Top Banner
The Born Oppenheimer (BO) Approximation for Molecular Structure [Atkins, Chapt. 8] Consider the hydrogen (H_2) Molecule:
15

The Born Oppenheimer (BO) Approximation for Molecular ...jordan/chem2430/notes_19oct09.pdf · The Born Oppenheimer (BO) Approximation ... Assuming that the non‐Born Oppenheimer

Feb 24, 2019

Download

Documents

donhu
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Born Oppenheimer (BO) Approximation for Molecular ...jordan/chem2430/notes_19oct09.pdf · The Born Oppenheimer (BO) Approximation ... Assuming that the non‐Born Oppenheimer

The Born Oppenheimer (BO) Approximation for Molecular Structure [Atkins, Chapt. 8]

Consider the hydrogen (H_2) Molecule:

Page 2: The Born Oppenheimer (BO) Approximation for Molecular ...jordan/chem2430/notes_19oct09.pdf · The Born Oppenheimer (BO) Approximation ... Assuming that the non‐Born Oppenheimer

The full electro‐nuclear Schrodinger Eq. reads:

1 2 1 2( , , , ) ( , , , )A B A BH r r R R E r r R RΨ = Ψ

2 2 2 2 2 22 22 2 0 0 0 0 0 0

, 1,2 0 1 0 1 0 2 0 2 0 12 02 2 4 4 4 4 4 4jA B jp e A B A B AB

e e e e e eHm m r r r r r Rα

α πε πε πε πε πε πε= =

− −= ∇ + ∇ − − − − + +∑ ∑

Page 3: The Born Oppenheimer (BO) Approximation for Molecular ...jordan/chem2430/notes_19oct09.pdf · The Born Oppenheimer (BO) Approximation ... Assuming that the non‐Born Oppenheimer

According to the Born‐Oppenheimer Approx.:g pp pp

( )1 2 1 2( , , , ) ( , ; , ) ( , )n

A B j A B n A Br r R R r r R R R Rψ χΨ ≅

Here: ( )1 2 1 2( , ; , ) ( , ) ( , ; , )el

jel j A B A B j A BH r r R R E R R r r R Rψ ψ=

2 2 2 2 2 222 0 0 0 0 0 0e e e e e eH −

= ∇ − − − − + +∑1,2 0 1 0 1 0 2 0 2 0 12 02 4 4 4 4 4 4el j

j e A B A B AB

Hm r r r r r Rπε πε πε πε πε πε=

= ∇ − − − − + +∑

Then: ( )( , ) ( , )jnuc A B n A BH R R E R Rχ χ=

2

with:2

2 ( )

,( , )

2j

nuc el A BA B p

H E R Rm α

α=

−= ∇ +∑

Page 4: The Born Oppenheimer (BO) Approximation for Molecular ...jordan/chem2430/notes_19oct09.pdf · The Born Oppenheimer (BO) Approximation ... Assuming that the non‐Born Oppenheimer

For the hydrogen molecule (or any diatomic):

( ) ( )( ) (| |)j j( ) ( )( , ) (| |)j jel A B el A BE R R E R R= −

Plotting, schematically:g, y

Page 5: The Born Oppenheimer (BO) Approximation for Molecular ...jordan/chem2430/notes_19oct09.pdf · The Born Oppenheimer (BO) Approximation ... Assuming that the non‐Born Oppenheimer

Then, the total energy (eigenvalue) of the molecule (excluding translationof the molecular center of mass) is given by:

Page 6: The Born Oppenheimer (BO) Approximation for Molecular ...jordan/chem2430/notes_19oct09.pdf · The Born Oppenheimer (BO) Approximation ... Assuming that the non‐Born Oppenheimer

Atkins’ “derivation” of the BO approximation(Sect. 8.1):

2 2 2 2

1 22 21 2

( , , )2 2j j j

H V z Z Zm z m Z

∂ ∂= − − +

∂ ∂∑1,22 2je j jm z m Z=∂ ∂

e NH T T V= + +Full electro‐nuclear Hamiltonian(collinear reduction)

1 2 1 2( , , ) ( , , )H z Z Z E z Z ZΨ = Ψ Full electro‐nuclear Schrodinger Eq.

1 2 1 2 1 2( , , ) ( ; , ) ( , )z Z Z z Z Z Z Zψ χΨ =

H T T V W Eψχ χ ψ ψ χ ψχ ψχ= + + + =

Presumed Born‐Oppenheimer (BO)factorization of the wavefunction.

Substitution of BO wavefunctione NH T T V W Eψχ χ ψ ψ χ ψχ ψχ= + + + =

2 2

2W ψ χ ψ χ⎛ ⎞∂ ∂ ∂

= +⎜ ⎟⎜ ⎟∑

Substitution of BO wavefunctionAnsatz into (full) SE.

Non‐adiabatic coupling terms..21,2

22j j j j j

Wm Z Z Z

χ=

+⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠∑ Non adiabatic coupling terms..

Page 7: The Born Oppenheimer (BO) Approximation for Molecular ...jordan/chem2430/notes_19oct09.pdf · The Born Oppenheimer (BO) Approximation ... Assuming that the non‐Born Oppenheimer

Assuming that the non‐Born Oppenheimer terms (i.e., W) are tiny:

e NT T V Eχ ψ ψ χ ψχ ψχ+ + = [1]

( )N eT T V Eψ χ ψ ψ χ ψχ+ + = Rearrange Eq. [1]

( )1 2,e eT V E Z Zψ ψ ψ+ =

T E E

Solve the electronic SE for fixed (“frozen”)

b h l f h lN eT E Eψ χ ψχ ψχ+ =

T E Eχ χ χ+

Substitute the solution for the electronic SE into Eq. [1]

This implies the indicated nuclear coordinateN eT E Eχ χ χ+ = This implies the indicated nuclear coordinate 

Schrod. Eq.

Page 8: The Born Oppenheimer (BO) Approximation for Molecular ...jordan/chem2430/notes_19oct09.pdf · The Born Oppenheimer (BO) Approximation ... Assuming that the non‐Born Oppenheimer

A (semi)quantitative example of chemical bonding:  2H +2

•e‐

A B

Ar Br

A BR

For nuclei A,B clamped at internuclear separation R **, theelectronic Hamiltonian reads: 

2 2 2 22

0 0 0

ˆ2 4 4 4e A B

e e eHm R r rπε πε πε−

= ∇ + − −

** i.e., within the Born‐Oppenheimer approx.

Page 9: The Born Oppenheimer (BO) Approximation for Molecular ...jordan/chem2430/notes_19oct09.pdf · The Born Oppenheimer (BO) Approximation ... Assuming that the non‐Born Oppenheimer

A reasonable approximation to the (unnormalized)  ground electronic state energy eigenfunction turns out to be:state energy eigenfunction turns out to be:

( ) 1 ( ) 1 ( )gs A Br s r s rψ = +( ) ( ) ( )gs A Bψ

e‐

Ar Br

A BR

1sA 1sB

Page 10: The Born Oppenheimer (BO) Approximation for Molecular ...jordan/chem2430/notes_19oct09.pdf · The Born Oppenheimer (BO) Approximation ... Assuming that the non‐Born Oppenheimer

Thus: ( )E R+Δ

2

ˆ( ) ( ) 1 '( ) '( )( )2 1 ( )( )

gs gsgs

gs

dr r H r J R K RE RS Rdr r

ψ ψ

ψ+

≅ = − ++

∫∫

where R is in units of the Bohr radius a0 ; E is in units of Hartrees:1 Hartree = 2*13.6eV = 27.2eV. 

Furthermore, J’(R), K’(R), S(R) are simple (known!) functions,all of which vanish as R→∞.

Antibonding

Page 11: The Born Oppenheimer (BO) Approximation for Molecular ...jordan/chem2430/notes_19oct09.pdf · The Born Oppenheimer (BO) Approximation ... Assuming that the non‐Born Oppenheimer

1 1S d∫

S, J’,K’ represent the integrals:

1 1A BS dr s s= ∫1 1' 1 1J dr s s

⎛ ⎞= +⎜ ⎟∫ 1 1A A

B

J dr s sr R

= − +⎜ ⎟⎝ ⎠

1 1' 1 1A BK dr s s⎛ ⎞

= − +⎜ ⎟∫ 1 1A BA

K dr s sr R+⎜ ⎟

⎝ ⎠∫

These integrals evaluate to:

2( ) (1 / 3)RS R e R R−= + +

1where R is measured in unitsof the Bohr radius a0=0 53 Å2 1'( ) (1 )RJ R e

R−= +

( )'( ) (1 )RS RK R e RR

−= − +

of the Bohr radius, a0=0.53 Å,and J’, K’ are measured in termsof  the Hartree (or atomic unit = a.u.of energy), 1 Hartree = 27.2 eV.  ( ) ( )

R

Page 12: The Born Oppenheimer (BO) Approximation for Molecular ...jordan/chem2430/notes_19oct09.pdf · The Born Oppenheimer (BO) Approximation ... Assuming that the non‐Born Oppenheimer

Finally, a reasonable approximation to the  (unnormalized)  1st excitedelectronic state energy eigenfunction turns out to be:electronic  state energy eigenfunction turns out to be:

( ) 1 ( ) 1 ( )r s r s rψ = −( ) 1 ( ) 1 ( )es A Br s r s rψ =

Ar Br

e‐

A BR

+ ‐

1sA 1sB

Page 13: The Born Oppenheimer (BO) Approximation for Molecular ...jordan/chem2430/notes_19oct09.pdf · The Born Oppenheimer (BO) Approximation ... Assuming that the non‐Born Oppenheimer

( )E R−ΔOne then evaluates:

2

ˆ( ) ( ) 1 '( ) '( )( )2 1 ( )( )

es eses

dr r H r J R K RE RS Rd

ψ ψ −≅ = − +∫

One then evaluates:

2 2 1 ( )( )es S Rdr rψ −∫

Page 14: The Born Oppenheimer (BO) Approximation for Molecular ...jordan/chem2430/notes_19oct09.pdf · The Born Oppenheimer (BO) Approximation ... Assuming that the non‐Born Oppenheimer

Additional Comments on the H 2+ molecule ion:_

1) The Schrodinger Eq. for this problem can be solved analytically in ellipticalcoordinates:

The analytical expressions for ψ E are “too complicated” to present hereThe analytical expressions for ψ,E are  too complicated  to present here.(The same essential content is contained in the simple 1sA,1sB molecularorbital  analysis given above.)

However, the elliptical coordinate transformation can be used to evaluateS(R), J’(R),K’(R) analytically (see above). 

Page 15: The Born Oppenheimer (BO) Approximation for Molecular ...jordan/chem2430/notes_19oct09.pdf · The Born Oppenheimer (BO) Approximation ... Assuming that the non‐Born Oppenheimer

2) Here is a more quantitative diagram of the bonding (ground state)and anti‐bonding (excited state) nuclear potential energy curvesand anti bonding (excited state) nuclear potential energy curvesobtained from the simple 1sA,1sB  MO treatment above:

These curves are in semi‐quantitativeagreement with exact solutions of H2+molecule Schrodinger Eq.  ( which agreewell with spectroscopic data).