Top Banner
Extending the Boundaries Of Organic Synthesis With Flow Chemistry Heather Graehl, MS, MBA Director of Sales North America ThalesNano North America
70

Thalesnano Overview Aug 2013

Aug 28, 2014

Download

Technology

hgraehl

 
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Thalesnano Overview Aug 2013

Extending the Boundaries Of Organic Synthesis With Flow Chemistry

Heather Graehl, MS, MBA Director of Sales North America ThalesNano North America

Page 2: Thalesnano Overview Aug 2013

Who  are  we?  

•  ThalesNano  is  a  technology  company  that  gives  chemists  tools  to  perform  novel,  previously  inaccessible  chemistry  safer,  faster,  and  simpler.  

•  Market  leader:  800  customer  install  base  on  6  conDnents.  •  33  employees  with  own  chemistry  team.  •  10  years  old-­‐most  established  flow  reactor  company.  

•  R&D  Top  100  Award  Winner.

Page 3: Thalesnano Overview Aug 2013

Customers (>800 worldwide)

Page 4: Thalesnano Overview Aug 2013

What is flow chemistry?

Page 5: Thalesnano Overview Aug 2013

What is flow chemistry?

Performing a reaction continuously, typically on small scale, through either a coil or fixed bed reactor.

Page 6: Thalesnano Overview Aug 2013

Reactants

Products

By-products

Traditional Batch Method

Gas inlet

Reactants

Products

By-products

Batch vs. Flow

Better surface interaction Controlled residence time Elimination of the products

Flow Method

H-Cube Pro™

Page 7: Thalesnano Overview Aug 2013

Catalyst screening

Parameter scanning: effect of residence time to the conversion and selectivity

Catalyst Flow rate / mL/

min

Residence time / sec

Conc. / mol/dm3

Conv. / %

Sel. / %

IrO2 2 9 0,2 52 69

Re2O7 2 9 0,2 53 73

(10%Rh 1% Pd)/C

2 9 0,2 79 60

RuO2 (activated)

2 9 0,2 100 100

1 18 0,2 100 99

0,5 36 0,2 100 98

Ru black 2 9 0,2 100 83

1% Pt/C doped with Vanadium

2 9 0,2 100 96

1 18 0,2 100 93

0,5 36 0,2 100 84

Conditions: 70 bar, EtOH, 25°C

Selective aromatic nitro reduction

Increase and decrease of residence time on the catalyst cannot be performed in batch

Page 8: Thalesnano Overview Aug 2013

Heating Control

Lower reaction volume. Closer and uniform temperature control

Outcome:

Safer chemistry. Lower possibility of exotherm.

Batch

Flow

Larger solvent volume. Lower temperature control.

Outcome:

More difficult reaction control. Possibility of exotherm.

Page 9: Thalesnano Overview Aug 2013

Heating Control

Lithium Bromide Exchange

Batch

Flow

•  Batch experiment shows temperature increase of 40°C. •  Flow shows little increase in temperature.

Ref: Thomas Schwalbe and Gregor Wille, CPC Systems

Page 10: Thalesnano Overview Aug 2013

Industry Perspective

Page 11: Thalesnano Overview Aug 2013

Survey  Conducted  

Small  scale:  §  Making  processes  safer  §  Accessing  new  chemistry  

§  Speed  in  synthesis  and  analysis  

§  AutomaDon  

Large  scale:  §  Making  processes  safer  §  Reproducibility-­‐less  batch  to  batch  variaDon  

§  SelecDvity  

   Why  move  to  flow?  

Page 12: Thalesnano Overview Aug 2013

Survey Conducted

What chemistries?

Difficult to perform chemistries

•  Low temperature exothermic reactions •  Reactions with gases •  Very slow reactions or unaccessible chemistry •  Reactions with selectivity issues

Approx. 30% of reactions!

Page 13: Thalesnano Overview Aug 2013

What  are  our  drivers?  

•  ThalesNano  is  specialized  on  designing  reactors  around  specific  chemistries  where  reacDons  in  flow  would  be  highly  beneficial  

Exothermic Reactions

• Safety • New chemistry • Simplicity

Endothermic Reactions

• New chemistry • Speed • Green

Reactions with gases

• Safety • Simplicity • Speed • Green

Scale up

• Safety • Selectivity • Reproducibility • Speed

Page 14: Thalesnano Overview Aug 2013

Reaction Line

150°C, 100 bar (1450 psi) H2, CO, O2, CO/H2, C2H4, CO2. Reactions in minutes. Minimal work-up.

-70 - +80C O3, Li, -N3, -NO2

Safe and simple to use. Multistep synthesis. 2 step independant T control.

450°C, 100 bar (1450 psi) New chemistry capabilities. Chemistry in seconds. Milligram-kilo scale Solve Dead-end chemistry.

H-Cube Pro & Gas Module: Reagent gases

Phoenix Flow Reactor: Endothermic chemistry

IceCube: Exothermic Chemistry

Page 15: Thalesnano Overview Aug 2013

Catalysis reactor: Modular: H-Cube Pro

H-Cube Pro H2 Generation 150°C, 100 bar Hydrogenation Selective C-C coupling

Gas Module 12 Extra gases 100 bar

Phoenix Module 450°C Novel heterocycles

Automated injection & collection. Optimization

H-Cube Midi H2 Generation 150°C, 100 bar Scale Up

Page 16: Thalesnano Overview Aug 2013

H-Cube Pro

Page 17: Thalesnano Overview Aug 2013

H-Cube Pro Overview

•  HPLC pumps continuous stream of solvent •  Hydrogen generated from water electrolysis •  Sample heated and passed through catalyst •  Up to 150°C and 100 bar. (1 bar=14.5 psi)

Hydrogenation reactions: § Nitro Reduction § Nitrile reduction § Heterocycle Saturation § Double bond saturation § Protecting Group hydrogenolysis § Reductive Alkylation § Hydrogenolysis of dehydropyrimidones § Imine Reduction § Desulfurization

Page 18: Thalesnano Overview Aug 2013

No More Hydrogen Cylinders

•  Large cylinders contain 4360 litres of compressed H2

•  They are a severe safety hazard •  H-Cube doesn’t use gas cylinders •  Only water •  Clean •  No transportation costs •  Low energy •  Safe •  Just 2 mL H2 @ 1bar

Page 19: Thalesnano Overview Aug 2013

Hydrogen generator cell §  Solid Polymer Electrolyte

High-pressure regulating valves

Water separator, flow detector, bubble detector

Page 20: Thalesnano Overview Aug 2013

Catalyst System - CatCart®

• Benefits •  Safety •  No filtration necessary •  Enhanced phase mixing

• Over 100 heterogeneous and Immobilized homogeneous catalysts

10% Pd/C, PtO2, Rh, Ru on C, Al2O3 Raney Ni, Raney Co Pearlmans, Lindlars Catalyst Wilkinson's RhCl(TPP)3 Tetrakis(TPP)palladium Pd(II)EnCat BINAP 30

• Different sizes • 30x4mm • 70x4mm (longer residence time or scale up)

• Ability to pack your own CatCarts • CatCart Packer (with vacuum) • CatCart Closer (no vacuum)

Page 21: Thalesnano Overview Aug 2013

New Software with H-Cube Pro

Timer Hydrogen Variability

Valve control Data saving Chemistry Guide

Page 22: Thalesnano Overview Aug 2013

H-Cube Pro = higher throughput

2 cells for higher hydrogen production: 60 mL/min

Page 23: Thalesnano Overview Aug 2013

H-Cube Pro: Higher temperature capability

Page 24: Thalesnano Overview Aug 2013

H-Cube Pro: Selectivity with lower temp control

T (oC) p (bar) Flow rate (ml/min) Conversion (%) B Selectivity (%)

20 1, controlled 1 37 99 20 1, controlled 2 65 93 20 1, controlled 3 87 77

Solvent Conc. Temp. (°C) Pressure (bar)

Flow Rate (mL/min)

Product Distribution (%, GC-MS)

A B C EtOH 0.1 M 10 10 1 0 100 0

H-Cube

H-Cube Pro

Page 25: Thalesnano Overview Aug 2013

Simple Validation Reactions (out of 5,000)

10% Pd/C, RT, 1 bar Yield: 86 - 89% Alternate reductions Ketone: Pt/C Aromatic: Ru/O2

Raney Ni, 70°C, 50 bar, 2M NH3 in MeOH, Yield: >85%

Page 26: Thalesnano Overview Aug 2013

Simple Validation Reactions (out of 5,000)

10% Pd/C, 60˚C, 1 bar Yield: >90%

Batch reaction of {3-[(2-carbazol-9-yl-acetylamino)-methyl]-benzyl}-carbamic acid benzyl ester Reagent: H2, catalyst: 10% Pd/C, EtOH, 1 atm, Yield: 76 % Conn, M. Morgan; Deslongchamps, Ghislain; Mendoza, Javier de; Rebek, Julius; JACSAT; J. Am. Chem. Soc.; EN; 115; 9; 1993; 3548-3557.

Raney Ni, 80˚C, 80 bar Yield: 90%

Batch reference: Reagent: HCOONH4, catalyst: 10% Pd/C, solvent: MeOH, Reaction time: 30 min, 1 atm. Yield: 78 % Kaczmarek, Lukasz; Balicki, Roman; JPCCEM; J. Prakt. Chem/Chem-Ztg.; EN; 336; 8; 1994; 695-697

Page 27: Thalesnano Overview Aug 2013

H-Cube® Reaction Examples

Batch: 200°C, 200 bar, 48 hours

Batch: 150°C, 80 bar, 3 days

Page 28: Thalesnano Overview Aug 2013

Chemoselective hydrogenations

Selective reduction in presence of benzyl protected O or N 5% Pt/C, 75°C, 70 bar, 0,01M, ethanol,no byproduct Yield: 75%

Batch reference: Reagent: aq. NaBH4, Solvent: THF; 0°C, Yield: 76,1 % Nelson, Michael E.; Priestley, Nigel D.; JACSAT; J. Am.

Chem. Soc.; EN; 124; 12; 2002; 2894-2902

Route A: Raney Ni, abs. EtOH, 0,01 M, 70 bar, 25°C. Yield: 80%

Route B: Raney Ni, abs. EtOH, 0,01 M, 70 bar, 100°C. Yield: 85%

No batch reference

Page 29: Thalesnano Overview Aug 2013

Selective Hydrogenations

Conditions: 1% Pt/C, 70 bar, 100°C, residence time 17s Results: 100% conversion, 97% yield

Conditions: 1% Pt/C, 70 bar, 30°C, residence time 17s Results: 100% conversion, 100% yield

Conditions: Au/TiO2, 70 bar, 30°C, residence time 17s Results: 100% conversion, 100% yield

H-Cube® - Chemoselective hydrogenations

Ürge, L.et al. submitted for publication

Selective hydrogenation of the double-bond

Selective hydrogenation to afford oxime

Selective hydrogenation of the double-bond

Page 30: Thalesnano Overview Aug 2013

Selective Hydrogenations

Conditions: 10% Pd/C, 70 bar, 0°C, residence time 16s Results: 100% conversion, 100% yield

Conditions: 1% Pt/C, 70 bar, 30°C, residence time 11-17s Results: 100% conversion, 100% yield

Conditions: 1% Pt/C, 70 bar, 100°C, residence time 17s Results: 100% conversion, 100% yield

Ürge, L.et al. submitted for publication

H-Cube® - Chemoselective hydrogenations

Nitro group reduction in the presence of a halogen

Nitro group reduction in the presence of Cbz-group

Nitro group reduction without retro-Henry as a

side-reaction

Page 31: Thalesnano Overview Aug 2013

Selective dehydrochlorination

Flow rate

(mL/min)

Pressure (bar) Temperature (oC)

Bubdet Catalyst Amount A (%)

Amount B (%)

Amount C (%)

Amount D (%)

1 20 (∆p:5 bar) 110 50 10% Pd/C 26.7% 61.5% - 7% 1 20 (∆p:3 bar) 110 50 1% Pd/C 61,90% 29,40% - 2,50% 1 20 (∆p:13

bar) 110 50 5% Rh/C 78.9% 5.1% - 9.2%

1 20 (∆p:10 bar)

110 50 5% Pd/C 26.7% 60.9% - 6.7%

1 20 (∆p:5 bar) 110 50 5% Pd/C(S) 25% 63.4% - 6.6%

Objective: Match similar selectivity of 60% but without additives of CsF, S, K2CO3 and PPh3

Page 32: Thalesnano Overview Aug 2013

Partial saturation of heterocycles

Optimised reaction parameters: -  H-Cube Pro -  Temperature: 100oC -  Pressure: 100 bar -  Hydrogen amount: Maximum

Results:

•  Generate new non-planar molecules from existing stocks. •  New molecules have new Log P and other characteristics.

•  Cheap •  Clean •  Quick •  Only on H-Cube: High P + Selective control.

Flow  rate  (ml/min)   Conversion  %  of  A  %  of  B  %  of  C  0.3   100%   100   0   0  0.5   100%   92   8   0  1.0   100%   86   14   0  

Page 33: Thalesnano Overview Aug 2013

Deuteration

Substrate Product Deuterium content(%)

Isolated yield / %

99 99

97 98

93 97

96 98

96 99

Mándity, I.M.; Martinek, T.A.; Darvas, F.; Fülöp, F.; Tetrahedron Letters; 2009, 50, 4372–4374

Page 34: Thalesnano Overview Aug 2013

H-Cube Autosampler™

Gilson 271 Liquid Handler §  402 single Syringe pump (10 mL) §  Direct GX injector (Valco) §  Low-mount fraction collection (Bio-Chem) §  Septum-piercing needle §  Static drain wash station §  Tubes, connectors, fittings

Open vial collection Collection through probe (into closed vial)

Page 35: Thalesnano Overview Aug 2013

H-Cube Midi™ reactor for scale-up

Parameters: -  p= 1-100 bar -  T=10-150°C -  v=0.1-3 ml/min - c=0.01-0.1 M - H2 production = up to 60ml/min - CatCarts = 30x4mm or 70x4mm

Parameters: -  p= 1-100 bar -  T=25-150°C -  v=5-25 ml/min - c=0.05-0.25 M - H2 production = up to 125ml/min - CatCarts = 90x9.5mm

Milligram to Gram Scale

Half Kilogram Scale

Page 36: Thalesnano Overview Aug 2013

Conversion: 90-95% (TLC) Purity: 70% (LC-MS) without work-up

Batch parameters: K3PO4, TBA-Br, Pd(OAc)2, DMF, 2 hours, 130 °C Reference: (Zim, Danilo; Monteiro, Adriano L.; Dupont, Jairton; Tetrahedron Lett.; EN; 41; 43; 2000; 8199-8202)

Suzuki-Miyaura C-C cross coupling:

Sample reactions

Br

N O 2 B

O H O H

N O 2 CatCart TM 70*4 mm Pd EnCat TM BINAP 30, 2-propanol, TBAF, 80°C, 20 bar, 0.05M, 0.5 ml/min

+

Page 37: Thalesnano Overview Aug 2013

Selective Suzuki coupling (Cl, Cl)

The  condiDons  were:  

1  equivalent  of  2,6-­‐dichloroquinoxaline  with  1.2  equivalent  of  o-­‐Tolylboronic  acid    

ConcentraDon  set  to  0.02M  

Solvent:  Methanol  

Base:  NaOH  

AnalyDcs:  GC-­‐MS  

Flow  rate  (ml/min)  

Pressure   Temperature  Catalyst   Base  

Result  (bar)   (oC)   LC-­‐MS,  220nm  

0.8   20   100  Fibrecat  1007  

(70mm)  3  ekv  

Conversion:  82%  SelecDvity:  48%  

0.3   20   100  Fibrecat  1007  

(70mm)  3  ekv  

Conversion:  99%  SelecDvity:  48%  

0.8   20   100  Fibrecat  1035  

2.5  ekv  Conversion:  16%  

(30mm)   SelecDvity:  100%  

0.8   20   100  Fibrecat  1029  

(30mm)  2.5  ekv  

Conversion:  18%  SelecDvity:  100%  

0.8   20   100  Fibrecat  1048  

(30mm)  2.5  ekv  

Conversion:  40%  SelecDvity:  100%  

0.8   20   100  10%  Pd/C  

2.5  ekv  Conversion:  89%  

(30mm)   SelecDvity:  14%  

0.5   20   50  Fibrecat  1048  

2.5  ekv  Conversion:17%  

(30mm)   SelecDvity:  ~100%  

0.5   20   100  Fibrecat  1048  

2.5  ekv  Conversion:  35%  

(30mm)   SelecDvity:  ~100%  

0.2   20   100  Fibrecat  1007  

2.5  ekv  Conversion:  93%  

(70mm)   SelecDvity:  73%  

0.2   20   100  Fibrecat  1007  

2.5  ekv  Conversion:  93%  

(70mm)   SelecDvity:  80%  

0.2   20   100  Fibrecat  1029  

2.5  ekv  Conversion:  12%  

(30mm)   SelecDvity:  100%  

Page 38: Thalesnano Overview Aug 2013

Purity (LCMS): 63%

Batch parameters: Pd(OAc)2, PPh3, TEA, DMF, 3 days, 110°C, yield: 70% Reference: J. Chem. Soc. Dalton Trans., 1998, 1461-1468 J. Chem. Soc. Dalton Trans., 1998, 1461-1468

Heck C-C cross coupling:

Sample reactions

CatCartTM: Pd (PPh3)4, TBAF, 2-propanol, 0.05M, 100oC, 1 bar, 0.2 ml/min.

Page 39: Thalesnano Overview Aug 2013

Catalysis reactor: Modular: H-Cube Pro

H-Cube Pro H2 Generation 150°C, 100 bar Hydrogenation Selective C-C coupling

Gas Module 12 Extra gases 100 bar

Phoenix Module 450°C Novel heterocycles

Automated injection & collection. Optimization

H-Cube Midi H2 Generation 150°C, 100 bar Scale Up

Page 40: Thalesnano Overview Aug 2013

Gas  Module  

•   Versa7le:    Compressed  Air,  O2,  CO,  C2H4,  SynGas,  CH4,  C2H6,  He,  N2,  N2O,  NO,  Ar.  

•   Fast:    ReacDons  with  other  gases  complete  in  less  than  10  minutes  

•   Powerful:    Up  to  100  bar  capability.  

•   Robust:    All  high  quality  stainless  steel  parts.  

•   Simple:    3  budon  stand-­‐alone  control  or  via  simple  touch  screen  control  on  H-­‐Cube  Pro™.  

Page 41: Thalesnano Overview Aug 2013

Use of Gas Module Attached to the H-Cube Pro™

Gas Module HPLC pump H-Cube Pro™

Filter included Check valve included

Page 42: Thalesnano Overview Aug 2013

Problems with Oxidation

Page 43: Thalesnano Overview Aug 2013

Alcohol oxidation: Optimization

Pressure Temp. (oC) CatCart Conversion Selectivity

40 25 1 % Au/TiO2 0 – 40 65 1 % Au/TiO2 6.5 >85 40 25 1 % Au

/Fe2O3 0 – 40 65 1 % Au

/Fe2O3 12.7 0 40 25 5 % Ru

/Al2O3 2.8 ~100 40 65 5 % Ru

/Al2O3 3.6 ~100 100 65 5 % Ru

/Al2O3 2.7 ~100 100 100 5 % Ru

/Al2O3 8.5 ~100 100 140 5 % Ru

/Al2O3 15.5 ~100 100 65 1 % Au/TiO2 5.6 84 100 100 1 % Au/TiO2 47.2 93 100 140 1 % Au

/TiO2 ~100 93 100 65 1 % Au

/Fe2O3 4 0 100 100 1 % Au

/Fe2O3 31 7 100 • Area% of desired product in GC-MS / (100 – Area% of reactant in GC-MS)

General conditions: H-Cube Pro with Gas Module, 50 mL/min oxygen gas, 1 mL/min liquid flow rate (0.05M in acetone, 20 mL sample volume), CatCart: 70mm., 1 % Au/TiO2 (cartridge: 70mm, THS 01639),

Batch ref.: Oxygen; perruthenate modified mesoporous silicate MCM-41 in toluene T=80°C; 24 h; Bleloch, Andrew; et al. Chemical Communications, 1999 , 8,1907 - 1908

Very fast addition of alcohol to gold surface. Alkoxide formation.

Page 44: Thalesnano Overview Aug 2013

Aromatization of heterocycles

Reaction parameters were tested: -  H-Cube Pro with and without GasModule -  Oxidizing agent: Hydrogen-peroxide and Oxygen -  Catalyst: MnO2, Amerlyst 36, Au/TiO2 -  Solvent: Acetone/H2O2, Acetone -  Temperature 60-150oC, pressure 20-50 bar, flow rate 1 ml/min, concentration: 0.05 mmol/ml

Oxidizing  agent   Solvent   Catalyst  

Temperature  (oC)  

Pressure  (bar)   Conversion   Comment  

MnO2   Acetone   MnO2   60   20   82%   Blockage  ager  10  minutes  

H2O2  Acetone  -­‐  H2O2  

(4-­‐1)   Au/TiO2   70   20  68%  ager  1  run  78%  ager  2  run  

H2O2  Acetone  -­‐  H2O2  

(4-­‐1)   Au/TiO2   100   30  68%  ager  1  run  98%  ager  2  run  

The  catalyst  was  reacDvated  with  H2O2  between  the  runs.  

O2  (10  ml/min)   Acetone   Au/TiO2   75   11   8%  

O2  (10  ml/min)   Acetone   Au/TiO2   150   11   95%  

Ager  10  minutes  the  conversion  was  dropped  to  

50%  

O2  (50  ml/min)   Acetone   Au/TiO2   150   20   >  98%  

Page 45: Thalesnano Overview Aug 2013

Ø  Conditions: 100oC, 30 bar, CO gas, 0.5 ml/min liquid flow rate, 0.01 M in THF Ø  Catalyst: Polymer supported Pd(PPh3)4 Ø  Reference test was managed on X-Cube Ø  Reaction was repeated Ø  Different gas flow rates were tested

Results

Aminocarbonylation

ReacDon  HC-­‐Pro  with  gas  module  (CO  flow  rate)  

XC  reference  

10  ml/min  

30  ml/min  

60  ml/min  

30  ml/min  

30  ml/min  

60  ml/min  

60  ml/min  

60  ml/min  

Conversion  %   60   65   79   66   62   79   79   82   0  

Page 46: Thalesnano Overview Aug 2013

Accessing New Molecules or Chemical Space

Page 47: Thalesnano Overview Aug 2013

Heterocyclic rings of the future, J. Med. Chem., 2009, 52 (9), pp 2952–2963.

•  3000 potential bicyclic systems unmade • Many potential drug like scaffolds Why? • Chemists lack the tools to expand into new chemistry space to access these new compounds. •  Time • Knowledge

The quest for novel heterocycles

Page 48: Thalesnano Overview Aug 2013

•  Standard benzannulation reaction •  Good source of:

•  Quinolines •  Pyridopyrimidones •  Naphthyridines

→ Important structural drug motifs

Disadvantages: • Harsh conditions • High b.p. solvents • Selectivity • Solubility

W. A. Jacobs, J. Am. Chem. Soc.; 1939; 61(10); 2890-2895

High T Chemistries – in Batch

Page 49: Thalesnano Overview Aug 2013

• Replacement of diphenyl ether (b.p: 259°C) with THF (b.p.: 66 °C)

Cyclization conditions: a: 360 °C, 130 bar, 1.1 min b: 300 °C, 100 bar, 1.5 min c: 350 °C, 100 bar, 0.75 min

Pyridopyrimidinone Quinoline

No THF polymerization!

Batch conditions: 2 hours

Gould-Jacobs Reaction – in Flow

Page 50: Thalesnano Overview Aug 2013

The nature of the substituents is critical because they increase or decrease the nucleophilicity of the ring: Electron donating groups increase yields, Electron withdrawing groups decrease yields.

50

Process exploration

• Meldrum’s acidic route to pyridopyrimidones and to hydroxyquinolines

Cyclization conditions: a: 300 °C, 160 bar, 0.6 min b: 300 °C, 100 bar, 0.6 min c: 360 °C, 100 bar, 1 min d: 350 °C, 130 bar, 4 min e: 300 °C, 100 bar, 1.5 min

Lengyel L., Nagy T. Zs., Sipos G., Jones R., Dormán Gy., Ürge L., Darvas F., Tetrahedron Lett., 2012; 53; 738-743

Page 51: Thalesnano Overview Aug 2013

New Scaffold Generation

5 novel bicyclic scaffolds generated-fully characterized. Many more to follow

Page 52: Thalesnano Overview Aug 2013

Phoenix Flow Reactor: High temperature synthesis

Powerful: Up to 450°C

Versatile: Heterogeneous and homogeneous capabilities.

Fast: Reactions in seconds or minutes.

Innovative: Validated procedure to generate novel bicyclic compounds

Simple: 3 button stand-alone control or via simple touch screen control on H-Cube Pro™.

Page 53: Thalesnano Overview Aug 2013

Ring closure on aryl NH : key step •  Mitsunobu reaction or traditional heating with T3P did not

furnish the bicyclic heterocycle. •  Reaction proceeded smoothly in Phoenix reactor at 300oC with

65% yield despite requirement for the cis amide conformer in transition state.

Mitsunobu Reaction

Page 54: Thalesnano Overview Aug 2013

N-Alkylation Reaction

RaNi 70mm 200C, 80bar 0.5ml/min

Page 55: Thalesnano Overview Aug 2013

55

C-H Activation

•  Objectives: to find a cheap and green alternative of performing 1 step

alkylation reaction via C-H activation.

•  Relevance: used for generation of novel compounds, via C-H activation

untouched positions on rings can be activated.

•  Main problems: •  strong bond between carbon and hydrogen atoms

•  Multistep reaction

•  Require expensive metal catalysts (Pd, Pt)

•  Selectivity is an issue

•  Results: form another C-C or C-X bond at a position not favored by

conventional alkylation methods

Page 56: Thalesnano Overview Aug 2013

56

Reaction pathway using Raney-Ni catalyst

Advantages of Raney-Nickel: •  Cheaper than Pd, Pt containing catalysts •  Differently preactivated Raney-Ni catalyst can give more

flexibility – selectivity issues

But: Pyrophoric!

Page 57: Thalesnano Overview Aug 2013

57

Optimizing the reaction conditions:

•  0.1M Indole solution in ethanol, RaNi 4200 Catalyst, GC-MS results

Reach higher selectivity: Protect the N-atom with TMS-Cl Result: 90% conversion with 80%

selectivity (300 °C, 100 bar, 0.5 mL/min,

isolated yield: 76.5%)

Page 58: Thalesnano Overview Aug 2013

58

Alkylation of 2-methyl-indoline

The total amount of dialkylated products was 18%.

Alkylation coupled with dehydrogenation

Page 59: Thalesnano Overview Aug 2013

59

Ring closuring of 2-methyl-indole with 1,3-butanediol

Ring closure is coupled with hydrogenation of double bond

Page 60: Thalesnano Overview Aug 2013

Diels Alder

•  Diels-Alder reactions usually require long reaction times.

• This reaction time could be reduced to 5 minutes at 250°C using toluene.

• .Product isolated in near quantitative yield.

• Reaction also possible using lower boiling solvents (MeCN, THF, DME) with same result using higher pressures (200 bar).

Page 61: Thalesnano Overview Aug 2013

Fischer-Indole Synthesis: Scale Out

cf. MW reaction: Bagley, M. C.; et al. J. Org. Chem. 2005, 70 , 7003

In AcOH/2-propanol (3:1) (0.5M) 150 °C, 60 bars,

1.0 mL min-1 (4 min res. time) 88% isolated yield

Continuous Flow Results (4 mL or 16 mL Coil) Scale-up

200 °C, 75 bars, 5.0 mL min-1 (~3 min res. time)

96% isolated yield

25 g indole/hour

Page 62: Thalesnano Overview Aug 2013

High temperature reactions

Conditions: p = 70 bar T = 270°C v = 0.4 mL/min c = 0.04 M (NMP) Result: 82% yield

Kappe, O. C. et al. Eur. J. Org. Chem., 2009, 9, 1321-1325.

X-Cube FlashTM – Kolbe Synthesis Conditions: p = 60 bar T = 180°C v = 4 mL/min Residence time: 440 s c = 0.49 M (H2O) Best result: 51% conversion

Kappe, O. et al. Chem. Eng. Technol. 2009, 32(11), 1-16.

X-Cube FlashTM – SNAr reaction

Page 63: Thalesnano Overview Aug 2013

High  Energy  

Reac7ons  

Page 64: Thalesnano Overview Aug 2013

Ice Cube Modules

Ozone Module generate O3 from O2 100 mL/min, 15 % O3

Cooled Reactor Module – teflon tube on peltier coolers; -70°C.

Pump Module – Peristaltic or Gear Pump Optional: 1 or 2

Page 65: Thalesnano Overview Aug 2013

Versa7le:  2  op7ons  

A

B C

A B

C

D

Pre-cooler/Mixer Reactor

-70-+80ºC

-70-+80ºC -30-+80ºC

Potential Apps: Azide, Lithiation, ozonolysis, nitration, swern oxidation

Page 66: Thalesnano Overview Aug 2013

Safe reaction of azides using Ice-Cube

•  2 Step Azide Reaction in flow •  No isolation of DAGL •  Significantly reduced hazards

TKX50

Page 67: Thalesnano Overview Aug 2013

Ozone concentration critical!

Reaction parameters: Flow rate = 0,7 ml/min Quench flow rate = 1,4 ml/min O3 flow rate = 17,5 ml/min (~2 eq.) T = -5 oC cEugenol = 0,05 M cNaBH4 = 0,05 M Solvent = EtOH Results: Conversion = 100 % misolated = 326,2 mg mmax. yield = 504 mg Isolated yield = 65 % Purity of isolated product = 98 % *

Page 68: Thalesnano Overview Aug 2013

Nitration in flow

Pump  A   Pump  B   Temperature  (oC)  

Loop  size  (ml)  

Conversion  (%)  

SelecDvity  (%)  

SoluDon  Flow  rate  (ml/

min)   SoluDon  Flow  rate  (ml/

min)  

ccHNO3   0.4  1g  PG/15ml  ccH2SO4   0.4   5  -­‐  10   7   100  

0  (different  products)  

1.48g  NH4NO3/15ml  ccH2SO4   0.7  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13   100   100  

1.48g  NH4NO3/15ml  ccH2SO4   0.5  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13   50   80  (20%  dinitro)  

70%  ccH2SO4  30%  ccHNO3   0.6  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13  (3  bar)   100   100  

70%  ccH2SO4  30%  ccHNO3   0.6  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13  (1  bar)   80  

70  (30%  dinitro  and  nitro)  

Batch reference: 30ml ccH2SO4, 1g PG, 1.48g NH4NO3, 5-10oC 10 min, Conversion: 91%

Page 69: Thalesnano Overview Aug 2013

Flow  University  

•  PracDcal  Lab  Manual  

•  PresentaDon  tutorial  •  Background  notes  •  EducaDonal  Videos  

q  In  English  q  In  Mandarin  Chinese  

q SubDtled  

Page 70: Thalesnano Overview Aug 2013

THANK YOU FOR YOUR ATTENTION!!

ANY QUESTIONS