Top Banner
Introduction Construction of the R-Matrix Results Conclusion The Complementary Bell Numbers Explored via a Matrix Constructed with Rising Factorials Jonathan Broom, Stefan Hannie, Sarah Seger Ole Miss,ULL,LSU July 6, 2012 Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers
96

The Complementary Bell Numbers - LSU Math

Mar 26, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

The Complementary Bell NumbersExplored via a Matrix Constructed with Rising Factorials

Jonathan Broom, Stefan Hannie, Sarah Seger

Ole Miss,ULL,LSU

July 6, 2012

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 2: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

1 IntroductionFactorialsStirling NumbersBell Numbers

2 Construction of the R-Matrixλj(x)BasisCoefficientsMatrices

3 ResultsInfinite MatricesFinite Matrices

4 ConclusionConclusionAcknowledgementsWorks Cited

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 3: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Factorials

The falling factorial is denoted (x)r

(x)r = x(x − 1)(x − 2) · · · (x − r + 1)

The rising factorial is denoted x (r)

x (r) = x(x + 1)(x + 2) · · · (x + r − 1)

Rising factorial example: Let x = 7 and r = 4

7(4) = 7(8)(9)(10) = 5040

Note that both (x)r and x (r) are polynomials of degree r .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 4: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Factorials

The falling factorial is denoted (x)r

(x)r = x(x − 1)(x − 2) · · · (x − r + 1)

The rising factorial is denoted x (r)

x (r) = x(x + 1)(x + 2) · · · (x + r − 1)

Rising factorial example: Let x = 7 and r = 4

7(4) = 7(8)(9)(10) = 5040

Note that both (x)r and x (r) are polynomials of degree r .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 5: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Factorials

The falling factorial is denoted (x)r

(x)r = x(x − 1)(x − 2) · · · (x − r + 1)

The rising factorial is denoted x (r)

x (r) = x(x + 1)(x + 2) · · · (x + r − 1)

Rising factorial example: Let x = 7 and r = 4

7(4) = 7(8)(9)(10) = 5040

Note that both (x)r and x (r) are polynomials of degree r .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 6: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Factorials

The falling factorial is denoted (x)r

(x)r = x(x − 1)(x − 2) · · · (x − r + 1)

The rising factorial is denoted x (r)

x (r) = x(x + 1)(x + 2) · · · (x + r − 1)

Rising factorial example: Let x = 7 and r = 4

7(4) = 7(8)(9)(10) = 5040

Note that both (x)r and x (r) are polynomials of degree r .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 7: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Factorials

The falling factorial is denoted (x)r

(x)r = x(x − 1)(x − 2) · · · (x − r + 1)

The rising factorial is denoted x (r)

x (r) = x(x + 1)(x + 2) · · · (x + r − 1)

Rising factorial example: Let x = 7 and r = 4

7(4) = 7(8)(9)(10) = 5040

Note that both (x)r and x (r) are polynomials of degree r .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 8: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Factorials

The falling factorial is denoted (x)r

(x)r = x(x − 1)(x − 2) · · · (x − r + 1)

The rising factorial is denoted x (r)

x (r) = x(x + 1)(x + 2) · · · (x + r − 1)

Rising factorial example: Let x = 7 and r = 4

7(4) = 7(8)(9)(10) = 5040

Note that both (x)r and x (r) are polynomials of degree r .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 9: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Factorials

The falling factorial is denoted (x)r

(x)r = x(x − 1)(x − 2) · · · (x − r + 1)

The rising factorial is denoted x (r)

x (r) = x(x + 1)(x + 2) · · · (x + r − 1)

Rising factorial example: Let x = 7 and r = 4

7(4) = 7(8)(9)(10) = 5040

Note that both (x)r and x (r) are polynomials of degree r .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 10: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Stirling Numbers of the Second Kind

The Stirling Numbers of the Second Kind are denoted S(n, k).

They are the number of ways you can partition n elementsinto k non-empty blocks.

For example, take a set containing 3 items {a, b, c}

S(3, 1) = 1{{a, b, c}}

S(3, 2) = 3{{a}, {b, c}}{{b}, {a, c}}{{c}, {a, b}}

S(3, 3) = 1{{a}, {b}, {c}}

Another example for S(3, k):

Figure: S(3, 1) = 1 Figure: S(3, 2) = 3 Figure: S(3, 3) = 1

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 11: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Stirling Numbers of the Second Kind

The Stirling Numbers of the Second Kind are denoted S(n, k).

They are the number of ways you can partition n elementsinto k non-empty blocks.

For example, take a set containing 3 items {a, b, c}

S(3, 1) = 1{{a, b, c}}

S(3, 2) = 3{{a}, {b, c}}{{b}, {a, c}}{{c}, {a, b}}

S(3, 3) = 1{{a}, {b}, {c}}

Another example for S(3, k):

Figure: S(3, 1) = 1 Figure: S(3, 2) = 3 Figure: S(3, 3) = 1

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 12: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Stirling Numbers of the Second Kind

The Stirling Numbers of the Second Kind are denoted S(n, k).

They are the number of ways you can partition n elementsinto k non-empty blocks.

For example, take a set containing 3 items {a, b, c}

S(3, 1) = 1

{{a, b, c}}

S(3, 2) = 3{{a}, {b, c}}{{b}, {a, c}}{{c}, {a, b}}

S(3, 3) = 1{{a}, {b}, {c}}

Another example for S(3, k):

Figure: S(3, 1) = 1 Figure: S(3, 2) = 3 Figure: S(3, 3) = 1

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 13: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Stirling Numbers of the Second Kind

The Stirling Numbers of the Second Kind are denoted S(n, k).

They are the number of ways you can partition n elementsinto k non-empty blocks.

For example, take a set containing 3 items {a, b, c}

S(3, 1) = 1{{a, b, c}}

S(3, 2) = 3{{a}, {b, c}}{{b}, {a, c}}{{c}, {a, b}}

S(3, 3) = 1{{a}, {b}, {c}}

Another example for S(3, k):

Figure: S(3, 1) = 1 Figure: S(3, 2) = 3 Figure: S(3, 3) = 1

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 14: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Stirling Numbers of the Second Kind

The Stirling Numbers of the Second Kind are denoted S(n, k).

They are the number of ways you can partition n elementsinto k non-empty blocks.

For example, take a set containing 3 items {a, b, c}

S(3, 1) = 1{{a, b, c}}

S(3, 2) = 3

{{a}, {b, c}}{{b}, {a, c}}{{c}, {a, b}}

S(3, 3) = 1{{a}, {b}, {c}}

Another example for S(3, k):

Figure: S(3, 1) = 1 Figure: S(3, 2) = 3 Figure: S(3, 3) = 1

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 15: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Stirling Numbers of the Second Kind

The Stirling Numbers of the Second Kind are denoted S(n, k).

They are the number of ways you can partition n elementsinto k non-empty blocks.

For example, take a set containing 3 items {a, b, c}

S(3, 1) = 1{{a, b, c}}

S(3, 2) = 3{{a}, {b, c}}

{{b}, {a, c}}{{c}, {a, b}}

S(3, 3) = 1{{a}, {b}, {c}}

Another example for S(3, k):

Figure: S(3, 1) = 1 Figure: S(3, 2) = 3 Figure: S(3, 3) = 1

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 16: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Stirling Numbers of the Second Kind

The Stirling Numbers of the Second Kind are denoted S(n, k).

They are the number of ways you can partition n elementsinto k non-empty blocks.

For example, take a set containing 3 items {a, b, c}

S(3, 1) = 1{{a, b, c}}

S(3, 2) = 3{{a}, {b, c}}{{b}, {a, c}}

{{c}, {a, b}}

S(3, 3) = 1{{a}, {b}, {c}}

Another example for S(3, k):

Figure: S(3, 1) = 1 Figure: S(3, 2) = 3 Figure: S(3, 3) = 1

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 17: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Stirling Numbers of the Second Kind

The Stirling Numbers of the Second Kind are denoted S(n, k).

They are the number of ways you can partition n elementsinto k non-empty blocks.

For example, take a set containing 3 items {a, b, c}

S(3, 1) = 1{{a, b, c}}

S(3, 2) = 3{{a}, {b, c}}{{b}, {a, c}}{{c}, {a, b}}

S(3, 3) = 1{{a}, {b}, {c}}

Another example for S(3, k):

Figure: S(3, 1) = 1 Figure: S(3, 2) = 3 Figure: S(3, 3) = 1

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 18: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Stirling Numbers of the Second Kind

The Stirling Numbers of the Second Kind are denoted S(n, k).

They are the number of ways you can partition n elementsinto k non-empty blocks.

For example, take a set containing 3 items {a, b, c}

S(3, 1) = 1{{a, b, c}}

S(3, 2) = 3{{a}, {b, c}}{{b}, {a, c}}{{c}, {a, b}}

S(3, 3) = 1

{{a}, {b}, {c}}

Another example for S(3, k):

Figure: S(3, 1) = 1 Figure: S(3, 2) = 3 Figure: S(3, 3) = 1

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 19: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Stirling Numbers of the Second Kind

The Stirling Numbers of the Second Kind are denoted S(n, k).

They are the number of ways you can partition n elementsinto k non-empty blocks.

For example, take a set containing 3 items {a, b, c}

S(3, 1) = 1{{a, b, c}}

S(3, 2) = 3{{a}, {b, c}}{{b}, {a, c}}{{c}, {a, b}}

S(3, 3) = 1{{a}, {b}, {c}}

Another example for S(3, k):

Figure: S(3, 1) = 1 Figure: S(3, 2) = 3 Figure: S(3, 3) = 1

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 20: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Stirling Numbers of the Second Kind

The Stirling Numbers of the Second Kind are denoted S(n, k).

They are the number of ways you can partition n elementsinto k non-empty blocks.

For example, take a set containing 3 items {a, b, c}

S(3, 1) = 1{{a, b, c}}

S(3, 2) = 3{{a}, {b, c}}{{b}, {a, c}}{{c}, {a, b}}

S(3, 3) = 1{{a}, {b}, {c}}

Another example for S(3, k):

Figure: S(3, 1) = 1 Figure: S(3, 2) = 3 Figure: S(3, 3) = 1

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 21: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Stirling Numbers of the Second Kind

The Stirling Numbers of the Second Kind are denoted S(n, k).

They are the number of ways you can partition n elementsinto k non-empty blocks.

For example, take a set containing 3 items {a, b, c}

S(3, 1) = 1{{a, b, c}}

S(3, 2) = 3{{a}, {b, c}}{{b}, {a, c}}{{c}, {a, b}}

S(3, 3) = 1{{a}, {b}, {c}}

Another example for S(3, k):

Figure: S(3, 1) = 1

Figure: S(3, 2) = 3 Figure: S(3, 3) = 1

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 22: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Stirling Numbers of the Second Kind

The Stirling Numbers of the Second Kind are denoted S(n, k).

They are the number of ways you can partition n elementsinto k non-empty blocks.

For example, take a set containing 3 items {a, b, c}

S(3, 1) = 1{{a, b, c}}

S(3, 2) = 3{{a}, {b, c}}{{b}, {a, c}}{{c}, {a, b}}

S(3, 3) = 1{{a}, {b}, {c}}

Another example for S(3, k):

Figure: S(3, 1) = 1 Figure: S(3, 2) = 3

Figure: S(3, 3) = 1

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 23: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Stirling Numbers of the Second Kind

The Stirling Numbers of the Second Kind are denoted S(n, k).

They are the number of ways you can partition n elementsinto k non-empty blocks.

For example, take a set containing 3 items {a, b, c}

S(3, 1) = 1{{a, b, c}}

S(3, 2) = 3{{a}, {b, c}}{{b}, {a, c}}{{c}, {a, b}}

S(3, 3) = 1{{a}, {b}, {c}}

Another example for S(3, k):

Figure: S(3, 1) = 1 Figure: S(3, 2) = 3 Figure: S(3, 3) = 1

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 24: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Stirling Numbers of the Second Kind

Similarly S(4, k):

Figure: S(4, 1) = 1 Figure: S(4, 2) = 7

Figure: S(4, 3) = 6 Figure: S(4, 4) = 1

Note: From the examples, it is clear that S(n, 1) = S(n, n) = 1.

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 25: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Stirling Numbers of the Second Kind

Similarly S(4, k):

Figure: S(4, 1) = 1

Figure: S(4, 2) = 7

Figure: S(4, 3) = 6 Figure: S(4, 4) = 1

Note: From the examples, it is clear that S(n, 1) = S(n, n) = 1.

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 26: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Stirling Numbers of the Second Kind

Similarly S(4, k):

Figure: S(4, 1) = 1 Figure: S(4, 2) = 7

Figure: S(4, 3) = 6 Figure: S(4, 4) = 1

Note: From the examples, it is clear that S(n, 1) = S(n, n) = 1.

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 27: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Stirling Numbers of the Second Kind

Similarly S(4, k):

Figure: S(4, 1) = 1 Figure: S(4, 2) = 7

Figure: S(4, 3) = 6

Figure: S(4, 4) = 1

Note: From the examples, it is clear that S(n, 1) = S(n, n) = 1.

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 28: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Stirling Numbers of the Second Kind

Similarly S(4, k):

Figure: S(4, 1) = 1 Figure: S(4, 2) = 7

Figure: S(4, 3) = 6 Figure: S(4, 4) = 1

Note: From the examples, it is clear that S(n, 1) = S(n, n) = 1.

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 29: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Stirling Numbers of the Second Kind

Similarly S(4, k):

Figure: S(4, 1) = 1 Figure: S(4, 2) = 7

Figure: S(4, 3) = 6 Figure: S(4, 4) = 1

Note: From the examples, it is clear that S(n, 1) = S(n, n) = 1.

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 30: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Growth

SH7, 4L = 350

SH6, 3L = 90

SH8, 4L = 1701

2 4 6 8k

500

1000

1500

SnHkL

The points labeled are the k values that yield the maximum S(n, k) for a given n.

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 31: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Bell Numbers and Complementary Bell Numbers

The Bell Numbers are denoted B(n)

B(n) =n∑

k=1

S(n, k)

The Complementary Bell Numbers are denoted B̃(n)

B̃(n) =n∑

k=1

(−1)kS(n, k)

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 32: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Bell Numbers and Complementary Bell Numbers

The Bell Numbers are denoted B(n)

B(n) =n∑

k=1

S(n, k)

The Complementary Bell Numbers are denoted B̃(n)

B̃(n) =n∑

k=1

(−1)kS(n, k)

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 33: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Bell Numbers and Complementary Bell Numbers

The Bell Numbers are denoted B(n)

B(n) =n∑

k=1

S(n, k)

The Complementary Bell Numbers are denoted B̃(n)

B̃(n) =n∑

k=1

(−1)kS(n, k)

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 34: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Bell Numbers and Complementary Bell Numbers

The Bell Numbers are denoted B(n)

B(n) =n∑

k=1

S(n, k)

The Complementary Bell Numbers are denoted B̃(n)

B̃(n) =n∑

k=1

(−1)kS(n, k)

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 35: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

B̃(n) Examples

Examples:

B̃(2) = 0

Odd Even{a, b} {a}, {b}

B̃(4) = 1

Odd Even

B̃(3) = 1

Odd Even

B̃(5) = −2

Odd Even

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 36: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

B̃(n) Examples

Examples:

B̃(2) = 0

Odd Even{a, b} {a}, {b}

B̃(4) = 1

Odd Even

B̃(3) = 1

Odd Even

B̃(5) = −2

Odd Even

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 37: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

B̃(n) Examples

Examples:

B̃(2) = 0

Odd Even{a, b} {a}, {b}

B̃(4) = 1

Odd Even

B̃(3) = 1

Odd Even

B̃(5) = −2

Odd Even

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 38: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

B̃(n) Examples

Examples:

B̃(2) = 0

Odd Even{a, b} {a}, {b}

B̃(4) = 1

Odd Even

B̃(3) = 1

Odd Even

B̃(5) = −2

Odd Even

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 39: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

B̃(n) Examples

Examples:

B̃(2) = 0

Odd Even{a, b} {a}, {b}

B̃(4) = 1

Odd Even

B̃(3) = 1

Odd Even

B̃(5) = −2

Odd Even

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 40: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Complementary Bell Numbers

n B̃(n)0 11 −12 03 14 15 −26 −97 −98 509 267

10 41311 −218012 −1773113 −5053314 11017615 196679716 993866917 8638718...

...

æ æ

æ

æ æ

æ

æ æ

æ

2 4 6 8n

5

10

15

20

BnH-1L

Figure: |B̃(n)| for n ≤ 8Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 41: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

FactorialsStirling NumbersBell Numbers

Wilf’s Conjecture

H.S. Wilf’s Conjecture:

B̃(n) 6= 0 for all n > 2

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 42: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

λj (x)BasisCoefficientsMatrices

The λj(x) Polynomials

There exist polynomials λj , for all n, j ≥ 0, that satisfy

B̃(n + j) =n∑

k=0

(−1)kλj(k)S(n, k)

λj(x) can be defined recursively as follows:

λ0(x) = 1

λn+1(x) = xλn(x)− λn (x + 1)

Alternate Form:

λ0(x) = 1

λn+1(x − 1) = (x − 1)λn(x − 1)− λn(x)

Note that λn(x) is a monic polynomial of degree n.

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 43: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

λj (x)BasisCoefficientsMatrices

The λj(x) Polynomials

There exist polynomials λj , for all n, j ≥ 0, that satisfy

B̃(n + j) =n∑

k=0

(−1)kλj(k)S(n, k)

λj(x) can be defined recursively as follows:

λ0(x) = 1

λn+1(x) = xλn(x)− λn (x + 1)

Alternate Form:

λ0(x) = 1

λn+1(x − 1) = (x − 1)λn(x − 1)− λn(x)

Note that λn(x) is a monic polynomial of degree n.

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 44: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

λj (x)BasisCoefficientsMatrices

The λj(x) Polynomials

There exist polynomials λj , for all n, j ≥ 0, that satisfy

B̃(n + j) =n∑

k=0

(−1)kλj(k)S(n, k)

λj(x) can be defined recursively as follows:

λ0(x) = 1

λn+1(x) = xλn(x)− λn (x + 1)

Alternate Form:

λ0(x) = 1

λn+1(x − 1) = (x − 1)λn(x − 1)− λn(x)

Note that λn(x) is a monic polynomial of degree n.

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 45: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

λj (x)BasisCoefficientsMatrices

The λj(x) Polynomials

There exist polynomials λj , for all n, j ≥ 0, that satisfy

B̃(n + j) =n∑

k=0

(−1)kλj(k)S(n, k)

λj(x) can be defined recursively as follows:

λ0(x) = 1

λn+1(x) = xλn(x)− λn (x + 1)

Alternate Form:

λ0(x) = 1

λn+1(x − 1) = (x − 1)λn(x − 1)− λn(x)

Note that λn(x) is a monic polynomial of degree n.

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 46: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

λj (x)BasisCoefficientsMatrices

Rising Factorials as a Basis for Pn

Theorem

For each n ≥ 0, the set of rising factorials{

x (k) : 0 ≤ k ≤ n}

is abasis for Pn, the vector space of polynomials of degree less than orequal to n.

xn =n∑

k=0

(−1)n+kS(n, k)x (k) for all n ≥ 0

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 47: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

λj (x)BasisCoefficientsMatrices

Rising Factorials as a Basis for Pn

Theorem

For each n ≥ 0, the set of rising factorials{

x (k) : 0 ≤ k ≤ n}

is abasis for Pn, the vector space of polynomials of degree less than orequal to n.

xn =n∑

k=0

(−1)n+kS(n, k)x (k) for all n ≥ 0

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 48: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

λj (x)BasisCoefficientsMatrices

The Coefficients of the R-Matrix

By the previous theorem:

λn(x) =n∑

k=0

an(k)x(k)

By the recurrence relation of λn(x):

λn+1(x − 1) = (x − 1)λn(x − 1)− λn(x)

Therefore:

n+1∑k=0

an+1(k) (x − 1)(k) =n∑

k=0

an(k) (x − 1) (x − 1)(k) −n∑

k=0

an(k)x(k)

Lemma

For all n ≥ 0 and for all 0 ≤ k ≤ n + 1,

an+1(k)− (k + 1) an+1(k +1) = an(k − 1)− 2 (k + 1) an(k)+ (k + 1)2 an(k +1)

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 49: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

λj (x)BasisCoefficientsMatrices

The Coefficients of the R-Matrix

By the previous theorem:

λn(x) =n∑

k=0

an(k)x(k)

By the recurrence relation of λn(x):

λn+1(x − 1) = (x − 1)λn(x − 1)− λn(x)

Therefore:

n+1∑k=0

an+1(k) (x − 1)(k) =n∑

k=0

an(k) (x − 1) (x − 1)(k) −n∑

k=0

an(k)x(k)

Lemma

For all n ≥ 0 and for all 0 ≤ k ≤ n + 1,

an+1(k)− (k + 1) an+1(k +1) = an(k − 1)− 2 (k + 1) an(k)+ (k + 1)2 an(k +1)

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 50: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

λj (x)BasisCoefficientsMatrices

The Coefficients of the R-Matrix

By the previous theorem:

λn(x) =n∑

k=0

an(k)x(k)

By the recurrence relation of λn(x):

λn+1(x − 1) = (x − 1)λn(x − 1)− λn(x)

Therefore:

n+1∑k=0

an+1(k) (x − 1)(k) =n∑

k=0

an(k) (x − 1) (x − 1)(k) −n∑

k=0

an(k)x(k)

Lemma

For all n ≥ 0 and for all 0 ≤ k ≤ n + 1,

an+1(k)− (k + 1) an+1(k +1) = an(k − 1)− 2 (k + 1) an(k)+ (k + 1)2 an(k +1)

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 51: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

λj (x)BasisCoefficientsMatrices

The Coefficients of the R-Matrix

By the previous theorem:

λn(x) =n∑

k=0

an(k)x(k)

By the recurrence relation of λn(x):

λn+1(x − 1) = (x − 1)λn(x − 1)− λn(x)

Therefore:

n+1∑k=0

an+1(k) (x − 1)(k) =n∑

k=0

an(k) (x − 1) (x − 1)(k) −n∑

k=0

an(k)x(k)

Lemma

For all n ≥ 0 and for all 0 ≤ k ≤ n + 1,

an+1(k)− (k + 1) an+1(k +1) = an(k − 1)− 2 (k + 1) an(k)+ (k + 1)2 an(k +1)

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 52: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

λj (x)BasisCoefficientsMatrices

The A-Matrix and B-Matrix

Let Aan+1 = Ban, then A,B are infinite matrices whose entries aredefined by

A(i , j) =

1 if j = i

− (i + 1) if j = i + 1

0 if j < i or j > i + 1

B(i , j) =

1 if j = i − 1

−2 (i + 1) if j = i

(i + 1)2 if j = i + 1

0 if |i − j | > 1

A =

1 −1 0 0 . . .0 1 −2 0 . . .0 0 1 −3 . . .0 0 0 1 . . ....

......

.... . .

B =

−2 1 0 0 . . .1 −4 4 0 . . .0 1 −6 9 . . .0 0 1 −8 . . ....

......

.... . .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 53: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

λj (x)BasisCoefficientsMatrices

The A-Matrix and B-Matrix

Let Aan+1 = Ban, then A,B are infinite matrices whose entries aredefined by

A(i , j) =

1 if j = i

− (i + 1) if j = i + 1

0 if j < i or j > i + 1

B(i , j) =

1 if j = i − 1

−2 (i + 1) if j = i

(i + 1)2 if j = i + 1

0 if |i − j | > 1

A =

1 −1 0 0 . . .0 1 −2 0 . . .0 0 1 −3 . . .0 0 0 1 . . ....

......

.... . .

B =

−2 1 0 0 . . .1 −4 4 0 . . .0 1 −6 9 . . .0 0 1 −8 . . ....

......

.... . .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 54: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

λj (x)BasisCoefficientsMatrices

The A-Matrix and B-Matrix

Let Aan+1 = Ban, then A,B are infinite matrices whose entries aredefined by

A(i , j) =

1 if j = i

− (i + 1) if j = i + 1

0 if j < i or j > i + 1

B(i , j) =

1 if j = i − 1

−2 (i + 1) if j = i

(i + 1)2 if j = i + 1

0 if |i − j | > 1

A =

1 −1 0 0 . . .0 1 −2 0 . . .0 0 1 −3 . . .0 0 0 1 . . ....

......

.... . .

B =

−2 1 0 0 . . .1 −4 4 0 . . .0 1 −6 9 . . .0 0 1 −8 . . ....

......

.... . .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 55: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

λj (x)BasisCoefficientsMatrices

The A-Matrix and B-Matrix

Let Aan+1 = Ban, then A,B are infinite matrices whose entries aredefined by

A(i , j) =

1 if j = i

− (i + 1) if j = i + 1

0 if j < i or j > i + 1

B(i , j) =

1 if j = i − 1

−2 (i + 1) if j = i

(i + 1)2 if j = i + 1

0 if |i − j | > 1

A =

1 −1 0 0 . . .0 1 −2 0 . . .0 0 1 −3 . . .0 0 0 1 . . ....

......

.... . .

B =

−2 1 0 0 . . .1 −4 4 0 . . .0 1 −6 9 . . .0 0 1 −8 . . ....

......

.... . .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 56: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

λj (x)BasisCoefficientsMatrices

The A-Matrix and B-Matrix

Let Aan+1 = Ban, then A,B are infinite matrices whose entries aredefined by

A(i , j) =

1 if j = i

− (i + 1) if j = i + 1

0 if j < i or j > i + 1

B(i , j) =

1 if j = i − 1

−2 (i + 1) if j = i

(i + 1)2 if j = i + 1

0 if |i − j | > 1

A =

1 −1 0 0 . . .0 1 −2 0 . . .0 0 1 −3 . . .0 0 0 1 . . ....

......

.... . .

B =

−2 1 0 0 . . .1 −4 4 0 . . .0 1 −6 9 . . .0 0 1 −8 . . ....

......

.... . .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 57: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

λj (x)BasisCoefficientsMatrices

The A−1-Matrix

Taking Aan+1 = Ban, we solve for an+1. Therefore:

an+1 = A−1Ban

A−1(i , j) =

{j!i! if j ≥ i

0 if j < i A−1 =

1 1 2 6 24 . . .0 1 2 6 24 . . .0 0 1 3 12 . . .0 0 0 1 4 . . .0 0 0 0 1 . . ....

......

......

. . .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 58: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

λj (x)BasisCoefficientsMatrices

The A−1-Matrix

Taking Aan+1 = Ban, we solve for an+1. Therefore:

an+1 = A−1Ban

A−1(i , j) =

{j!i! if j ≥ i

0 if j < i

A−1 =

1 1 2 6 24 . . .0 1 2 6 24 . . .0 0 1 3 12 . . .0 0 0 1 4 . . .0 0 0 0 1 . . ....

......

......

. . .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 59: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

λj (x)BasisCoefficientsMatrices

The A−1-Matrix

Taking Aan+1 = Ban, we solve for an+1. Therefore:

an+1 = A−1Ban

A−1(i , j) =

{j!i! if j ≥ i

0 if j < i A−1 =

1 1 2 6 24 . . .0 1 2 6 24 . . .0 0 1 3 12 . . .0 0 0 1 4 . . .0 0 0 0 1 . . ....

......

......

. . .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 60: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

λj (x)BasisCoefficientsMatrices

The R-Matrix

Taking an+1 = A−1Ban, we call R = A−1B. Therefore:

an+1 = Ran

R(i , j) =

− j!

i! if j > i

−(i + 1) if j = i

1 if j = i − 1

0 if j < i − 1

R =

−1 −1 −2 −6 −24 . . .1 −2 −2 −6 −24 . . .0 1 −3 −3 −12 . . .0 0 1 −4 −4 . . .0 0 0 1 −5 . . ....

......

......

. . .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 61: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

λj (x)BasisCoefficientsMatrices

The R-Matrix

Taking an+1 = A−1Ban, we call R = A−1B. Therefore:

an+1 = Ran

R(i , j) =

− j!

i! if j > i

−(i + 1) if j = i

1 if j = i − 1

0 if j < i − 1

R =

−1 −1 −2 −6 −24 . . .1 −2 −2 −6 −24 . . .0 1 −3 −3 −12 . . .0 0 1 −4 −4 . . .0 0 0 1 −5 . . ....

......

......

. . .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 62: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

λj (x)BasisCoefficientsMatrices

The R-Matrix

Taking an+1 = A−1Ban, we call R = A−1B. Therefore:

an+1 = Ran

R(i , j) =

− j!

i! if j > i

−(i + 1) if j = i

1 if j = i − 1

0 if j < i − 1

R =

−1 −1 −2 −6 −24 . . .1 −2 −2 −6 −24 . . .0 1 −3 −3 −12 . . .0 0 1 −4 −4 . . .0 0 0 1 −5 . . ....

......

......

. . .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 63: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Lower Section

Lemma

For each n ∈ N, the nth power of R is defined and Rn(i , j) = 0 ifj < i − n.

R =

−1 −1 −2 −6 −24 . . .1 −2 −2 −6 −24 . . .0 1 −3 −3 −12 . . .0 0 1 −4 −4 . . .0 0 0 1 −5 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

R2 =

0 1 4 18 96 . . .−3 1 2 12 72 . . .

1 −5 4 3 24 . . .0 1 −7 9 4 . . .0 0 1 −9 16 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

R3 =

1 2 4 6 −24 . . .4 3 10 30 96 . . .

−6 13 −1 24 96 . . .1 −9 28 −17 44 . . .0 1 −12 49 −51 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

R4 =

1 −1 −12 −78 −504 . . .−1 0 −14 −96 −648 . . .19 −21 13 −39 −312 . . .

−10 45 −85 76 −76 . . .1 −14 83 −217 249 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 64: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Lower Section

Lemma

For each n ∈ N, the nth power of R is defined and Rn(i , j) = 0 ifj < i − n.

R =

−1 −1 −2 −6 −24 . . .1 −2 −2 −6 −24 . . .0 1 −3 −3 −12 . . .0 0 1 −4 −4 . . .0 0 0 1 −5 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

R2 =

0 1 4 18 96 . . .−3 1 2 12 72 . . .

1 −5 4 3 24 . . .0 1 −7 9 4 . . .0 0 1 −9 16 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

R3 =

1 2 4 6 −24 . . .4 3 10 30 96 . . .

−6 13 −1 24 96 . . .1 −9 28 −17 44 . . .0 1 −12 49 −51 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

R4 =

1 −1 −12 −78 −504 . . .−1 0 −14 −96 −648 . . .19 −21 13 −39 −312 . . .

−10 45 −85 76 −76 . . .1 −14 83 −217 249 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 65: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Lower Section

Lemma

For each n ∈ N, the nth power of R is defined and Rn(i , j) = 0 ifj < i − n.

R =

−1 −1 −2 −6 −24 . . .1 −2 −2 −6 −24 . . .0 1 −3 −3 −12 . . .0 0 1 −4 −4 . . .0 0 0 1 −5 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

R2 =

0 1 4 18 96 . . .−3 1 2 12 72 . . .

1 −5 4 3 24 . . .0 1 −7 9 4 . . .0 0 1 −9 16 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

R3 =

1 2 4 6 −24 . . .4 3 10 30 96 . . .

−6 13 −1 24 96 . . .1 −9 28 −17 44 . . .0 1 −12 49 −51 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

R4 =

1 −1 −12 −78 −504 . . .−1 0 −14 −96 −648 . . .19 −21 13 −39 −312 . . .

−10 45 −85 76 −76 . . .1 −14 83 −217 249 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 66: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Lower Section

Lemma

For each n ∈ N, the nth power of R is defined and Rn(i , j) = 0 ifj < i − n.

R =

−1 −1 −2 −6 −24 . . .1 −2 −2 −6 −24 . . .0 1 −3 −3 −12 . . .0 0 1 −4 −4 . . .0 0 0 1 −5 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

R2 =

0 1 4 18 96 . . .−3 1 2 12 72 . . .

1 −5 4 3 24 . . .0 1 −7 9 4 . . .0 0 1 −9 16 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

R3 =

1 2 4 6 −24 . . .4 3 10 30 96 . . .

−6 13 −1 24 96 . . .1 −9 28 −17 44 . . .0 1 −12 49 −51 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

R4 =

1 −1 −12 −78 −504 . . .−1 0 −14 −96 −648 . . .19 −21 13 −39 −312 . . .

−10 45 −85 76 −76 . . .1 −14 83 −217 249 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 67: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Lower Section

Lemma

For each n ∈ N, the nth power of R is defined and Rn(i , j) = 0 ifj < i − n.

R =

−1 −1 −2 −6 −24 . . .1 −2 −2 −6 −24 . . .0 1 −3 −3 −12 . . .0 0 1 −4 −4 . . .0 0 0 1 −5 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

R2 =

0 1 4 18 96 . . .−3 1 2 12 72 . . .

1 −5 4 3 24 . . .0 1 −7 9 4 . . .0 0 1 −9 16 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

R3 =

1 2 4 6 −24 . . .4 3 10 30 96 . . .

−6 13 −1 24 96 . . .1 −9 28 −17 44 . . .0 1 −12 49 −51 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

R4 =

1 −1 −12 −78 −504 . . .−1 0 −14 −96 −648 . . .19 −21 13 −39 −312 . . .

−10 45 −85 76 −76 . . .1 −14 83 −217 249 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 68: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Row

Lemma

For all n ≥ 1 and j ≥ 0, the (0, j)th entry of Rn is divisible by j!.

j j!0 11 12 23 64 245 1206 720...

...

R =

−1 −1 −2 −6 −24 −120 −720 . . .1 −2 −2 −6 −24 −120 −720 . . .0 1 −3 −3 −12 −60 −360 . . .0 0 1 −4 −4 −20 −120 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

R4 =

1 −1 −12 −78 −504 36840 −953280 . . .−1 0 −14 −96 −648 35640 −923760 . . .19 −21 13 −39 −312 17700 −443880 . . .

−10 45 −85 76 −76 6000 −141000 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

For R4: −783!

= −13, −5044!

= −21, 368405!

= 307, −9532806!

= −1324

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 69: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Row

Lemma

For all n ≥ 1 and j ≥ 0, the (0, j)th entry of Rn is divisible by j!.

j j!0 11 12 23 64 245 1206 720...

...

R =

−1 −1 −2 −6 −24 −120 −720 . . .1 −2 −2 −6 −24 −120 −720 . . .0 1 −3 −3 −12 −60 −360 . . .0 0 1 −4 −4 −20 −120 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

R4 =

1 −1 −12 −78 −504 36840 −953280 . . .−1 0 −14 −96 −648 35640 −923760 . . .19 −21 13 −39 −312 17700 −443880 . . .

−10 45 −85 76 −76 6000 −141000 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

For R4: −783!

= −13, −5044!

= −21, 368405!

= 307, −9532806!

= −1324

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 70: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Row

Lemma

For all n ≥ 1 and j ≥ 0, the (0, j)th entry of Rn is divisible by j!.

j j!0 11 12 23 64 245 1206 720...

...

R =

−1 −1 −2 −6 −24 −120 −720 . . .1 −2 −2 −6 −24 −120 −720 . . .0 1 −3 −3 −12 −60 −360 . . .0 0 1 −4 −4 −20 −120 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

R4 =

1 −1 −12 −78 −504 36840 −953280 . . .−1 0 −14 −96 −648 35640 −923760 . . .19 −21 13 −39 −312 17700 −443880 . . .

−10 45 −85 76 −76 6000 −141000 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

For R4: −783!

= −13, −5044!

= −21, 368405!

= 307, −9532806!

= −1324

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 71: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Row

Lemma

For all n ≥ 1 and j ≥ 0, the (0, j)th entry of Rn is divisible by j!.

j j!0 11 12 23 64 245 1206 720...

...

R =

−1 −1 −2 −6 −24 −120 −720 . . .1 −2 −2 −6 −24 −120 −720 . . .0 1 −3 −3 −12 −60 −360 . . .0 0 1 −4 −4 −20 −120 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

R4 =

1 −1 −12 −78 −504 36840 −953280 . . .−1 0 −14 −96 −648 35640 −923760 . . .19 −21 13 −39 −312 17700 −443880 . . .

−10 45 −85 76 −76 6000 −141000 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

For R4: −783!

= −13, −5044!

= −21, 368405!

= 307, −9532806!

= −1324

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 72: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Row

Lemma

For all n ≥ 1 and j ≥ 0, the (0, j)th entry of Rn is divisible by j!.

j j!0 11 12 23 64 245 1206 720...

...

R =

−1 −1 −2 −6 −24 −120 −720 . . .1 −2 −2 −6 −24 −120 −720 . . .0 1 −3 −3 −12 −60 −360 . . .0 0 1 −4 −4 −20 −120 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

R4 =

1 −1 −12 −78 −504 36840 −953280 . . .−1 0 −14 −96 −648 35640 −923760 . . .19 −21 13 −39 −312 17700 −443880 . . .

−10 45 −85 76 −76 6000 −141000 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .

For R4: −783!

= −13, −5044!

= −21, 368405!

= 307, −9532806!

= −1324

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 73: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Left Entry

Theorem

For all n ∈ N, B̃(n) = Rn(0, 0).

n B̃(n)1 −12 03 14 15 −26 −9...

...

R =

−1 −1 −2 −6 . . .1 −2 −2 −6 . . .0 1 −3 −3 . . .0 0 1 −4 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R5 =

−2 −11 −42 −156 . . .1 −13 −52 −216 . . .

−40 36 −74 −183 . . .55 −165 261 −335 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R2 =

0 1 4 18 . . .−3 1 2 12 . . .

1 −5 4 3 . . .0 1 −7 9 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R6 =

−9 −18 −4 40644 . . .−14 −27 −36 40548 . . .

76 −106 47 20286 . . .−220 536 −898 7473 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 74: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Left Entry

Theorem

For all n ∈ N, B̃(n) = Rn(0, 0).

n B̃(n)1 −12 03 14 15 −26 −9...

...

R =

−1 −1 −2 −6 . . .1 −2 −2 −6 . . .0 1 −3 −3 . . .0 0 1 −4 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R5 =

−2 −11 −42 −156 . . .1 −13 −52 −216 . . .

−40 36 −74 −183 . . .55 −165 261 −335 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R2 =

0 1 4 18 . . .−3 1 2 12 . . .

1 −5 4 3 . . .0 1 −7 9 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R6 =

−9 −18 −4 40644 . . .−14 −27 −36 40548 . . .

76 −106 47 20286 . . .−220 536 −898 7473 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 75: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Left Entry

Theorem

For all n ∈ N, B̃(n) = Rn(0, 0).

n B̃(n)1 −12 03 14 15 −26 −9...

...

R =

−1 −1 −2 −6 . . .1 −2 −2 −6 . . .0 1 −3 −3 . . .0 0 1 −4 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R5 =

−2 −11 −42 −156 . . .1 −13 −52 −216 . . .

−40 36 −74 −183 . . .55 −165 261 −335 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R2 =

0 1 4 18 . . .−3 1 2 12 . . .

1 −5 4 3 . . .0 1 −7 9 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R6 =

−9 −18 −4 40644 . . .−14 −27 −36 40548 . . .

76 −106 47 20286 . . .−220 536 −898 7473 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 76: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Left Entry

Theorem

For all n ∈ N, B̃(n) = Rn(0, 0).

n B̃(n)1 −12 03 14 15 −26 −9...

...

R =

−1 −1 −2 −6 . . .1 −2 −2 −6 . . .0 1 −3 −3 . . .0 0 1 −4 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R5 =

−2 −11 −42 −156 . . .1 −13 −52 −216 . . .

−40 36 −74 −183 . . .55 −165 261 −335 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R2 =

0 1 4 18 . . .−3 1 2 12 . . .

1 −5 4 3 . . .0 1 −7 9 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R6 =

−9 −18 −4 40644 . . .−14 −27 −36 40548 . . .

76 −106 47 20286 . . .−220 536 −898 7473 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 77: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Left Entry

Theorem

For all n ∈ N, B̃(n) = Rn(0, 0).

n B̃(n)1 −12 03 14 15 −26 −9...

...

R =

−1 −1 −2 −6 . . .1 −2 −2 −6 . . .0 1 −3 −3 . . .0 0 1 −4 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R5 =

−2 −11 −42 −156 . . .1 −13 −52 −216 . . .

−40 36 −74 −183 . . .55 −165 261 −335 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R2 =

0 1 4 18 . . .−3 1 2 12 . . .

1 −5 4 3 . . .0 1 −7 9 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R6 =

−9 −18 −4 40644 . . .−14 −27 −36 40548 . . .

76 −106 47 20286 . . .−220 536 −898 7473 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 78: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Left Entry

Theorem

For all n ∈ N, B̃(n) = Rn(0, 0).

n B̃(n)1 −12 03 14 15 −26 −9...

...

R =

−1 −1 −2 −6 . . .1 −2 −2 −6 . . .0 1 −3 −3 . . .0 0 1 −4 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R5 =

−2 −11 −42 −156 . . .1 −13 −52 −216 . . .

−40 36 −74 −183 . . .55 −165 261 −335 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R2 =

0 1 4 18 . . .−3 1 2 12 . . .

1 −5 4 3 . . .0 1 −7 9 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R6 =

−9 −18 −4 40644 . . .−14 −27 −36 40548 . . .

76 −106 47 20286 . . .−220 536 −898 7473 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 79: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Row

Lemma

For all m, n ≥ 1 and for each 0 ≤ j ≤ 2m − 1,

Rnm(0, j) ≡ Rn(0, j) mod 22m−1.

R4 =

1 −1 −12 −78 . . .−1 0 −14 −96 . . .19 −21 13 −39 . . .

−10 45 −85 76 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R41 =

(1 11 0

)R4

2 =

1 7 4 27 0 2 03 7 1 56 1 3 4

R5 =

−2 −11 −42 −156 . . .1 −13 −52 −216 . . .

−40 36 −74 −183 . . .55 −165 261 −335 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R51 =

(0 11 1

)R5

2 =

6 5 6 41 3 4 04 0 6 53 3 5 5

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 80: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Row

Lemma

For all m, n ≥ 1 and for each 0 ≤ j ≤ 2m − 1,

Rnm(0, j) ≡ Rn(0, j) mod 22m−1.

R4 =

1 −1 −12 −78 . . .−1 0 −14 −96 . . .19 −21 13 −39 . . .

−10 45 −85 76 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R41 =

(1 11 0

)R4

2 =

1 7 4 27 0 2 03 7 1 56 1 3 4

R5 =

−2 −11 −42 −156 . . .1 −13 −52 −216 . . .

−40 36 −74 −183 . . .55 −165 261 −335 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R51 =

(0 11 1

)R5

2 =

6 5 6 41 3 4 04 0 6 53 3 5 5

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 81: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Row

Lemma

For all m, n ≥ 1 and for each 0 ≤ j ≤ 2m − 1,

Rnm(0, j) ≡ Rn(0, j) mod 22m−1.

R4 =

1 −1 −12 −78 . . .−1 0 −14 −96 . . .19 −21 13 −39 . . .

−10 45 −85 76 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R41 =

(1 11 0

)

R42 =

1 7 4 27 0 2 03 7 1 56 1 3 4

R5 =

−2 −11 −42 −156 . . .1 −13 −52 −216 . . .

−40 36 −74 −183 . . .55 −165 261 −335 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R51 =

(0 11 1

)R5

2 =

6 5 6 41 3 4 04 0 6 53 3 5 5

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 82: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Row

Lemma

For all m, n ≥ 1 and for each 0 ≤ j ≤ 2m − 1,

Rnm(0, j) ≡ Rn(0, j) mod 22m−1.

R4 =

1 −1 −12 −78 . . .−1 0 −14 −96 . . .19 −21 13 −39 . . .

−10 45 −85 76 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R41 =

(1 11 0

)R4

2 =

1 7 4 27 0 2 03 7 1 56 1 3 4

R5 =

−2 −11 −42 −156 . . .1 −13 −52 −216 . . .

−40 36 −74 −183 . . .55 −165 261 −335 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R51 =

(0 11 1

)R5

2 =

6 5 6 41 3 4 04 0 6 53 3 5 5

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 83: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Row

Lemma

For all m, n ≥ 1 and for each 0 ≤ j ≤ 2m − 1,

Rnm(0, j) ≡ Rn(0, j) mod 22m−1.

R4 =

1 −1 −12 −78 . . .−1 0 −14 −96 . . .19 −21 13 −39 . . .

−10 45 −85 76 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R41 =

(1 11 0

)R4

2 =

1 7 4 27 0 2 03 7 1 56 1 3 4

R5 =

−2 −11 −42 −156 . . .1 −13 −52 −216 . . .

−40 36 −74 −183 . . .55 −165 261 −335 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R51 =

(0 11 1

)R5

2 =

6 5 6 41 3 4 04 0 6 53 3 5 5

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 84: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Row

Lemma

For all m, n ≥ 1 and for each 0 ≤ j ≤ 2m − 1,

Rnm(0, j) ≡ Rn(0, j) mod 22m−1.

R4 =

1 −1 −12 −78 . . .−1 0 −14 −96 . . .19 −21 13 −39 . . .

−10 45 −85 76 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R41 =

(1 11 0

)R4

2 =

1 7 4 27 0 2 03 7 1 56 1 3 4

R5 =

−2 −11 −42 −156 . . .1 −13 −52 −216 . . .

−40 36 −74 −183 . . .55 −165 261 −335 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R51 =

(0 11 1

)

R52 =

6 5 6 41 3 4 04 0 6 53 3 5 5

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 85: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Row

Lemma

For all m, n ≥ 1 and for each 0 ≤ j ≤ 2m − 1,

Rnm(0, j) ≡ Rn(0, j) mod 22m−1.

R4 =

1 −1 −12 −78 . . .−1 0 −14 −96 . . .19 −21 13 −39 . . .

−10 45 −85 76 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R41 =

(1 11 0

)R4

2 =

1 7 4 27 0 2 03 7 1 56 1 3 4

R5 =

−2 −11 −42 −156 . . .1 −13 −52 −216 . . .

−40 36 −74 −183 . . .55 −165 261 −335 . . .

.

.

.

.

.

.

.

.

.

.

.

.. . .

R51 =

(0 11 1

)R5

2 =

6 5 6 41 3 4 04 0 6 53 3 5 5

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 86: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Left Entry

Theorem

For all n,m ∈ N,

B̃(n) ≡ Rnm(0, 0)(mod 22m−1)

n B̃(n)0 11 −12 03 14 15 −26 −97 −98 509 267...

...

R52 =

22 −323 1422 −188425 −301 1124 −1008

−28 −96 382 −24359 −205 373 −283

−2 ≡ 22 ≡ 6 mod 8

R92 =

46203 −112360 161308 −13968631762 −66157 80710 −76050

9756 −18293 24253 −3675010181 −20787 33462 −30421

267 ≡ 46203 ≡ 3 mod 8

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 87: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Left Entry

Theorem

For all n,m ∈ N,

B̃(n) ≡ Rnm(0, 0)(mod 22m−1)

n B̃(n)0 11 −12 03 14 15 −26 −97 −98 509 267...

...

R52 =

22 −323 1422 −188425 −301 1124 −1008

−28 −96 382 −24359 −205 373 −283

−2 ≡ 22 ≡ 6 mod 8

R92 =

46203 −112360 161308 −13968631762 −66157 80710 −76050

9756 −18293 24253 −3675010181 −20787 33462 −30421

267 ≡ 46203 ≡ 3 mod 8

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 88: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Left Entry

Theorem

For all n,m ∈ N,

B̃(n) ≡ Rnm(0, 0)(mod 22m−1)

n B̃(n)0 11 −12 03 14 15 −26 −97 −98 509 267...

...

R52 =

22 −323 1422 −188425 −301 1124 −1008

−28 −96 382 −24359 −205 373 −283

−2 ≡ 22 ≡ 6 mod 8

R92 =

46203 −112360 161308 −13968631762 −66157 80710 −76050

9756 −18293 24253 −3675010181 −20787 33462 −30421

267 ≡ 46203 ≡ 3 mod 8

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 89: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Left Entry

Theorem

For all n,m ∈ N,

B̃(n) ≡ Rnm(0, 0)(mod 22m−1)

n B̃(n)0 11 −12 03 14 15 −26 −97 −98 509 267...

...

R52 =

22 −323 1422 −188425 −301 1124 −1008

−28 −96 382 −24359 −205 373 −283

−2 ≡ 22 ≡ 6 mod 8

R92 =

46203 −112360 161308 −13968631762 −66157 80710 −76050

9756 −18293 24253 −3675010181 −20787 33462 −30421

267 ≡ 46203 ≡ 3 mod 8

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 90: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Left Entry

Theorem

For all n,m ∈ N,

B̃(n) ≡ Rnm(0, 0)(mod 22m−1)

n B̃(n)0 11 −12 03 14 15 −26 −97 −98 509 267...

...

R52 =

22 −323 1422 −188425 −301 1124 −1008

−28 −96 382 −24359 −205 373 −283

−2 ≡ 22 ≡ 6 mod 8

R92 =

46203 −112360 161308 −13968631762 −66157 80710 −76050

9756 −18293 24253 −3675010181 −20787 33462 −30421

267 ≡ 46203 ≡ 3 mod 8

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 91: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

Infinite MatricesFinite Matrices

The Top Left Entry

Theorem

For all n,m ∈ N,

B̃(n) ≡ Rnm(0, 0)(mod 22m−1)

n B̃(n)0 11 −12 03 14 15 −26 −97 −98 509 267...

...

R52 =

22 −323 1422 −188425 −301 1124 −1008

−28 −96 382 −24359 −205 373 −283

−2 ≡ 22 ≡ 6 mod 8

R92 =

46203 −112360 161308 −13968631762 −66157 80710 −76050

9756 −18293 24253 −3675010181 −20787 33462 −30421

267 ≡ 46203 ≡ 3 mod 8

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 92: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

ConclusionAcknowledgementsWorks Cited

Conclusion

In Conclusion:

Additional Results

Alternate Bases

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 93: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

ConclusionAcknowledgementsWorks Cited

Conclusion

In Conclusion:

Additional Results

Alternate Bases

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 94: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

ConclusionAcknowledgementsWorks Cited

Conclusion

In Conclusion:

Additional Results

Alternate Bases

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 95: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

ConclusionAcknowledgementsWorks Cited

Acknowledgements

We would like to thank LSU for hosting the SMILE Program.Thank you NSF for funding the VIGRE program. Thank you to Dr.De Angelis for spending his summer with us. Thank you to SimonPfeil for mentoring us.

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers

Page 96: The Complementary Bell Numbers - LSU Math

IntroductionConstruction of the R-Matrix

ResultsConclusion

ConclusionAcknowledgementsWorks Cited

Works Cited

T. Amdeberhan, V. De Angelis, and V.H. Moll.Complementary Bell Numbers: Arithmetical Properties andWilf’s Conjecture. 2011.

http://www-history.mcs.st-and.ac.uk/Miscellaneous/StirlingBell/stirling2.html

Jonathan Broom, Stefan Hannie, Sarah Seger The Complementary Bell Numbers