Top Banner
The Compressed Baryonic Matter Experiment at the Future Accelerator Facility in Darmstadt Outline: Probing dense baryonic matter Experimental observables Technical challenges and (possible) solutions Peter Senger
16

The Compressed Baryonic Matter Experiment at the Future Accelerator Facility in Darmstadt

Jan 09, 2016

Download

Documents

Jake

The Compressed Baryonic Matter Experiment at the Future Accelerator Facility in Darmstadt. Peter Senger. Outline:  Probing dense baryonic matter  Experimental observables  Technical challenges and (possible) solutions. The future international accelerator facility. Key features: - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

The Compressed Baryonic Matter Experimentat the Future Accelerator Facility in Darmstadt

Outline:

Probing dense baryonic matter Experimental observables Technical challenges and (possible) solutions

Peter Senger

Page 2: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

SIS 100 Tm

SIS 300 Tm

U: 35 AGeV

p: 90 GeV

Structure of Nuclei far from Stability

Cooled antiproton beam:Hadron Spectroscopy

Compressed Baryonic Matter

The future international accelerator facility

Key features:Generation of intense, high-quality secondary beams of rare isotopes and antiprotons.Two rings: simultaneous beams.

Ion and Laser Induced Plasmas:

High Energy Density in Matter

Page 3: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

Mapping the QCD phase diagram with heavy-ion collisions

B 6 0

B 0.3 0

baryon density: B 4 ( mT/2)3/2 x

[exp((B-m)/T) - exp((-B-m)/T)] baryons - antibaryons

P. Braun-Munzinger

SIS300

C. R. Allton et al, hep-lat 0305007

Lattice QCD : maximal baryon number density fluctuations at TC for q = TC (B 500 MeV)

Page 4: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

Statistical hadron gas modelP. Braun-Munzinger et al.

Nucl. Phys. A 697 (2002) 902

Experimental situation : Strangeness enhancement ?Experimental situation : Strangeness production

in central Au+Au and Pb+Pb collisions

New results from NA49 (CERN Courier Oct. 2003)

SIS100300

SIS100300

Page 5: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

CBM physics topics and observables

1. In-medium modifications of hadrons onset of chiral symmetry restoration at high B

measure: , , e+e- open charm (D mesons) 2. Strangeness in matter (strange matter?) enhanced strangeness production ?

measure: K, , , , 3. Indications for deconfinement at high B anomalous charmonium suppression ?

measure: J/, D

softening of EOS

measure flow excitation function 4. Critical point event-by-event fluctuations 5. Color superconductivity precursor effects ?

Page 6: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

Invariant mass of electron-positron pairs from Pb+Au at 40 AGeVCERES Collaboration S. Damjanovic and K. Filimonov, nucl-ex/0109017

≈185 pairs!

Page 7: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

central collisions 25 AGeV Au+Au 158 AGeV Pb+Pb

J/ multiplicity 1.5·10-5 1·10-3 beam intensity 2·108/s 2·107/sinteractions 8·106/s (4%) 2·106/s (10%)central collisions 8·105/s 2·105/sJ/ rate 12/s 200/s 6% J/e+e- (+-) 0.7/s 12/sspill fraction 0.8 0.25 acceptance 0.25 0.1J/ measured 0.14/s 0.3/s 8·104/week 1.8·105/week

J/ experiments: a count rate estimate10 50 120 210 Elab [GeV]

Page 8: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

Charmed mesons

Some hadronic decay modes

D (c = 317 m):D+ K0+ (2.90.26%)

D+ K-++ (9 0.6%)

D0 (c = 124.4 m):D0 K-+ (3.9 0.09%)

D0 K-+ + - (7.6 0.4%)

D meson production in pN collisions

Measure displaced vertex with resolution of 30 μm !

Page 9: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

The CBM Experiment

Radiation hard Silicon pixel/strip detectors in a magnetic dipole field

Electron detectors: RICH & TRD & ECAL: pion suppression up to 105

Hadron identification: RPC, RICH

Measurement of photons, π0, η, and muons: electromagn. calorimeter (ECAL)

High speed data acquisition and trigger system

Page 10: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

Experimental challenges

107 Au+Au reactions/sec (beam intensities up to 109 ions/sec, 1 % interaction target)

determination of (displaced) vertices with high resolution ( 30 m)

identification of electrons and hadrons

Central Au+Au collision at 25 AGeV:URQMD + GEANT4

160 p 400 -

400 + 44 K+ 13 K-

Page 11: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

MIMOSA IV

IReS / LEPSI Strasbourg

Design of a Silicon Pixel detector

Design goals: • low materal budget: d < 200 μm • single hit resolution < 20 μm• radiation hard (dose 1015 neq/cm2)• fast read out

Silicon Tracking System: 7 planar layers of pixels/strips.Vertex tracking by two first pixel layers at 5 cm and 10 cm downstream target

Roadmap:R&D on Monolithic Active Pixel Sensors (MAPS)• pitch 20 μm• thickness below 100 μm • single hit resolution : 3 μm• Problem: radiation hardness and readout speed

Fallback solution: Hybrid detectors

Page 12: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

Hit rates for 107 minimum bias Au+Au collisions at 25 AGeV:

Experimental conditions

Rates of > 10 kHz/cm2 in large part of detectors ! main thrust of our detector design studies

Page 13: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

Design of a fast TRD

Design goals: e/π discrimination of > 100 (p > 1 GeV/c)• High rate capability up to 150 kHz/cm2

• Position resolution of about 200 μm• Large area ( 500 m2, 9 layers)

Roadmap:Outer part: ALICE TRD Inner part: • GEM/MICROMEGAS readout chambers• Straw tube TRT (ATLAS) • Fast read-out electronics

Page 14: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

Design of a high rate RPC

Design goals: • Time resolution ≤ 80 ps• High rate capability up to 25 kHz/cm2• Efficiency > 95 %• Large area 150 m2• Long term stability

Prototype test:detector with plastic electrodes(resistivity 109 Ohm cm.)P. Fonte, Coimbra

Page 15: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

CBM R&D working packages Feasibility, Simulations

D Kπ(π)GSI Darmstadt, Czech Acad. Sci., RezTechn. Univ. Prague

,ω, e+e-

Univ. KrakowJINR-LHE Dubna

J/ψ e+e-

INR Moscow

Hadron ID Heidelberg Univ,Warsaw Univ.Kiev Univ. NIPNE BucharestINR Moscow

GEANT4: GSI

TrackingKIP Univ. HeidelbergUniv. MannheimJINR-LHE Dubna

Design & constructionof detectors

Silicon PixelIReS StrasbourgFrankfurt Univ.,GSI Darmstadt,RBI Zagreb,Univ. Krakow

Silicon StripSINP Moscow State U.CKBM St. PetersburgKRI St. Petersburg

RPC-TOFLIP Coimbra, Univ. Santiago de Com.,Univ. Heidelberg,GSI Darmstadt,Warsaw Univ.NIPNE BucharestINR MoscowFZ RossendorfIHEP ProtvinoITEP Moscow

Fast TRDJINR-LHE, DubnaGSI Darmstadt,Univ. MünsterINFN Frascati

Straw tubesJINR-LPP, DubnaFZ RossendorfFZ JülichTech. Univ. Warsaw

ECAL ITEP Moscow GSI DarmstadtUniv. Krakow

RICH IHEP Protvino GSI Darmstadt

Trigger, DAQKIP Univ. HeidelbergUniv. MannheimGSI DarmstadtJINR-LIT, DubnaUniv. BergenKFKI BudapestSilesia Univ. KatowiceUniv. Warsaw

MagnetJINR-LHE, DubnaGSI Darmstadt

AnalysisGSI Darmstadt,Heidelberg Univ,

Data Acquis.,Analysis

Page 16: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

CBM R&D Collaboration : 38 institutions , 15 countriesCroatia:

RBI, Zagreb

Cyprus: Nikosia Univ.  Czech Republic:Czech Acad. Science, RezTechn. Univ. Prague France: IReS Strasbourg

Germany: Univ. Heidelberg, Phys. Inst.Univ. HD, Kirchhoff Inst. Univ. FrankfurtUniv. Mannheim Univ. MarburgUniv. MünsterFZ RossendorfGSI Darmstadt

   

Romania: NIPNE Bucharest

Russia:CKBM, St. PetersburgIHEP ProtvinoINR TroitzkITEP MoscowKRI, St. PetersburgKurchatov Inst., MoscowLHE, JINR DubnaLPP, JINR DubnaLIT, JINR DubnaPNPI GatchinaSINP, Moscow State Univ.

Spain: Santiago de Compostela Univ.  Ukraine: Univ. Kiev

Hungaria:KFKI BudapestEötvös Univ. Budapest

Italy: INFN Frascati

Korea:Korea Univ. SeoulPusan National Univ.

Norway:Univ. Bergen

Poland:Jagiel. Univ. Krakow Silesia Univ. KatowiceWarsaw Univ.Warsaw Tech. Univ.  Portugal: LIP Coimbra