

    three different initial points. (e) The trajectories of 4 x - species starting

    from three different initial points. (f) The trajectories of 5 x - species

    starting from three different initial points.

  • 8/16/2019 The Dynamics of Four Species Food Web Model With Stage Structure

    17/20

    INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 4, ISSUE 3 29ISSN 2347-4289

    Copyright © 2016 IJTEEE. 

    However, for the data given by Eq. (30) with initial point)6.0,3.0,2.0,5.0,3.0(  that different from those used in Fig. (1),

    the trajectory of system (2) approaches asymptotically to

    third three species equilibrium point 8 E   as drawn in figure

    (2).

    0 0.5 1 1.5 2 2.5 3

    x 104

    0

    0.5

    1

    Time

            P      o      p      u        l      a       t        i      o      n      s

     

    x1

    x2

    x3

    x4

    x5

     

    Fig. 2:  Time series of the solution of system (2), for the data given by

    (30) with initial point )6.0,3.0,2.0,5.0,3.0( ,that approaches

    asymptotically to )37.0,0,0,04.0,58.0(8  E   

    Obviously Fig. (1) and Fig. (2), show clearly the existenceof sub region of global stability (basin of attraction) for eachequilibrium points of system (2). This confirms our obtainedanalytical results present in the previous section. Indeed theinitial points used in Fig. (1) satisfy the conditions given intheorem (10), while the initial point used in Fig. (2) satisfiesthe conditions in theorem (9). Note that in order to discussthe effect of the parameters values of system (2) on thedynamical behavior of system (2), the system is solvednumerically for the data given in Eq. (30) with varying oneparameter each time. It is observed that, for the abovehypothetical data, the parameters values

    18,12,10,7,6,5,   iui , m  and n  don’t have qualitative effect

    on the dynamical behavior of system (2) and the system stillapproaches to a top predator free equilibrium point 9 E  ,

    rather than that they have quantitative effect on the position

    of 9 E  . Now by varying the parameter 1u  keeping the rest of

    parameters values as in Eq. (30),  it observed that for

    14.11u   system (2) approaches asymptotically to

    )0,,,0,( 4316   x x x E    , while for 75.132.1 1u   the solution of

    system (2) approaches asymptotically to

    )0,~,~,~,0( 4327   x x x E    , Further for 75.11 u   the solution

    approaches asymptotically to ),0,0,,0( 525   x x E     

      as shown

    in the typical figure given by Fig. (3).

    0 5000 10000 150000

    0.5

    1

    (a)

    Time

       P  o  p  u   l  a   t   i  o  n  s

     

    x1

    x2

    x3

    x4

    x5

     

    0 5000 10000 150000

    0.5

    1

    1.5

    (b)

    Time

       P  o  p  u   l  a   t   i  o  n  s

     

    x1

    x2

    x3

    x4

    x5

     

    0 5000 10000 150000

    0.5

    1

    1.5

    1.8

    (c)

    Time

       P  o  p  u   l  a   t   i  o  n  s

     

    x1

    x2

    x3

    x4

    x5

     Fig. 3:  Time series of the solution of system (2) for the data given by

    Eq. (30) with different values of 1u . (a) System (2) approaches to

    )0,8.0,2.0,0,1.0(6  E   for 1.11u . (b) System (2) approaches to

    )0,8.0,2.0,1.0,0(7   E   for 5.11 u . (c) System (2) approaches to

    )7.0,0,0,3.0,0(5  E   for 8.11u .

    On the other hand varying the parameter 2u   keeping the

    rest of parameters values as in Eq. (30), it observedthat for 04.179.0 2  u , the solution of system (2

    approaches asymptotically to )0,~,~,~,0( 4327   x x x E    , while fo

    79.02 u   the solution approaches asymptotically to

    ),0,0,,0( 525   x x E     

    . Moreover for the data given by Eq. (30)

    with 51.13u , the solution of system (2) approaches

    asymptotically to )0,,,0,( 4316   x x x E    . In addition, varying

    the parameter 4u  in the range 23.14   u  with other data as

    in Eq.(30) the solution of system (2) approaches

    asymptotically to )0,,,0,( 4316   x x x E      too, however fo

    05.14

    u   , it is observed that the solution of system (2

    approaches asymptotically to the equilibrium poin

    )0,~,~,~,0( 4327   x x x E    . All these cases can be represented in

    figures similar to those shown in Fig. (3), with slightlydifference in the position of equilibrium points. Similarly, fothe data given by Eq. (30) with one of the following ranges

    at a time 12.18 u ; 54.09 u ; 11.011u ; 16.113 u

    1.014 u ; 22.015 u ; 6.016 u ; 7.017 u   or 7.05  e   it is

    observed that the trajectory of system (2) approachesasymptotically to the third three species equilibrium poin

    )~~,0,0,

    ~~,~~( 5218   x x x E      as explained in the typical figure

    represented by Fig. (2) with slightly difference in the

  • 8/16/2019 The Dynamics of Four Species Food Web Model With Stage Structure

    18/20

    INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 4, ISSUE 3 30ISSN 2347-4289

    Copyright © 2016 IJTEEE. 

    position of point. Now, for the parameters values given inEq. (30) with varying the following three parameters

    simultaneously 45.08  u , 2.014 u   and 2.018 u , it is

    observed that the solution of system (2) approachesasymptotically to the first two species equilibrium point

    )0,0,0,,( 213   x x E      as shown in the typical figure given by

    Fig. (4).

    0 0.5 1 1.5 2 2.5 3

    x 104

    0

    0.5

    1

    Time

       P  o  p  u   l  a   t   i  o  n  s

     

    x1

    x2

    x3

    x4

    x5

     

    Fig. 4:  Time series of the solution of system (2), for the data given byEq. (30) with 5.08  u , 25.014 u  and 3.018 u , that approaches

    asymptotically to )0,0,0,01.0,9.0(3  E   .

    However, for the parameters values given in Equation (30)with varying the following two parameters simultaneously

    3.15  u   and 11.014 u , it is observed that the solution of

    system (2) approaches asymptotically to the second two

    species equilibrium point )ˆ,0,0,0,ˆ( 514   x x E      as shown in

    typical figure given by Fig. (5).

    0 0.5 1 1.5 2

    x 104

    0

    0.5

    1

    Time

       P  o  p  u   l  a   t   i  o  n  s

     

    x1

    x2

    x3

    x4

    x5

     

    Fig. 5:  Time series of the solution of system (2), for the data given by

    Eq. (30) with 5.15  u  and 15.014  u , that approaches

    asymptotically to )3.0,0,0,0,6.0(4   E   .

    Now, for the parameters values given in Eq. (30) withvarying the following three parameters simultaneously

    9.02  u , 45.014 u  and 35.018 u , it is observed that the

    solution of system (2) approaches asymptotically to the

    equilibrium point )0,0,0,,0(2

    12 u

     E      as shown in the typical

    figure given by Fig. (6).

    0 0.5 1 1.5 2

    x 104

    0

    0.6

    1.2

    Time

       P  o  p  u   l  a   t   i  o  n  s

     

    x1

    x2

    x3

    x4

    x5

     Fig. 6:  Time series of the solution of system (2), for the data given by

    Eq. (30) with 8.02  u , 5.014 u  and 4.018  u , that approaches

    asymptotically to )0,0,0,11.1,0(2   E   .

    Finally, for the parameters values given in Eq. (30) withvarying the following three parameters simultaneously

    25.13 u , 4.014 u  and 2.018  u , it is observed that the

    solution of system (2) approaches asymptotically to theequilibrium point )0,0,0,0,1(1  E    as shown in the typica

    figure given by Fig. (7).

    0 0.5 1 1.5 2

    x 104

    0

    0.5

    1

    Time

       P  o  p  u   l  a   t   i  o  n  s

     

    x1

    x2

    x3

    x4

    x5

     Fig. 7:  Time series of the solution of system (2), for the data given by

    Eq. (30) with 3.13 u , 5.014 u  and 4.018 u , that approaches

    asymptotically to )0,0,0,0,1(1  E   

    6. Conclusions and discussionIn this paper, we proposed and analyzed an ecologicamodel that described the dynamical behavior of the foodweb real system. The model included five non-lineaautonomous differential equations that describe the

    dynamics of five different populations, namely first prey),( 1 N   second prey )( 2 N  , immature predator )( 3 N  , mature

    predator )( 4 N   and 5 N   which is represent the top predator

    The boundedness of system (2) has been discussed. Theexistence conditions of all possible equilibrium points areobtained. The local as well as global stability analyses ofthese points are carried out. Finally, numerical simulation isused to specific the control set of parameters that affect thedynamics of the system and confirm our obtained analyticaresults. Therefore system (2) has been solved numericallyfor different sets of initial points and different sets oparameters starting with the hypothetical set of data givenby Eq. (30), and the following observations are obtained.

  • 8/16/2019 The Dynamics of Four Species Food Web Model With Stage Structure

    19/20

    INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 4, ISSUE 3 31ISSN 2347-4289

    Copyright © 2016 IJTEEE. 

    1)  System (2) do not has periodic dynamic,instead of that the solution of system (2)approaches asymptotically to one of itsequilibrium point.

    2)  Decreasing the growth rate of the second prey,

    1u , under a specific value leads to destabilized

    9 E    and the solution approaches to 6 E  .

    However increasing the value of 1u   above aspecific value leads the system to approaches

    to 7 E  , Further increasing this parameter makes

    the system approaches to 5 E  .

    3)  Decreasing the value of intra specificcompetition between the individuals of second

    prey, 2u , under a specific value leads the

    system to approaches to 7 E  , Further

    decreasing this parameter makes the system

    approaches to 5 E  .

    4)  Increasing the parameter that describe theintensity of competition of the first prey to the

    second prey, 3u , above a specific value leadsto destabilizing of 9 E    and the solution

    approaches to 6 E  .

    5)  Decreasing the value of attack rate of mature

    predator to the second prey species, 4u , under

    a specific value leads the system to approaches

    to 7 E  , However increasing this parameter

    above a specific value makes the system

    approaches to 6 E  .

    6)  Decreasing the value of growth rate of themature predator due to its feeding on the first

    prey,11u , under a specific value makes the

    solution of system (2) approaches

    asymptotically to 8 E    . The system has similar

    behavior in case of decreasing 17u .

    7)  Increasing the value of gown up rate of the

    immature predator, 8u , above a specific value

    makes the solution of system (2) approaches

    asymptotically to 8 E    . The system has similar

    behavior in case of increasing the value of 9u ,

    13u , 14u , 15u , 16u  or 5e .

    8)  Finally, varying the parameters values

    18,12,10,7,6,5,   iui , m   and n   don’t have

    qualitative effect on the dynamical behavior ofsystem (2) and the system still approaches to a

    top predator free equilibrium point 9 E  ,

    Keeping the above in view, all these outcomes depend onthe hypothetical set of parameters values given by Eq. (30),different results may be obtained for different sets of data.

    References[1]  Aiello, W.G. and Freedman, H.I., 1990. A time

    delay model of single-species growth with stagestructure. Mathematical Biosciences, 101:139149.

    [2]  Zhang, X.; Chen, L. and Neumann, A.U. 2000The stage-structure predator-prey model and

    optimal harvesting policy. MathematicaBiosciences, 168:201-210.

    [3]  Murdoch, W.W.; Briggs, C. J. and Nisbet, R. M2003. Consumer-Resource DynamicsPrinceton University Press, Princeton, U.K. pp225-240.

    [4]  Kar, T.K. and Matsuda, H. 2007. Permanenceand optimization of harvesting return: A Stage-structured prey-predator fishery, ResearchJournal of Environment Sciences 1(2)35-46.

    [5]  Kunal Ch., Milon Ch., and Kar T. K., Optima

    control of harvest and bifurcation of a prey –predator model with stage structure, appliedMathematics and Computation Journal 217(2011) 8778 –8792.

    [6]  Xiangyun, Jingan and Xueyong, Stability andHopf bifurcation analysis of an eco-epidemicmodel with a stage structure, nonlinear analysis

     journal 74 (2011) 1088 –1106.

    [7]  Tarpon and Charugopal, Stochastic analysis oprey-predator model with stage structure forprey, J Appl Math Comput (2011) 35: 195 –209.

    [8] 

    Chen, F. and You, M. 2008. Permanenceextinction and periodic solution of the predator –prey system with Beddington –DeAngelisfunctional respon-se and stage structure forprey. Nonlinear Analysis: Real WorldApplications, 9:207 – 221.

    [9]  Hastings A, Powell T. Chaos in three speciesfood chain. Ecology 1991;72:896 –903.

    [10] Klebanoff A, Hastings A. Chaos in three speciesfood chain. J Math Biol 1993;32:427 –51.

    [11] Abrams PA, Roth JD. The effects of enrichmen

    of three species food chains with nonlineafunctional responses. Ecology 1994;75:1118 –30.

    [12] Gragnani A, De Feo O, Rinaldi S. Food chain inthe chemostat: relationships between meanyield and complex dynamics. Bull Math Bio1998;60:703 –19.

    [13] Upadhyay RK, Rai V. Crisis-limited chaoticdynamics in ecological system. Chaos, Solitons& Fractals 2001;12:205 –18.

  • 8/16/2019 The Dynamics of Four Species Food Web Model With Stage Structure

    20/20

    INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 4, ISSUE 3 32ISSN 2347-4289

    [14] Rinaldi S, Casagrandi R, Gragnani A. Reducedorder models for the prediction of the time ofoccurrence of extreme episodes. Chaos,Solitons & Fractals 2001;12:313 –20.

    [15] Letellier C, Aziz-Alaoui MA. Analysis of thedynamics of a realistic ecological model. Chaos,Solitons & Fractals 2002;13:95 –107.

    [16] Hsu SB, Hwang TW, Kuang Y. A ratio-dependent food chain model and itsapplications to biological control. Math Biosci,2002, preprint.

    [17] Gakkhar S, Naji RK. Chaos in three speciesratio-dependent food chain. Chaos, Solitons &Fractals 2002;14:771 –8.

    [18] J.K. Hall, Ordinary differential equation, Wiley-Interscience, New-York, (1969).