Top Banner
ELEC273 Lecture Notes Set 11 AC Circuit Theorems Homework on phasors and impedance. The course web site is: http ://users.encs.concordia.ca/~trueman/web_page_273.htm Final Exam (confirmed): Friday December 15, 2017 from 9:00 to 12:00 (confirmed)
38

The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

May 22, 2018

Download

Documents

phamhuong
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

ELEC273 Lecture Notes Set 11 AC Circuit Theorems

Homework on phasors and impedance.

The course web site is: http://users.encs.concordia.ca/~trueman/web_page_273.htmFinal Exam (confirmed): Friday December 15, 2017 from 9:00 to 12:00 (confirmed)

Page 2: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Network Theorems:

Chapter 10 Sinusoidal Steady State Analysisβ€’ Superpositionβ€’ Thevenin’s Theoremβ€’ Norton’s Theorem

Chapter 11 AC Power Analysisβ€’ The Maximum Power Transfer Theorem

Page 3: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Thevenin’ s Theorem for AC Circuits

Thevenin’s TheoremAny two-terminal network consisting of voltage sources, current sources, dependent sources, inductors, capacitors and resistors is equivalent to a voltage source 𝑉𝑉𝑇𝑇 in series with an impedance 𝑍𝑍𝑇𝑇.

Procedure to find the Thevenin Equivalent Circuit:1.Open-circuit test: terminate the circuit with an open circuit and find the open-circuit voltage, π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ.2.Short-circuit test: terminate the circuit with a short circuit and find the short-circuit current, πΌπΌπ‘ π‘ π‘œπ‘œ. 3.The Thevenin equivalent voltage source is 𝑉𝑉𝑇𝑇 = π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ.4.The Thevenin equivalent impedance is 𝑍𝑍𝑇𝑇 = π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ

πΌπΌπ‘ π‘ π‘œπ‘œ.

Note that 𝑍𝑍𝑇𝑇 can also be found as the impedance of the β€œdead circuit” with the independent sources set equal to zero.

TwoTerminal Circuit

𝑉𝑉𝑇𝑇

𝑍𝑍𝑇𝑇

Page 4: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Example: Thevenin’ s Theorem

1)Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors relative to β€œsine”.

2)Find the voltage across a load consisting of a 1 ohm resistor in series with a capacitor of value C=0.16667 F, using: β€’ The Thevenin equivalent circuitβ€’ The original circuitThe answer must be the same in both cases!

2 Ξ©

1 Ξ©

12

H10 sin 3𝑑𝑑

A

B

Page 5: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Find the Thevenin Equivalent Circuit.

1) Find the open-circuit voltage.2) Find the short-circuit current.

Convert the circuit to phasors and impedance.The impedance of the inductance is π‘—π‘—πœ”πœ”πœ”πœ” = j3x 1

2=

𝑗𝑗𝑗.5 ohms

In this example I have written my phasors relative to β€œsine”.

Hence 10 sin 3t becomes phasor 10 angle zero.

However, we must remember to convert phasors back to β€œsine”.

Thus phasor 𝑉𝑉 = π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒ converts to time function𝑣𝑣 𝑑𝑑 = 𝐴𝐴 sin(πœ”πœ”π‘‘π‘‘ + πœƒπœƒ)

2 Ξ©

1 Ξ©

12

H10 sin 3𝑑𝑑

A

B

2 Ξ©

1 Ω𝑗𝑗𝑗.5 Ξ©10

A

B

+π‘‰π‘‰π‘œπ‘œπ‘œπ‘œβˆ’

Page 6: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Find the open-circuit voltage

015.12

10=βˆ’βˆ’

βˆ’ ocococ VjVV

01

65.1

62

106 =βˆ’βˆ’βˆ’ ocococ Vj

jVjVj

064)10(3 =βˆ’βˆ’βˆ’ ocococ jVVVj

064330 =βˆ’βˆ’βˆ’ ocococ jVVjVj

jjVV ococ 3094 =+

°∠=∠=∠

∠=

+= 24046.34182.0046.3

153.1849.9571.130

9430

jjVoc

°∠== 24046.3ocT VV

2 Ξ©

1 Ω𝑗𝑗𝑗.5 Ξ©10

A

B

+π‘‰π‘‰π‘œπ‘œπ‘œπ‘œβˆ’

Page 7: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

2)Find the short-circuit current

°∠== 052

10scI

2 Ξ©

1 Ω𝑗𝑗𝑗.5 Ξ©10

A

B

πΌπΌπ‘ π‘ π‘œπ‘œ

Page 8: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

3)Find the impedance

°∠= 05scI°∠= 24046.3ocV

°∠== 24046.3ocT VV

2477.05565.00.246092.005

0.24046.3 jIVZ

sc

ocT +=∠=

∠∠

==

The reactance of 0.2477 ohms is equivalent to an inductor of value πœ”πœ”πœ”πœ” = 0.2477 so πœ”πœ” = 0.2477πœ”πœ”

= 0.24773

= 0.08257 H

This phasor is written relative to sine so the time function is 3.046 sin(πœ”πœ”π‘‘π‘‘ + 24Β°)

𝑉𝑉𝑇𝑇 = 3.046∠24Β°

𝑍𝑍𝑇𝑇 = 0.5565 + 𝑗𝑗𝑗.2477 Ξ©

𝑉𝑉𝑇𝑇 = 3.046∠24Β°

0.5565 Ξ© 0.08257 H

Page 9: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

The impedance of the capacitor is 𝑍𝑍𝐢𝐢 = 1π½π½πœ”πœ”πΆπΆ

= 1𝑗𝑗3𝑗𝑗0.16667

= βˆ’π‘—π‘—2 ohms

Draw the circuit in the frequency domain using phasors and impedances.

2)Find the voltage across a load consisting of a 1 ohm resistor in series with a capacitor of value C=0.16667 F, using: β€’ The original circuitβ€’ The Thevenin equivalent circuit

Using the original circuit:

𝑗𝑗𝑗.5 Ξ©

2 Ξ©

1 Ξ©

12

H10 sin 3𝑑𝑑

A

B

1 Ξ©

0.16667 F

2 Ξ©

1 Ξ©10

B

1 Ξ©

βˆ’π‘—π‘—2 Ξ©

Page 10: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Using the original circuit, find 𝑉𝑉𝐿𝐿:

02115.12

10=

βˆ’βˆ’βˆ’βˆ’

βˆ’j

VVjVV LLLL

Write a node equation:

210

2115.12=

βˆ’+++

jVV

jVV LLLL

( ) ( ) ( )( ) 5

21)5.1(221)5.1(2212215.1=

βˆ’+βˆ’+βˆ’+βˆ’

jjjjjjjVL

536

5.311=

++

jjVL

°∠=++

= 9.8906.25.311

365jjVL

Do we get the same answer using the Thevenin Equivalent Circuit?

𝑗𝑗𝑗.5 Ξ©2 Ξ©

1 Ξ©10

B

1 Ξ©

βˆ’π‘—π‘—2 Ξ©

𝑉𝑉𝐿𝐿

Page 11: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

2477.05565.00.246092.0 jZT +=∠=

Find the load voltage using the Thevenin Equivalent Circuit. Define 𝑍𝑍𝐿𝐿 = 1 βˆ’ 𝑗𝑗2 Ξ©

°∠== 24046.3ocT VV

0=βˆ’βˆ’

L

L

T

LT

ZV

ZVV

T

T

LTL Z

VZZ

V =

+

11

T

T

LT

LTL Z

VZZ

ZZV =

+

LT

TLL ZZ

VZV+

=

21 jZL βˆ’=

)21(2477.05565.0)0.24046.3)(21(jj

jVL βˆ’++βˆ βˆ’

=

7523.15565.1)0.24046.3)(4.63236.2(

jVL βˆ’

βˆ βˆ’βˆ =

8.48343.2)0.24046.3)(4.63236.2(

βˆ’βˆ βˆ βˆ’βˆ 

=LV

°∠= 915.8906.2LV

°∠= 9.8906.2LVThis agrees with the answer obtained above of

Note that this equation is simply a voltage divider between 𝑍𝑍𝑇𝑇 and 𝑍𝑍𝐿𝐿.

𝑉𝑉𝑇𝑇𝑍𝑍𝑇𝑇

𝑉𝑉𝐿𝐿

βˆ’π‘—π‘—2 Ξ©

1 Ξ©

Page 12: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Norton’s Theorem for AC Circuits.

Norton’s TheoremAny two-terminal network consisting of voltage sources, current sources, dependent sources, capacitors, inductors and resistors is equivalent to a current source 𝐼𝐼𝑁𝑁 in parallel with an admittance π‘Œπ‘Œπ‘π‘.

Procedure to find the Norton Equivalent Circuit:1.Open-circuit test: terminate the circuit with an open circuit and find the open-circuit voltage, π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ.2.Short-circuit test: terminate the circuit with a short circuit and find the short-circuit current, πΌπΌπ‘ π‘ π‘œπ‘œ. 3.The Norton equivalent current source is 𝐼𝐼𝑁𝑁 = πΌπΌπ‘ π‘ π‘œπ‘œ.4.The Norton equivalent susceptance is π‘Œπ‘Œπ‘π‘ = πΌπΌπ‘ π‘ π‘œπ‘œ

π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ.

Note that π‘Œπ‘Œπ‘π‘ can also be found as the admittance of the circuit with the independent sources set equal to zero.

Two TerminalCircuit

A

B

A

B

𝐼𝐼𝑁𝑁 π‘Œπ‘Œπ‘π‘

Page 13: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Norton Equivalent from the Thevenin EquivalentFind the open-circuit voltage π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ and the short-circuit current πΌπΌπ‘ π‘ π‘œπ‘œ.

Thevenin: 𝑉𝑉𝑇𝑇 = π‘‰π‘‰π‘œπ‘œπ‘œπ‘œπ‘π‘π‘‡π‘‡ =

π‘‰π‘‰π‘œπ‘œπ‘œπ‘œπΌπΌπ‘ π‘ π‘œπ‘œ

Norton:𝐼𝐼𝑁𝑁 = πΌπΌπ‘†π‘†πΆπΆπ‘Œπ‘Œπ‘π‘ = πΌπΌπ‘ π‘ π‘œπ‘œ

π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ

We can change The Thevenin Equivalent Circuit to the Norton Equivalent Circuits using:π‘Œπ‘Œπ‘π‘ = 1

𝑍𝑍𝑇𝑇and𝐼𝐼𝑁𝑁 = 𝐼𝐼𝑆𝑆𝐢𝐢 = 𝑉𝑉𝑇𝑇

𝑍𝑍𝑇𝑇

𝑉𝑉𝑇𝑇

𝑍𝑍𝑇𝑇

𝐼𝐼𝑁𝑁 π‘Œπ‘Œπ‘π‘

𝑉𝑉𝑇𝑇

𝑍𝑍𝑇𝑇

𝐼𝐼𝑆𝑆𝐢𝐢 =𝑉𝑉𝑇𝑇𝑍𝑍𝑇𝑇

Page 14: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Example: Find the Norton Equivalent Circuit

Find the Norton Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec.

Method:1.Find the open-circuit voltage.

2.Find the short-circuit current.

3.Find the Norton Equivalent Circuit:𝐼𝐼𝑁𝑁 = πΌπΌπ‘†π‘†πΆπΆπ‘Œπ‘Œπ‘π‘ = πΌπΌπ‘ π‘ π‘œπ‘œ

π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ

We found the Thevenin Equivalent Circuit earlier in this set of notes.

Open-circuit β€œload”.

Short-circuit β€œload”.

2 Ξ©

1 Ξ©12

H10 sin 3𝑑𝑑

A

B

2 Ξ©

1 Ξ©12

H10 sin 3𝑑𝑑

A

B

+π‘‰π‘‰π‘œπ‘œπ‘œπ‘œβˆ’

πΌπΌπ‘ π‘ π‘œπ‘œ10 sin 3𝑑𝑑

2 Ξ©12

H1 Ξ©

A

B

Page 15: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Find the open-circuit voltage:

1) Find the open-circuit voltage

015.12

10=βˆ’βˆ’

βˆ’ ocococ VjVV

Convert the circuit to phasors and impedance.The impedance of the inductance is π‘—π‘—πœ”πœ”πœ”πœ” = j3x 1

2= 𝑗𝑗𝑗.5

°∠== 24046.3ocT VV

We solved for the open-circuit voltage and the short-circuit current when we found the Thevenin equivalent earlier in these notes.

2 Ξ©

1 Ξ©

12

H10 sin 3𝑑𝑑

A

B

2 Ξ©

1 Ω𝑗𝑗𝑗.5 Ξ©10

A

B

+π‘‰π‘‰π‘œπ‘œπ‘œπ‘œβˆ’

Page 16: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Find the short-circuit current:

°∠== 052

10scI

2 Ξ©

1 Ω𝑗𝑗𝑗.5 Ξ©10

A

B

πΌπΌπ‘ π‘ π‘œπ‘œ

Page 17: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

3)Find the admittance:

°∠= 05scI°∠= 24046.3ocV

°∠== 05scN II

Β°βˆ’βˆ =∠∠

== 0.24641.10.24046.3

05

oc

scN V

IY

2 Ξ©

1 Ω𝑗𝑗𝑗.5 Ξ©10

A

B

A

B

𝐼𝐼𝑁𝑁 π‘Œπ‘Œπ‘π‘

Page 18: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Norton Equivalent, example #2:

β€’ Find the Norton Equivalent Circuit at 60 Hz.β€’ Convert the Norton Equivalent to the Thevenin Equivalent Circuit.

Procedure to find the Norton Equivalent Circuit:1.Open-circuit test: terminate the circuit with an open circuit and find the open-circuit voltage, π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ.2.Short-circuit test: terminate the circuit with a short circuit and find the short-circuit current, πΌπΌπ‘ π‘ π‘œπ‘œ. 3.The Norton equivalent current source is 𝐼𝐼𝑁𝑁 = πΌπΌπ‘ π‘ π‘œπ‘œ.4.The Norton equivalent susceptance is π‘Œπ‘Œπ‘π‘ = πΌπΌπ‘ π‘ π‘œπ‘œ

π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ.

Page 19: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Convert to phasors and impedances:

Voltage source:𝑣𝑣𝑠𝑠 𝑑𝑑 = 110 cosπœ”πœ”π‘‘π‘‘ becomes phasor 𝑉𝑉𝑠𝑠 = 110 volts

At 𝑓𝑓 =60 Hz the radian frequency is πœ”πœ” = 2πœ‹πœ‹π‘“π‘“ = 377 r/s

π‘—π‘—πœ”πœ”πœ”πœ” = 𝑗𝑗𝑗𝑗3𝑗𝑗𝑗𝑗𝑗.3𝑗𝑗𝑗10βˆ’3 = 𝑗𝑗2 ohms

π‘—π‘—πœ”πœ”πœ”πœ” = 𝑗𝑗𝑗𝑗3𝑗𝑗𝑗𝑗10.62𝑗𝑗10βˆ’3 = 𝑗𝑗4 ohms

1π‘—π‘—πœ”πœ”πΆπΆ

= 1𝑗𝑗𝑗𝑗377𝑗𝑗133𝑗𝑗10βˆ’6

= βˆ’π‘—π‘—2 ohms

Page 20: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

1.Find the open-circuit voltage:

π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ5 + 𝑗𝑗28 βˆ’ 𝑗𝑗2 = 110

π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ = 1108 βˆ’ 𝑗𝑗25 + 2𝑗𝑗

π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ = 1108.25∠ βˆ’ 14.0Β°5.39∠ βˆ’ 21.8Β°

π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ = 168.4∠ βˆ’ 35.8Β°

110 βˆ’ π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ1 + 𝑗𝑗2 βˆ’

π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ1 + 𝑗𝑗4 βˆ’

π‘‰π‘‰π‘œπ‘œπ‘œπ‘œβˆ’π‘—π‘—2 = 0

π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ1

1 + 𝑗𝑗2 +1

1 + 𝑗𝑗4 +1βˆ’π‘—π‘—2 =

1101 + 𝑗𝑗2

π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ1 + 𝑗𝑗4 βˆ’π‘—π‘—2 + 1 + 𝑗𝑗2 βˆ’π‘—π‘—2 + (1 + 𝑗𝑗2)(1 + 𝑗𝑗4)

(1 + 𝑗𝑗2)(1 + 𝑗𝑗4)(βˆ’π‘—π‘—2) =110

1 + 𝑗𝑗2

π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ1 + 𝑗𝑗4 βˆ’π‘—π‘—2 + 1 + 𝑗𝑗2 βˆ’π‘—π‘—2 + (1 + 𝑗𝑗2)(1 + 𝑗𝑗4)

(1 + 𝑗𝑗4)(βˆ’π‘—π‘—2) = 110

π‘‰π‘‰π‘œπ‘œπ‘œπ‘œβˆ’2𝑗𝑗 + 8 βˆ’ 2𝑗𝑗 + 4 + 1 + 𝑗𝑗2 + 𝑗𝑗4 βˆ’ 8

βˆ’π‘—π‘—2 + 8 = 110

π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ5 + 𝑗𝑗28 βˆ’ 𝑗𝑗2 = 110

π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ

+

-

π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ

Page 21: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

2.Find the short-circuit current:

πΌπΌπ‘ π‘ π‘œπ‘œ =110

1 + 𝑗𝑗2 = 22 βˆ’ j44 = 49.19∠ βˆ’ 63.4Β°

πΌπΌπ‘ π‘ π‘œπ‘œ

Page 22: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

3 and 4.Find the Norton Equivalent Circuit:

Β°βˆ’βˆ == 4.6319.49scN II

6.272921.08.354.1684.6319.49

βˆ’βˆ =Β°βˆ’βˆ Β°βˆ’βˆ 

==oc

scN V

IY

πΌπΌπ‘ π‘ π‘œπ‘œ =110

1 + 𝑗𝑗2= 22 βˆ’ j44 = 49.19∠ βˆ’ 63.4Β°

π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ = 168.4∠ βˆ’ 35.8Β°

Siemens

Amps

A

B

𝐼𝐼𝑁𝑁 π‘Œπ‘Œπ‘π‘

Page 23: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Check by finding the dead-circuit impedance:

𝑍𝑍𝑇𝑇

𝑍𝑍𝑇𝑇

1 + 𝑗𝑗4 βˆ₯ βˆ’π‘—π‘—2 = 1+𝑗𝑗4 βˆ’π‘—π‘—21+𝑗𝑗4βˆ’π‘—π‘—2

= 0.8 βˆ’ 𝑗𝑗3.6 ohms

𝑍𝑍𝑇𝑇 = 1 + 𝑗𝑗2 βˆ₯ 0.8 βˆ’ 𝑗𝑗3.6 =1 + 𝑗𝑗2 0.8 βˆ’ 𝑗𝑗3.61 + 𝑗𝑗2 + 0.8 βˆ’ 𝑗𝑗3.6

𝑍𝑍𝑇𝑇 = 3.034 + 𝑗𝑗1.586 = 3.423∠27.6Β° ohms

π‘Œπ‘Œπ‘π‘ = 1𝑍𝑍𝑇𝑇

= 13.423∠27.6°

= 0.2920∠ βˆ’ 27.6Β° Siemens

This agrees with the value found on the previous slide:

6.272921.0 βˆ’βˆ ==oc

scN V

IY

Page 24: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Convert the Norton Equivalent to the Thevenin Equivalent Circuit:

Β°βˆ’βˆ = 4.6319.49NIΒ°βˆ’βˆ = 6.272921.0NY

π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ = πΌπΌπ‘π‘π‘Œπ‘Œπ‘π‘

= 49.19βˆ βˆ’63.4Β°0.2921βˆ βˆ’27.6Β°

= 136.6 βˆ’ 𝑗𝑗𝑗𝑗.51 = 168.4∠ βˆ’ 35.8Β° volts

𝑉𝑉𝑇𝑇 = π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ = 98.51 = 168.4∠ βˆ’ 35.8°𝑍𝑍𝑇𝑇 = 1

π‘Œπ‘Œπ‘π‘= 1

0.2921βˆ βˆ’27.6Β°= 3.423∠27.6Β° ohms

+π‘‰π‘‰π‘œπ‘œπ‘œπ‘œ-

Page 25: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

The Superposition Theorem for AC Circuits

The Superposition Theorem is exactly the same for AC circuits as for DC circuits.

The response of a circuit 𝑉𝑉0 with two sources 𝑉𝑉𝑠𝑠1 and 𝑉𝑉𝑠𝑠2 acting together is equal to the sum of:β€’ the response 𝑉𝑉01 with source 𝑉𝑉𝑠𝑠1 acting alone and 𝑉𝑉𝑠𝑠2=0, β€’ plus the response 𝑉𝑉02 with source 𝑉𝑉𝑠𝑠2 acting alone and 𝑉𝑉𝑠𝑠1=0,𝑉𝑉0 = 𝑉𝑉01 + 𝑉𝑉02.

Two sources acting together. Source #1 acting alone. Source #2 acting alone. Two sources acting together. Source #1 acting alone. Source #2 acting alone.

𝑉𝑉𝑠𝑠1 𝑉𝑉𝑠𝑠2

+π‘‰π‘‰π‘œπ‘œ βˆ’

Linear Circuit 𝑉𝑉𝑠𝑠2

+π‘‰π‘‰π‘œπ‘œ2 βˆ’

Linear Circuit𝑉𝑉𝑠𝑠1

+π‘‰π‘‰π‘œπ‘œ1 βˆ’

Linear Circuit

Page 26: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Superposition: DC Sources and AC Source

Use Superposition to separate this problem into:1)The DC response to the DC sources 𝑉𝑉2 = 3 volts and 𝐼𝐼1 = 1 amp2)The AC response to the AC source 𝑣𝑣1 𝑑𝑑 = 0.1 cos(𝑗𝑗𝑗𝑗𝑑𝑑) volts at πœ”πœ”=1000 r/s

In the circuit below there are two DC sources, 𝑉𝑉2 = 3 volts and 𝐼𝐼1 = 1 amp. There is also an AC source, 𝑣𝑣1 𝑑𝑑 = 0.1 cos 𝑗𝑗𝑗𝑗𝑑𝑑 volts.

Use Superposition to find the voltage across the current generator 𝑣𝑣 𝑑𝑑 .

The component values are 𝑅𝑅1 = 1 Ξ©, 𝑅𝑅2 = 2 Ξ©, 𝐢𝐢1 = 500 microFarads, 𝐢𝐢2 = 40 microFarads, πœ”πœ” = 1 mH.

0.1 cos 𝑗𝑗𝑗𝑗𝑑𝑑

𝐢𝐢1 = 500 πœ‡πœ‡F

𝑅𝑅1 = 1 Ξ©

𝐢𝐢2 = 40 πœ‡πœ‡F 𝑅𝑅2 = 2 Ξ© πœ”πœ” = 1 mH

5𝑣𝑣𝑗𝑗+π‘£π‘£π‘—π‘—βˆ’

𝑉𝑉2 = 3 volts𝐼𝐼1 = 1 amp+π‘£π‘£βˆ’

𝑣𝑣(𝑑𝑑)

Page 27: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Solve with the DC sources:

β€’ The AC source is set to zero.β€’ The capacitors become open circuits.β€’ The inductor becomes a short circuit. β€’ Since 𝐢𝐢1 and 𝐢𝐢2 are open-circuits at DC, there is zero DC current in 𝑅𝑅1 and

so 𝑣𝑣𝑗𝑗 = 0β€’ Then the dependent source is zero: 5𝑣𝑣𝑗𝑗 = 0

Node equation:

βˆ’π‘£π‘£ βˆ’ 3

2 βˆ’ 1 = 03 βˆ’ 𝑣𝑣 βˆ’ 2 = 0

𝑣𝑣 = 1 volt at DC

Draw the DC circuit:β€’ AC source becomes zero volts = short circuitβ€’ Capacitor: 𝑖𝑖 = 𝐢𝐢 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑= 0, C’s become open

circuits. β€’ Inductor: 𝑣𝑣 = πœ”πœ” 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑= 0, L’s become short

circuits.

+π‘£π‘£π‘—π‘—βˆ’

5𝑣𝑣𝑗𝑗 12 Ξ©

3+π‘£π‘£βˆ’

3 volts0.1 cos 𝑗𝑗𝑗𝑗𝑑𝑑

𝐢𝐢1

𝑅𝑅1

𝐢𝐢2 𝑅𝑅2 πœ”πœ”

5𝑣𝑣𝑗𝑗+π‘£π‘£π‘—π‘—βˆ’

1 amp+π‘£π‘£βˆ’

𝑣𝑣(𝑑𝑑)

Page 28: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Solve with the AC source: use phasors and impedance.

Draw the AC circuit.

0.1 cos 𝑗𝑗𝑗𝑗𝑑𝑑

𝐢𝐢1 = 500 πœ‡πœ‡F

1 Ξ©

𝐢𝐢2 = 40 πœ‡πœ‡F 2 Ξ© 1 mH

5𝑣𝑣𝑗𝑗+π‘£π‘£π‘—π‘—βˆ’

Use Superposition to separate this problem into:1)The DC response to the DC sources 𝑉𝑉2 = 3 volts and 𝐼𝐼1 = 1 amp2)The AC response to the AC source 𝑣𝑣1 𝑑𝑑 = 0.1 cos(𝑗𝑗𝑗𝑗𝑑𝑑) volts at πœ”πœ”=1000 r/s

+π‘£π‘£βˆ’

0.1 cos 𝑗𝑗𝑗𝑗𝑑𝑑

𝐢𝐢1 = 500 πœ‡πœ‡F

𝑅𝑅1 = 1 Ξ©

𝐢𝐢2 = 40 πœ‡πœ‡F 𝑅𝑅2 = 2 Ξ© πœ”πœ” = 1 mH

5𝑣𝑣𝑗𝑗+π‘£π‘£π‘—π‘—βˆ’

𝑉𝑉2 = 3 volts𝐼𝐼1 = 1 amp+π‘£π‘£βˆ’

𝑣𝑣(𝑑𝑑)

Page 29: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Use phasors and impedance:Draw the AC circuit: β€’ The DC sources are set to zero.β€’ 𝑣𝑣1 𝑑𝑑 = 0.1 cos(𝑗𝑗𝑗𝑗𝑑𝑑)

becomes phasor 𝑉𝑉1 = 0.1β€’ The frequency is πœ”πœ” = 1000 r/s.β€’ 1

π‘—π‘—πœ”πœ”πΆπΆ1= 1

𝑗𝑗𝑗𝑗1000𝑗𝑗𝑗00𝑗𝑗10βˆ’6= βˆ’π‘—π‘—2

β€’ 1π‘—π‘—πœ”πœ”πΆπΆ2

= 1𝑗𝑗𝑗𝑗1000𝑗𝑗40𝑗𝑗10βˆ’6

= βˆ’π‘—π‘—2𝑗‒ π‘—π‘—πœ”πœ”πœ”πœ” = 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗10βˆ’3 = 𝑗𝑗𝑗

Node equations:

0.1 βˆ’ π‘‰π‘‰π‘—π‘—βˆ’π‘—π‘—2 βˆ’

𝑉𝑉𝑗𝑗1 βˆ’

𝑉𝑉𝑗𝑗 βˆ’ π‘‰π‘‰βˆ’π‘—π‘—2𝑗 = 0

𝑉𝑉𝑗𝑗 βˆ’ π‘‰π‘‰βˆ’π‘—π‘—2𝑗 βˆ’ 5𝑉𝑉𝑗𝑗 βˆ’

𝑉𝑉2 + 𝑗𝑗 = 0

0.1 cos 𝑗𝑗𝑗𝑗𝑑𝑑

𝐢𝐢1 = 500 πœ‡πœ‡F

1 Ξ©

𝐢𝐢2 = 40 πœ‡πœ‡F 2 Ξ© 1 mH

5𝑣𝑣𝑗𝑗+π‘£π‘£π‘—π‘—βˆ’

0.1

βˆ’π‘—π‘—2

1 Ξ©

βˆ’π‘—π‘—2𝑗 2 Ξ© 𝑗𝑗𝑗

5𝑉𝑉𝑗𝑗+π‘‰π‘‰π‘—π‘—βˆ’

𝑉𝑉𝑗𝑗 𝑉𝑉

+π‘‰π‘‰βˆ’

Page 30: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Solve the equations for V:Node equations:0.1 βˆ’ π‘‰π‘‰π‘—π‘—βˆ’π‘—π‘—2

βˆ’π‘‰π‘‰π‘—π‘—1βˆ’π‘‰π‘‰π‘—π‘— βˆ’ π‘‰π‘‰βˆ’π‘—π‘—2𝑗

= 0

𝑉𝑉𝑗𝑗 βˆ’ π‘‰π‘‰βˆ’π‘—π‘—2𝑗

βˆ’ 5𝑉𝑉𝑗𝑗 βˆ’π‘‰π‘‰

2 + 𝑗𝑗= 0

Multiply the 1st equation by (-j2)(-j25):βˆ’π‘—π‘—2𝑗 0.1 βˆ’ 𝑉𝑉𝑗𝑗 βˆ’ βˆ’π‘—π‘—2 βˆ’π‘—π‘—2𝑗 𝑉𝑉𝑗𝑗 βˆ’ (βˆ’π‘—π‘—2)(𝑉𝑉𝑗𝑗 βˆ’ 𝑉𝑉) = 0βˆ’π‘—π‘—2.5 + 𝑗𝑗2𝑗𝑉𝑉𝑗𝑗 + 50𝑉𝑉𝑗𝑗 + 𝑗𝑗2𝑉𝑉𝑗𝑗 βˆ’ 𝑗𝑗2𝑉𝑉 = 0+50 + 𝑗𝑗2𝑗 𝑉𝑉𝑗𝑗 βˆ’ 𝑗𝑗2𝑉𝑉 = 𝑗𝑗2.5

Multiply the 2st equation by (-j25)(2+j):2 + 𝑗𝑗 𝑉𝑉𝑗𝑗 βˆ’ 𝑉𝑉 βˆ’ βˆ’π‘—π‘—2𝑗 2 + 𝑗𝑗 5𝑉𝑉𝑗𝑗 βˆ’ βˆ’π‘—π‘—2𝑗 𝑉𝑉 = 02 + 𝑗𝑗 𝑉𝑉𝑗𝑗 βˆ’ 2 + j 𝑉𝑉 βˆ’ βˆ’j50 + 25 5𝑉𝑉𝑗𝑗 + 𝑗𝑗2𝑗𝑉𝑉 = 02 + 𝑗𝑗 + 𝑗𝑗2𝑗𝑗 βˆ’ 125 𝑉𝑉𝑗𝑗 + (βˆ’2 βˆ’ 𝑗𝑗 + 𝑗𝑗25)𝑉𝑉 = 0βˆ’123 + 𝑗𝑗2𝑗𝑗 𝑉𝑉𝑗𝑗 + (βˆ’2 + 𝑗𝑗24)𝑉𝑉 = 0

Page 31: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Solve the equations for V:First Equation:+50 + 𝑗𝑗2𝑗 𝑉𝑉𝑗𝑗 βˆ’ 𝑗𝑗2𝑉𝑉 = 𝑗𝑗2.5

𝑉𝑉𝑗𝑗 =𝑗𝑗2𝑉𝑉 + 𝑗𝑗2.550 + 𝑗𝑗2𝑗

Second equation:βˆ’123 + 𝑗𝑗2𝑗𝑗 𝑉𝑉𝑗𝑗 + (βˆ’2 + 𝑗𝑗24)𝑉𝑉 = 0

Substitute 𝑉𝑉𝑗𝑗 = 𝑗𝑗2𝑉𝑉+𝑗𝑗2.𝑗𝑗0+𝑗𝑗27

to get:

βˆ’123 + 𝑗𝑗2𝑗𝑗𝑗𝑗2𝑉𝑉 + 𝑗𝑗2.550 + 𝑗𝑗2𝑗 + (βˆ’2 + 𝑗𝑗24)𝑉𝑉 = 0

βˆ’123 + 𝑗𝑗2𝑗𝑗 (𝑗𝑗2𝑉𝑉 + 𝑗𝑗2.5) + (50 + 𝑗𝑗2𝑗)(βˆ’2 + 𝑗𝑗24)𝑉𝑉 = 0βˆ’123 + 𝑗𝑗2𝑗𝑗 𝑗𝑗2𝑉𝑉 + 50 + 𝑗𝑗2𝑗 βˆ’2 + 𝑗𝑗24 𝑉𝑉 = βˆ’ βˆ’123 + 𝑗𝑗2𝑗𝑗 𝑗𝑗2.5βˆ’π‘—π‘—24𝑗 βˆ’ 502 𝑉𝑉 + βˆ’100 + 𝑗𝑗𝑗2𝑗𝑗 βˆ’ 𝑗𝑗𝑗4 βˆ’ 648 𝑉𝑉 = 𝑗𝑗307.5 + 627.5βˆ’502 βˆ’ 𝑗𝑗24𝑗 𝑉𝑉 + βˆ’748 + 𝑗𝑗𝑗𝑗4𝑗 𝑉𝑉 = 627.5 + 𝑗𝑗3𝑗𝑗.5βˆ’1250 + 𝑗𝑗𝑗𝑗𝑗 𝑉𝑉 = 627.5 + 𝑗𝑗3𝑗𝑗.5

𝑉𝑉 =627.5 + 𝑗𝑗3𝑗𝑗.5βˆ’1250 + 𝑗𝑗𝑗𝑗𝑗 = βˆ’0.2139 βˆ’ 𝑗𝑗𝑗.4001 = 0.4𝑗3π‘—βˆ  βˆ’ 118.1Β°

Page 32: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Superposition: add the DC solution to the AC solution.

DC Solution:

𝑣𝑣 = 1 volt

AC Solution:𝑉𝑉 = 0.4𝑗3π‘—βˆ  βˆ’ 118.1°𝑣𝑣 𝑑𝑑 = 0.4536 cos 𝑗𝑗𝑗𝑗𝑑𝑑 βˆ’ 118.1Β° volts

With both the DC sources and the AC source active: 𝑣𝑣 𝑑𝑑 = 1 + 0.4536 cos 𝑗𝑗𝑗𝑗𝑑𝑑 βˆ’ 118.1Β° volts

+π‘£π‘£π‘—π‘—βˆ’

5𝑣𝑣𝑗𝑗 12 Ξ©

3+π‘£π‘£βˆ’

0.1βˆ’π‘—π‘—2

1 Ξ©

βˆ’π‘—π‘—2𝑗 2 Ξ© 𝑗𝑗𝑗5𝑉𝑉𝑗𝑗

+π‘‰π‘‰π‘—π‘—βˆ’

𝑉𝑉𝑗𝑗 𝑉𝑉

+π‘‰π‘‰βˆ’

3 volts0.1 cos 𝑗𝑗𝑗𝑗𝑑𝑑

𝐢𝐢1

𝑅𝑅1

𝐢𝐢2 𝑅𝑅2 πœ”πœ”

5𝑣𝑣𝑗𝑗+π‘£π‘£π‘—π‘—βˆ’

1 amp+π‘£π‘£βˆ’

𝑣𝑣(𝑑𝑑)

Page 33: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Superposition with two frequencies:

An antenna receives two signals at the same time, one at frequency , 𝑓𝑓1 = 1 GHz and the other at frequency 𝑓𝑓2 = 2 GHz. The antenna is modelled with two voltage sources in series. The circuit uses two ideal op-amps. The component values are 𝑅𝑅 = 1 ohm, 𝑅𝑅1 = 1ohm, 𝐢𝐢 = 1 pF and πœ”πœ” = 6.333 nH.

Use Superposition to find the output voltage 𝑣𝑣4(𝑑𝑑).

𝑣𝑣𝑠𝑠1 𝑑𝑑 = 0.1 cosπœ”πœ”1𝑑𝑑

𝑣𝑣𝑠𝑠2 𝑑𝑑 = 0.1 cosπœ”πœ”2𝑑𝑑

50 Ξ©50 Ξ©

𝑅𝑅

𝑅𝑅1

𝑣𝑣4𝑣𝑣3

+𝑣𝑣4(𝑑𝑑)βˆ’

πœ”πœ”πΆπΆπ‘£π‘£2𝑣𝑣1

Page 34: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Analysis of the first stage:𝑣𝑣𝑠𝑠1 + 𝑣𝑣𝑠𝑠2 βˆ’ 𝑣𝑣1

50βˆ’π‘£π‘£1 βˆ’ 𝑣𝑣2

50= 0

The op-amps are ideal with infinite gain and very high input impedance. Consider 𝑣𝑣1 to be a virtual ground, so 𝑣𝑣1 = 0. Then

𝑣𝑣𝑠𝑠1 + 𝑣𝑣𝑠𝑠250

+𝑣𝑣250

= 0

𝑣𝑣2 = βˆ’ 𝑣𝑣𝑠𝑠1 + 𝑣𝑣𝑠𝑠2

The output of the first stage is the sum of the two voltages.

𝑣𝑣𝑠𝑠1 𝑑𝑑

𝑣𝑣𝑠𝑠2 𝑑𝑑

50 Ξ©50 Ξ©

𝑣𝑣2

𝑣𝑣1 β‰ˆ 0

β‰ˆ 0

𝑣𝑣𝑠𝑠1 + 𝑣𝑣𝑠𝑠2

Page 35: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Use phasors to analyze the second stage at some frequency πœ”πœ”:

Write a node equation at 𝑉𝑉3:

𝑉𝑉2 βˆ’ 𝑉𝑉3

𝑅𝑅 + 𝑗𝑗 πœ”πœ”πœ”πœ” βˆ’ 1πœ”πœ”πΆπΆ

βˆ’π‘‰π‘‰3 βˆ’ 𝑉𝑉4𝑅𝑅1

= 0

Amplifier input 𝑉𝑉3 is a virtual ground, 𝑉𝑉3 = 0

𝑉𝑉2

𝑅𝑅 + 𝑗𝑗 πœ”πœ”πœ”πœ” βˆ’ 1πœ”πœ”πΆπΆ

+𝑉𝑉4𝑅𝑅1

= 0

phasor

Drive the circuit with a generator at frequency πœ”πœ”:𝑣𝑣𝑠𝑠 𝑑𝑑 = 𝐴𝐴 cosπœ”πœ”π‘‘π‘‘

The phasor is𝑉𝑉𝑠𝑠 = 𝐴𝐴𝑒𝑒𝑗𝑗0

The output of the first stage is 𝑉𝑉2 = βˆ’π‘‰π‘‰π‘ π‘ 

𝑉𝑉4 = 𝑅𝑅1𝑉𝑉𝑠𝑠

𝑅𝑅 + 𝑗𝑗 πœ”πœ”πœ”πœ” βˆ’ 1πœ”πœ”πΆπΆ

𝑣𝑣𝑠𝑠 𝑑𝑑 = 𝐴𝐴 cosπœ”πœ”π‘‘π‘‘

50 Ξ©50 Ξ©

𝑅𝑅

𝑅𝑅1

𝑉𝑉4𝑉𝑉3 β‰ˆ 0

+𝑉𝑉4βˆ’

π‘—π‘—πœ”πœ”πœ”πœ”1π‘—π‘—πœ”πœ”πΆπΆ

𝑉𝑉2𝑉𝑉1 β‰ˆ 0

𝑉𝑉𝑠𝑠 = 𝐴𝐴

β‰ˆ 0 β‰ˆ 0

Page 36: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

At frequency 𝑓𝑓1 = 1 GHz, πœ”πœ”1 = 2πœ‹πœ‹π‘“π‘“1 = 6.2𝑗3𝑗𝑗109:

𝑅𝑅 = 1 ohm, 𝑅𝑅1 = 1 ohm, 𝐢𝐢 = 1 pF and πœ”πœ” = 6.333 nH, 𝑉𝑉𝑠𝑠 = 0.1

πœ”πœ”1πœ”πœ” βˆ’1

πœ”πœ”1𝐢𝐢= 6.2𝑗3𝑗𝑗109𝑗𝑗𝑗.333𝑗𝑗10βˆ’9 βˆ’

16.2𝑗3𝑗𝑗109𝑗𝑗𝑗𝑗𝑗10βˆ’12 = 39.79 βˆ’ 159.15 = βˆ’119.36

𝑉𝑉4 = 𝑅𝑅1𝑉𝑉𝑠𝑠

𝑅𝑅+𝑗𝑗 πœ”πœ”1πΏπΏβˆ’1

πœ”πœ”1𝐢𝐢

= 0.11βˆ’π‘—π‘—119.36

= 8.3𝑗𝑗𝑗𝑗10βˆ’4βˆ π‘—π‘—.5 degrees

𝑣𝑣4 𝑑𝑑 = 8.3𝑗𝑗𝑗𝑗10βˆ’4 cos πœ”πœ”1𝑑𝑑 + 89.5Β°

𝑣𝑣𝑠𝑠 𝑑𝑑 = 0.1 cosπœ”πœ”1𝑑𝑑

50 Ξ©50 Ξ©

𝑅𝑅

𝑅𝑅1

𝑉𝑉4𝑉𝑉3 β‰ˆ 0

+

𝑉𝑉4 = 𝑅𝑅1𝑉𝑉𝑠𝑠

𝑅𝑅 + 𝑗𝑗 πœ”πœ”1πœ”πœ” βˆ’1

πœ”πœ”1πΆπΆβˆ’

π‘—π‘—πœ”πœ”1πœ”πœ”1π‘—π‘—πœ”πœ”1𝐢𝐢

𝑉𝑉2𝑉𝑉1 β‰ˆ 0

𝑉𝑉𝑠𝑠

β‰ˆ 0 β‰ˆ 0

Page 37: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

At frequency 𝑓𝑓2 = 2 GHz, πœ”πœ”2 = 2πœ‹πœ‹π‘“π‘“2 = 1.2𝑗𝑗𝑗𝑗1010:

𝑅𝑅 = 1 ohm, 𝑅𝑅1 = 1 ohm, 𝐢𝐢 = 1 pF and πœ”πœ” = 6.333 nH, 𝑉𝑉𝑠𝑠 = 0.1

πœ”πœ”2πœ”πœ” βˆ’1

πœ”πœ”2𝐢𝐢= 1.2𝑗𝑗𝑗𝑗1010𝑗𝑗𝑗.333𝑗𝑗10βˆ’9 βˆ’

11.2𝑗𝑗𝑗𝑗1010𝑗𝑗𝑗𝑗𝑗10βˆ’12 = 79.54 βˆ’ 79.55 = βˆ’0.01 β‰ˆ 0

𝑉𝑉4 = 𝑅𝑅1𝑉𝑉𝑠𝑠

𝑅𝑅 + 𝑗𝑗 πœ”πœ”2πœ”πœ” βˆ’1

πœ”πœ”2𝐢𝐢=

0.11 + 𝑗𝑗𝑗 = 0.π‘—βˆ π‘— degrees

𝑣𝑣4 𝑑𝑑 = 0.1 cos πœ”πœ”2𝑑𝑑

𝑣𝑣𝑠𝑠 𝑑𝑑 = 0.1 cosπœ”πœ”2𝑑𝑑

50 Ξ©50 Ξ©

𝑅𝑅

𝑅𝑅1

𝑉𝑉4𝑉𝑉3 β‰ˆ 0

+

𝑉𝑉4 = 𝑅𝑅1𝑉𝑉𝑠𝑠

𝑅𝑅 + 𝑗𝑗 πœ”πœ”2πœ”πœ” βˆ’1

πœ”πœ”2πΆπΆβˆ’

π‘—π‘—πœ”πœ”2πœ”πœ”1π‘—π‘—πœ”πœ”2𝐢𝐢

𝑉𝑉2𝑉𝑉1 β‰ˆ 0

𝑉𝑉𝑠𝑠

β‰ˆ 0 β‰ˆ 0

Page 38: The course web site is: ...trueman/elec273files/ELEC273_11...Β Β· Final Exam (confirmed): ... Find the Thevenin Equivalent Circuit at a frequency of πœ”πœ”=3 rad/sec. Use phasors

Superposition with two frequencies:

By superposition, with both sources active:𝑣𝑣4 𝑑𝑑 = 8.3𝑗𝑗𝑗𝑗10βˆ’4 cos πœ”πœ”1𝑑𝑑 + 89.5Β° + 0.1 cos πœ”πœ”2𝑑𝑑

The design of the circuit makes πœ”πœ”πœ”πœ” βˆ’ 1πœ”πœ”πΆπΆ

=0 at 2 GHz.Then the circuit β€œpasses” 2 GHz but β€œrejects” 1 GHz.The circuit behaves as a β€˜filter’ to recover the 2 GHz signal from the two signals received by the antenna.

𝑣𝑣𝑠𝑠1 𝑑𝑑 = 0.1 cosπœ”πœ”1𝑑𝑑

𝑣𝑣𝑠𝑠2 𝑑𝑑 = 0.1 cosπœ”πœ”2𝑑𝑑

50 Ξ©50 Ξ©

𝑅𝑅

𝑅𝑅1

𝑣𝑣4𝑣𝑣3

+𝑣𝑣4(𝑑𝑑)βˆ’

πœ”πœ”πΆπΆπ‘£π‘£2𝑣𝑣1