Top Banner
The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra
63

The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

Mar 31, 2015

Download

Documents

Roland Hayman
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph

LabelingsGeir Agnarsson

Raymond GreenlawSanpawat Kantabutra

Page 2: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 2

Outline

• Introduction• Preliminaries and Problem Definitions• Relating Vertex and Edge Relabeling• Tight Bounds for the Relabeling

Problem• Relabeling with Privileged Labels• Open Problems• References

Page 3: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 3

Outline

• Introduction• Preliminaries and Problem Definitions• Relating Vertex and Edge Relabeling• Tight Bounds for the Relabeling

Problem• Relabeling with Privileged Labels• Open Problems• References

Page 4: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 4

Introduction

• Graph labeling is a well-studied subject in computer science and mathematics.

• Problem that has widespread applications, including in many other disciplines.

• Graph Relabeling Problem is a variant of graph labeling.

• See next slide for example.

Page 5: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 5

Introduction

• Two configurations, a “start” and “goal” are given. Transform the “start” to the “goal” configuration with certain conditions on the movement of labels.

Page 6: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 6

Introduction

• Presentation of new results and the extension of existing results; in particular,– NC1 reduce the Vertex Relabeling problem to

the Edge Relabeling Problem and vice versa.– Provide upper and lower bounds on the

complexity of the Vertex and Edge Relabeling Problems.

– Provide precise characterizations of when instances of relabeling with privileged labels are solvable.

Page 7: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 7

Introduction

• A number of puzzles can be viewed as relabeled graphs.

• One of the most famous is the 15-Puzzle which consists of 15 tiles on a 4 x 4 board with one position empty.

• Graph labeling has been studied (and continues to have ongoing research) in the context of cartography, codings, colorings, and rankings.

Page 8: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 8

Introduction

• Applications in bioinformatics, networks, and VLSI; also appear in unexpected places.

• Graph Relabeling Problem can model a wormhole routing in processor networks.

• Well-known Pancake Flipping Problem can be modeled as a special case of our problem.

Page 9: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 9

Outline

• Introduction• Preliminaries and Problem

Definitions• Relating Vertex and Edge Relabeling• Tight Bounds for the Relabeling

Problem• Relabeling with Privileged Labels• Open Problems• References

Page 10: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 10

Preliminaries and Problem Definitions

• Let SV, SE N = {1,2,…}.

• A labeling LV of V is a mapping LV: V SV.

• A labeling LE of E is a mapping LE: E SE.

• SV = {1,2,…,n} and SE = {1,2,…,m}.

• Graphs are associated with labelings using angle bracket notation.

• A mutation or flip function f maps triples <G, LV, LE> to triples <G, L′V, L′E>.

Page 11: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 11

Preliminaries and Problem Definitions

• A consecutive vertex mutation function is defined where f maps a pair <G, LV> to a pair <G, L′V> with the following conditions:– LV = L′V, except on two vertices u and w.

– {u, w} E.

– LV(u) = L′V(w) and LV(w) = L′V(u).

– SV = {1,2,…,n}.

– f is a bijection.

Page 12: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 12

Preliminaries and Problem Definitions

Vertex Relabeling Problem

• Instance: A graph G, labelings LV and L′V, and t N.

• Question: Can labeling LV evolve into L′V in t or fewer vertex mutations?

Page 13: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 13

Preliminaries and Problem Definitions

Edge Relabeling Problem

• Instance: A graph G, labelings LE and L′E, and t N.

• Question: Can labeling LE evolve into L′E in t or fewer edge mutations?

Page 14: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 14

Outline

• Introduction• Preliminaries and Problem Definitions• Relating Vertex and Edge

Relabeling• Tight Bounds for the Relabeling

Problem• Relabeling with Privileged Labels• Open Problems• References

Page 15: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 15

Relating Vertex and Edge Relabeling

Theorem (Vertex/Edge Relabeling Related)

• Vertex Relabeling Problem is NC1 many-one reducible to the Edge Relabeling Problem, and the Edge Relabeling Problem is NC1 many-one reducible to the Vertex Relabeling Problem.

Page 16: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 16

Outline

• Introduction• Preliminaries and Problem Definitions• Relating Vertex and Edge Relabeling• Tight Bounds for the Relabeling

Problem• Relabeling with Privileged Labels• Open Problems• References

Page 17: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 17

Tight Bounds for the Relabeling Problem

Theorem (Vertex Relabeling Upper Bound)

• Let G = (V,E) be a graph, LV and L′V vertex labelings, and t = n(n — 1)/2, then the answer to the Vertex Relabeling Problem is YES. That is, any labeled graph can evolve into any other labeled graph in at most n(n — 1)/2 mutations.

Page 18: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 18

Tight Bounds for the Relabeling Problem

Theorem (Vertex Relabeling Upper Bound)• Proof:

– Consider the number of mutations required to change an arbitrary labeling LV into an arbitrary labeling L′V.

– Construct a spanning tree T of G. Let p1 p2 … pn be vertex numbers (not labels) that denote the Prüfer code order when the leaves of T are deleted during the process of constructing a Prüfer code.

– Note, pj {vi | 1 ≤ i ≤ n} for 1 ≤ j ≤ n.

Page 19: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 19

Tight Bounds for the Relabeling Problem

Theorem (Vertex Relabeling Upper Bound)• Proof (cont.):

– Not interested in the actual Prüfer code itself but rather just the leaf elimination order.

– Mutate labels from LV into their positions in L′V in the order specified by the pi’s and along the path in the spanning tree from their starting position in LV to their final position in L′V .

Page 20: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 20

Tight Bounds for the Relabeling Problem

Theorem (Vertex Relabeling Upper Bound)• Proof (cont.):

– To move L′V(p1) from the initial labeling to its final position can take at most n — 1 mutations. Note, p1 is an initial leaf in T, and T contains at most n – 1 edges.

– To move L′ (p2) from the initial labeling to its final position, we need at most n — 2 mutations, since L′ (p1) is already in its rightful place.

Page 21: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 21

Tight Bounds for the Relabeling Problem

Theorem (Vertex Relabeling Upper Bound)

• Proof (cont.): – After k iterations, where all of the labels L

′V(p1) through and including L′ (pk) are in their correct places, then, to move L′V(p(k+1)) to its correct place, we need at most n – k – 1 mutations, since the remaining spanning tree induced by the vertex set, V(T) — {pi | 1 ≤ i ≤ k} has at most n — k — 1 edges.

Page 22: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 22

Tight Bounds for the Relabeling Problem

Theorem (Vertex Relabeling Upper Bound)

• Proof (cont.): – No mutations are performed in locations of

the tree that have already been completed.

– The total number of mutations is therefore at most n(n — 1)/2. □

Page 23: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 23

Tight Bounds for the Relabeling Problem

Corollary (Edge Relabeling Upper Bound)

• Let G = (V,E) be a graph, LE and L′E edge labelings, and t = m(m — 1)/2, then the answer to the Edge Relabeling Problem is YES. That is, any labeled graph can evolve into any other labeled graph in at most m(m — 1)/2 mutations.

Page 24: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 24

Tight Bounds for the Relabeling Problem

Theorem (Lower Bounds for Relabeling Graphs) [Muir 1882]

• There is a graph G = (V,E), labelings LV

and L′V, and t = (n(n — 1)/2) — 1 such that the Vertex Relabeling Problem has an answer of NO. That is, there exist two labelings that require n(n — 1)/2 mutations to evolve one into the other. There is a graph H = (V′,E′), labelings LE′

and L′E′, and t = (m(m — 1)/2) — 1 such that the Edge Relabeling Problem has an answer of NO.

Page 25: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 25

Tight Bounds for the Relabeling Problem

Theorem (Lower Bounds for Relabeling Graphs)

• Proof: We provide two vertex labelings on a path that require n(n — 1)/2 mutations to be evolved from one to the other.

• For convenience, a labeling is represented by a permutation of {1,2,…,n}.

• There exists a permutation, namely, n(n — 1)…1, where at least n(n — 1)/2 mutations are needed to obtain it from the permutation 1 2 … n.

Page 26: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 26

Tight Bounds for the Relabeling Problem

Theorem (Lower Bounds for Relabeling Graphs)

• Proof (cont.): If we use fewer than n(n — 1)/2 mutations on 1 2 … n, we can not end up with n(n — 1)…1.

• View the permutation a1a2…an as a string s.

• Continued…

Page 27: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 27

Tight Bounds for the Relabeling Problem

Theorem (Lower Bounds for Relabeling Graphs)

• Attach a unique parameter p(s) to each string by letting p(s) be the number of occurrences ai and aj, where ai > aj among all i < j, so p(s) = |{{i,j} : 1 ≤ i < j ≤ n and ai > aj}|.

• p(s) is the number of inversions of the permutation.

Page 28: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 28

Tight Bounds for the Relabeling Problem

Theorem (Lower Bounds for Relabeling Graphs)

• Proof (cont.): There are exactly n(n — 1)/2 pairs i < j if i and j are among 1,2,…,n, so for every such strings s, we clearly have 0 ≤ p(s) ≤ n(n — 1)/2.

• Each mutation reduces or increases the value of p(.) by exactly one. If s′ is the string obtained from s, then |p(s′)–p(s)| = 1, the absolute value of p(s′)–p(s) equals 1.

Page 29: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 29

Tight Bounds for the Relabeling Problem

Theorem (Lower Bounds for Relabeling Graphs)

• Proof (cont.): Since p(1 2…n) = 0 and p(n(n — 1)…1) = n(n — 1)/2, we need at least n(n — 1)/2 mutations to obtain n(n — 1)…1 from 1 2…n. In fact, we can use exactly n(n — 1)/2 mutations to obtain n(n — 1)…1 from 1 2…n.

• This shows there are graphs and vertex labelings that require n(n — 1)/2 mutations.

Page 30: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 30

Tight Bounds for the Relabeling Problem

Theorem (Tight Bound on Path Relabeling Complexity) [Muir 1882]

• Let Pn be the path on n vertices, LV and L′V vertex labelings, and t N. Then the answer to the Vertex Relabeling Problem is YES if and only if t ≥ p(LV, L′V).

• Proof: For the sake of simplicity, assume we are to evolve s into s′.

Page 31: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 31

Tight Bounds for the Relabeling Problem

Theorem (Tight Bound on Path Relabeling Complexity)

• Proof (cont.): A mutate sequence is a sequence of strings with s0 = s, sm = s′, and where si+1 is obtained from si by a single mutation, 0 ≤ i ≤ m — 1.

• In this case, we have for an arbitrary labeling s = a1 a2 … an that the parameter p(.) satisfies

miis 0

1

0

1

1

0

10 )()()()(m

i

ii

m

i

iim mspspspspspspsp

Page 32: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 32

Tight Bounds for the Relabeling Problem

Theorem (Tight Bound on Path Relabeling Complexity)

• Proof (cont.): We now argue by using induction on n that p(s) mutations suffice to evolve s into s′. This is clearly true for n = 2.

• Assume this assertion is true for length (n — 1)-strings, and let s = a1a2…an be such that n = ai, for a fixed i, 1 ≤ i ≤ n. In this case, we have p(s) = n — i + p(ŝ), where ŝ = a1…ai-1ai+1…an.

Page 33: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 33

Tight Bounds for the Relabeling Problem

Theorem (Tight Bound on Path Relabeling Complexity)

• Proof (cont.): Clearly in s we can move n = ai to the rightmost position by precisely n — i mutations.

• By induction, we can obtain 1 2 … (n — 1) from ŝ by p(ŝ) mutations. Hence, we are able to evolve s into s′ using p(s) mutations.

Page 34: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 34

Tight Bounds for the Relabeling Problem

Theorem (Tight Bound on Path Relabeling Complexity)

• Proof (cont.): If we have two vertex labelings LV and L′V of the vertices of the path Pn, we can define the corresponding relative parameter p(LV, L′V), as p(s), where s is the unique permutation obtained from LV by renaming the labels in L′V from left-to-right as 1,2,…,n. We note that p(LV, L′V) = p(L′V, LV). □

Page 35: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 35

Tight Bounds for the Relabeling Problem

Theorem (Tight Bound on Path Relabeling Complexity)

• Let Pn be the path on n vertices, LV and L′V vertex labelings, and t N. Then we can evolve the labeling LV into L′V using t mutations if and only if t = p(LV, L′V) + 2k for some nonnegative integer k.

Page 36: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 36

Tight Bounds for the Relabeling Problem

Theorem (Tight Bound on Path Relabeling Complexity)

• Proof: By the previous theorem we can always evolve LV into L′V using the minimum of p(LV, L′V) mutations. Repeating the last mutation 2k times is not going to alter L′V, since repeating a fixed mutation an even number of times corresponds to the identity (or neutral) relabeling. For any nonnegative integer k one can always evolve LV into L′V using t = p(LV, L′V) + 2k mutations.

Page 37: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 37

Tight Bounds for the Relabeling Problem

Theorem (Tight Bound on Path Relabeling Complexity)

• Proof (cont.): We show that t — p(LV, L′V) must be even. Assume LV is given by the string s = a1a2…an and L′V by the string s′ = 1 2 … n.

• Now, let and be two mutation sequences with s0 = s′0 = s and sm = s′m′ = s′.

miis 0 '

0' m

iis

Page 38: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 38

Tight Bounds for the Relabeling Problem

Theorem (Tight Bound on Path Relabeling Complexity)

• Proof (cont.): Since p(s0) = p(s′0) = p(s) and p(sm) = p(s′m′) = 0, we have

and (cont. next slide)

m

iiim PPspspspspsp

010 ))()(()()()(

'

01'0 ''))'()'(()'()'()(

m

iiim PPspspspspsp

Page 39: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 39

Tight Bounds for the Relabeling Problem

Theorem (Tight Bound on Path Relabeling Complexity)

• Proof (cont.): where

• = |{i {1,…,m} : p(si) – p(si+1) = 1}|,

• = |{i {1,…,m} : p(si) – p(si+1) = -1}|,

• = |{i {1,…,m′ } : p(s′i) – p(s′i+1) = 1}|, and

• = |{i {1,…,m′ } : p(s′i) – p(s′i+1) = -1}|.

• We have .

• m = and m′ = and we obtain…

PPPP ''

P

P

'P

'P

PP '' PP

Page 40: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 40

Tight Bounds for the Relabeling Problem

Theorem (Tight Bound on Path Relabeling Complexity)

• Proof (cont.): • m′ — m =

, and thus m and m′ must

have the same parity.

• This shows that if LV is evolved into L′V in exactly t mutations, then t — p(s) must be even. □

• This theorem re-establishes a known result in the theory of permutations that each permutation has unique parity.

)'(2)'( PPPP

)'()()''( PPPPPP

Page 41: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 41

Outline

• Introduction• Preliminaries and Problem Definitions• Relating Vertex and Edge Relabeling• Tight Bounds for the Relabeling

Problem• Relabeling with Privileged Labels• Open Problems• References

Page 42: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 42

Relabeling with Privileged Labels

Definition (Vertex Relabeling with Privileged Labels Problem)

• Instance: A graph G, labelings LV and L′V, a nonempty set S {1,2,…,n} of privileged labels, and t N.

• Question: Can labeling LV evolve into L′V in less than t restricted vertex mutations?

Page 43: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 43

Relabeling with Privileged Labels

Definition (Edge Relabeling with Privileged Labels Problem)

• Instance: A graph G, labelings LE and L′E, a nonempty set S {1,2,…,n} of privileged labels, and t N.

• Question: Can labeling LE evolve into L′E in less than t restricted edge mutations?

Page 44: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 44

Relabeling with Privileged Labels

Theorem (General Unsolvability, Privileged Labels)

• Among all connected vertex labeled graphs on n vertices with k privileged labels where k {0,1,…,n — 2}, the Vertex Relabeling with Privileged Labels Problem is, in general, unsolvable. Among all connected edge labeled graphs on m edges with k privileged labels where k {0,1,…,m — 2}, the Edge Relabeling with Privileged Labels Problem is, in general, unsolvable.

Page 45: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 45

Relabeling with Privileged Labels

Definition ((n x n)-Puzzle Problem)• Instance: Two n x n board

configurations B1 and B2, and k N.

• Question: Is there a sequence of at most k moves that transforms B1 into B2?

Page 46: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 46

Relabeling with Privileged Labels

Theorem (Intractability, Privileged Labels)• The Vertex Graph Relabeling with

Privileged Labels Problem is NP-complete.• Proof: Reduce the (n x n)-Puzzle Problem

to the Vertex Graph Relabeling with Privileged Labels Problem by taking G as an n x n mesh, LV corresponding to B1, L'V corresponding to B2, S = {n2} corresponding to the blank space, and t = k.

Page 47: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 47

Relabeling with Privileged Labels

Theorem (Intractability, Privileged Labels)

• Proof (cont.): The instance of the (n x n)-Puzzle Problem is YES if and only if the answer to the constructed instance of the Vertex Graph Relabeling with Privileged Labels Problem is also YES.

Page 48: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 48

Relabeling with Privileged Labels

Theorem (2-Connected Unsolvability, Privileged Labels)

• Among all 2-connected vertex labeled graphs on n vertices with k privileged labels where k {0,1,…,n — 3}, the Vertex Relabeling with Privileged Labels Problem is, in general, unsolvable. Among all 2-connected edge labeled graphs on m edges with k privileged labels where k {0,1,…, m — 3}, the Edge Relabeling with Privileged Labels Problem is, in general, unsolvable.

Page 49: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 49

Relabeling with Privileged Labels

Theorem (2-Connected Unsolvability, Privileged Labels)

• Proof: Let n ≥ 3 and consider two vertex labelings LV and L′V of the cycle Cn, where we have precisely k privileged labels p1,…,pk, where k {0,1,…,n — 3}. For a fixed planar embedding of Cn, assume the labelings are given cyclically in clockwise order: LV : (p1,…,pk,1,2,3,…,n – k), and L′V : (p1,…,pk,2,1,3,…,n – k).

Page 50: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 50

Relabeling with Privileged Labels

Claims• If a simple graph is neither a path nor a

cycle, then it has a spanning tree that is not a path (and hence contains a vertex of degree of at least three).

• Among vertex labeled trees, which are not paths, with exactly two non-privileged labels, any two labels can be swapped using restricted mutations.

Page 51: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 51

Relabeling with Privileged Labels

Lemma• Among vertex labeled trees, which are

not paths, with exactly two non-privileged labels, the Vertex Relabeling with Privileged Labels Problem is solvable and in P.

Page 52: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 52

Relabeling with Privileged Labels

Theorem (Vertex Solvability, Two Privileged Labels)

• Among all connected vertex labeled graphs G on n ≥ 4 vertices with all but two vertex labels privileged, the Vertex Relabeling with Privileged Labels Problem is solvable if and only if G is not a path.

Page 53: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 53

Relabeling with Privileged Labels

Theorem (Edge Solvability, Two Privileged Labels)

• Among all connected edge labeled graphs G on n ≥ 4 edges with all but two edge labels privileged, the Edge Relabeling with Privileged Labels Problem is solvable if and only if G is not a path.

Page 54: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 54

Outline

• Introduction• Preliminaries and Problem Definitions• Relating Vertex and Edge Relabeling• Tight Bounds for the Relabeling

Problem• Relabeling with Privileged Labels• Open Problems• References

Page 55: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 55

Open Problems

• Study other types of mutation functions where, for example, labels along an entire path are mutated, or where labels can be reused.

• In the parallel setting, compute the sequence of mutations required for the evolution of one labeling into another. The parallel time for computing the sequence could be much smaller than the sequential time to execute the mutation sequence.

Page 56: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 56

Open Problems

• For various classes of graphs determine the probability of one labelings evolving naturally into another. Such an evolution of a labeling could be used to model mutation periods.

• Study the properties of the graphs of all labelings. In this graph all labelings of a given graph are vertices and two vertices are connected if they are one mutation apart. Other conditions for edge placement may also be worthwhile to examine.

Page 57: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 57

Open Problems

• Determine if there is a version of the Edge Relabeling with Privileged Labels Problem that is NP-complete.

• Define the cost of a mutation sequence to be the sum of the weights on all edges that are mutated. Determine mutation sequences that minimize the cost of evolving one labeling into another. Explore other cost functions.

Page 58: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 58

Outline

• Introduction• Preliminaries and Problem Definitions• Relating Vertex and Edge Relabeling• Tight Bounds for the Relabeling

Problem• Relabeling with Privileged Labels• Open Problems• References

Page 59: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 59

References• Agnarsson, G. and Greenlaw, R. Graph Theory: Modeling, Applications, and

Algorithms. Prentice Hall, 2007.• Agnarsson, G., Greenlaw, R., and Kantabutra, S. The Complexity of the Graph

Relabeling Problem. Manuscript, 2008.• Appel, K. and Haken, W. Every Map is Four Colorable. Providence, RI: American

Mathematical Society, first edition, 1989.• Chang, G. J., Hsu, D. F., and Rogers, D. G. Additive variations on a graceful

theme: some results on harmonious and other related graphs. Congressus Numerantium, 32:181-197, 1981.

• Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction to Algorithms, second edition, MIT Press, 2001.

• Even, S. and Tarjan, R. E. A combinatorial problem which is complete in polynomial space. Journal of the Association for Computing Machinery, 23:710-719, 1976.

• Fraenkel, A. S., Garey, M. R., Johnson, D. S., Schaefer, T., and Yesha, Y. The complexity of Checkers on an N x N board—Preliminary Report, Proceedings of the 19th Annual Symposium on the Foundations of Computer Science, IEEE Computer Society, Long Beach, CA, pages 55-64, 1978.

• Gallian, J. A dynamic survey of graph labeling (10th edition). Electronic Journal of Combinatorics, 14:1-180, 2007.

Page 60: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 60

References• Gardner, M. Mathematical Puzzles of Sam Loyd, Dover Publications, 1959.• Gates, W. H. and Papdimitriou, C. H. Bounds for sorting by reversal. Discrete

Mathematics, 27:47-57, 1979.• Grace, T. Graceful, Harmonious, and Sequential Graphs. Ph.D. Thesis, University of

Illinois at Chicago Circle, 1982.• Grace, T. On sequential labelings of graphs. Journal of Graph Theory, 7:195-201,

1983.• Greenlaw, R., Halldórsson, M., and Petreschi, R. On Computing Prüfer Codes and

Their Corresponding Trees Optimally in Parallel (Extended Abstract). Proceedings of Journées de l'Informatique Messine (JIM 2000), Université de Metz, France, Laboratoire d'Informatique Théorique et Appliqueé, editor D. Kratsch, pages 125-130, 2000.

• Greenlaw, R., Hoover, H. J., and Ruzzo, W. L. Limits to Parallel Computation: P-Completeness Theory, Oxford University Press, 1995.

• Hungerford, Thomas W. Algebra, Graduate Texts in Mathematics GTM—73, Springer Verlag, 1987.

• Kakoulis, K. G. and Tollis, I. G. On the complexity of the edge label placement problem. Computational Geometry, 18(1):1-17, 2001.

• Kantabutra, S. The complexity of label relocation problems on graphs. Proceedings of the 8th Asian Symposium on Computer Mathematics, National University of Singapore, Singapore, December 2007.

Page 61: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 61

References• Kato, T. and Imai, H. The NP-completeness of the character placement problem

of 2 or 3 degrees of freedom. Record of Joint Conference of Electrical and Electronic Engineers in Kyushu (in Japanese), pages 11-18, 1988.

• Knuth, Donald E. The Art of Computer Programming, Volume 3, second edition, Addison Wesley, 1998.

• Lam, T. W. and Yue, F. L. Optimal Edge Ranking of Trees in Linear Time. Algorithmica, 30(1): 12-33, 2001.

• Lee, S. M., Lee, A. N-T., Sun, H., and Wen, I. On the integer-magic spectra of graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 42:77-86, 2002.

• Lee, S. M. and Wong, H. On the integer spectra of the power of paths. Journal of Combinatorial Math and Combinatorial Computing, 42:187-194, 2002.

• Lichtenstein, D. and Sipser, M. GO is Pspace hard. Proceedings of the 19th Annual Symposium on the Foundations of Computer Science, IEEE Computer Society, Long Beach, CA, pages 48-54, 1978.

• Marks, J. and Shieber, S. The computational complexity of cartographic label placement. Technical Reports TR-05-91. Advanced Research in Computing Technology, Harvard University, 1991.

• Moon, J. W. Counting Labelled Trees Canadian Mathematical Monographs William Clowes and Sons, Limited, 1970.

Page 62: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 62

References• Muir, T. A treatise on the theory of determinants. McMillan and Co., London, 1882.• Muir, T. A treatise on the theory of determinants. Revised and enlarged by W. H.

Metzler. Dover Publications Inc. New York, 1960.• Ratner, D. and Warmuth, M. The (n2-1)-puzzle and related relocation problems.

Journal of Symbolic Computation, 10:111-137, 1990.• Rosa, A. On certain valuations of the vertices of a graph. Theory of Graphs

(International Symposium, Rome, July 1966). Gordon and Breach, NY and Dunod Paris, pages 349-355, 1967.

• Schaefer, T. J. Complexity of some two-person perfect-information games. Journal of Computer and System Science, 16:185-225, 1978.

• Sedláček, J. Problem 27, in Theory of Graphs and Its Applications. Proc. Symposium Smolenice, pages 163-167, 1963.

• Slocum, J. and Sonneveld, D. The 15 puzzle: how it drove the world crazy. The puzzle that started the craze of 1880. How America's greatest puzzle designer, Sam Loyd, fooled everyone for 115 years. Beverly Hills, CA, Slocum Puzzle Foundation, 2006.

• Stewart, B. M. Magic graphs. Canadian Journal of Mathematics, 18:1031-1059, 1966.

• Stewart, B. M. Supermagic complete graphs. Canadian Journal of Mathematics, 19:427-438, 1967.

Page 63: The Complexity of the Evolution of Graph Labelings Geir Agnarsson Raymond Greenlaw Sanpawat Kantabutra.

The Complexity of the Evolution of Graph Labelings – Agnarsson, Greenlaw, and Kantabutra - 63

References• Storey, W. E. Notes on the 15 Puzzle 2. American Journal of Mathematics,

2(4):399-404, 1879.• Wilkinson, B. and Allen, M. Parallel Programming: Techniques and Applications

Using Networked Workstations and Parallel Computers, Prentice Hall, 1999.• Wilson, R. M. Graph puzzles, homotopy, and the alternating group. Journal of

Combinatorial Theory B, 16:86-96, 1974.