Top Banner
Accelerating Your Synthesis with Flow Chemistry Heather Graehl, MS, MBA Director of Sales North America ThalesNano North America
85

Thales overview jan 2014

May 11, 2015

Download

Documents

hgraehl
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Thales overview jan 2014

Accelerating Your Synthesis with Flow Chemistry Heather Graehl, MS, MBA Director of Sales North America ThalesNano North America

Page 2: Thales overview jan 2014

Who  are  we?  

•  ThalesNano  is  a  technology  company  that  gives  chemists  tools  to  perform  novel,  previously  inaccessible  chemistry  safer,  faster,  and  simpler.  

•  Based  Budapest,  Hungary  •  33  employees  with  own  chemistry  team.  •  11  years  old-­‐most  established  flow  reactor  company.  

•  R&D  Top  100  Award  Winner.

Page 3: Thales overview jan 2014

• Flow  Chemistry  Market  Leader  • Over  800  customers  worldwide  

Customers  

Page 4: Thales overview jan 2014

What is flow chemistry?

Page 5: Thales overview jan 2014

Performing  a  reacQon  conQnuously,  typically  on  small  scale,  through  either  a  coil  or  fixed  bed  reactor.  

OR  

Pump  Reactor   CollecQon  

What  is  flow  chemistry?  

Page 6: Thales overview jan 2014

•  In  a  microfluidic  device  with  a  constant  flow  rate,  the  concentraQon  of  the  reactant  decays  exponenQally  with  distance  along  the  reactor.    

•  Thus  Qme  in  a  flask  reactor  equates  with  distance  in  a  flow  reactor  

X  

A  

dX/dt  >  0    

dA/dt  <  0    

KineQcs  in  Flow  Reactors  

Page 7: Thales overview jan 2014

Flow  reactors  can  achieve  homogeneous  mixing  and  uniform  hea6ng  in  microseconds  (suitable  for  fast  reac6ons)  

Improved  Mixing  Compared  to  Batch  

Page 8: Thales overview jan 2014

Improved  mixing  can  lead  to  improved  reac6on  6mes,  especially  with  fixed  bed  reactors  

Improved  Mixing  =  Faster  Rxn  Time  

Page 9: Thales overview jan 2014

•  Microreactors  have  higher  surface-­‐to-­‐volume  raQo  than  macroreactors,  heat  transfer  occurs  rapidly  in  a  flow  microreactor,  enabling  precise  temperature  control.  

Yoshida,  Green  and  Sustainable  Chemical  Synthesis  Using  Flow  Microreactors,  ChemSusChem,  2010  

Enhanced  Temperature  Control  

Page 10: Thales overview jan 2014

Lower reaction volume. Closer and uniform temperature control

Outcome:

Safer chemistry. Lower possibility of exotherm.

Batch

Flow

Larger solvent volume. Lower temperature control.

Outcome:

More difficult reaction control. Possibility of exotherm.

Enhanced  Temperature  Control  

Page 11: Thales overview jan 2014

Batch  Heated  Rxns  •  Safety  concerns,  especially  in  scale

 up  

•  Microwave  technology  is  fastest  way  of  heaQng  solvent  in  batch  

Flow  Chemistry  Heated  Rxns  •  Flow  mimics  microwave’s  rapid

 heat  transfer  

•  Solvent  is  not  limited  to  dipole  

•  Higher  pressures  and  temperatures  possible  

•  High  pressures  allow  use  of  low  boiling  point  solvents  for  easy  workup  

•  Safety  improvement  as  small  amount  is  reacted,  conQnuously  

Enhanced  Temperature  Control  

Page 12: Thales overview jan 2014

Exothermic Chemistry – LiBr Exchange

•  Batch experiment shows temperature increase of 40°C. •  Flow shows little increase in temperature.

Ref: Thomas Schwalbe and Gregor Wille, CPC Systems

Enhanced  Temperature  Control  

Page 13: Thales overview jan 2014

Reactants

Products

By-products

Traditional Batch Method

Gas inlet

Reactants

Products

By-products

Better surface interaction Controlled residence time Elimination of the products

Flow Method

H-Cube Pro™

SelecQvity  –  Residence  Time  Control  

Page 14: Thales overview jan 2014

Catalyst screening

Parameter scanning: effect of residence time to the conversion and selectivity

Catalyst Flow rate / mL/

min

Residence time / sec

Conc. / mol/dm3

Conv. / %

Sel. / %

IrO2 2 9 0,2 52 69

Re2O7 2 9 0,2 53 73

(10%Rh 1% Pd)/C

2 9 0,2 79 60

RuO2 (activated)

2 9 0,2 100 100

1 18 0,2 100 99

0,5 36 0,2 100 98

Ru black 2 9 0,2 100 83

1% Pt/C doped with Vanadium

2 9 0,2 100 96

1 18 0,2 100 93

0,5 36 0,2 100 84

Conditions: 70 bar, EtOH, 25°C

Increase and decrease of residence time on the catalyst cannot be performed in batch

SelecQve  AromaQc  Nitro  ReducQon  

Page 15: Thales overview jan 2014

Small  scale:  §  Making  processes  safer  §  Accessing  new  chemistry  

§  Speed  in  synthesis  and  analysis  

§  AutomaQon  

Large  scale:  §  Making  processes  safer  §  Reproducibility-­‐less  batch  to  batch  variaQon  

§  SelecQvity  §  Green  

   Why  move  to  flow?  

Survey  Conducted  

Page 16: Thales overview jan 2014

150°C, 100 bar (1450 psi) H2, CO, O2, CO/H2, C2H4, CO2. Reactions in minutes. Minimal work-up.

-70 - +80C O3, Li, -N3, -NO2

Safe and simple to use. Multistep synthesis. 2 step independant T control. Coming: fluorinations, low T selectivity

450°C, 100 bar (1450 psi) New chemistry capabilities. Chemistry in seconds. Milligram-kilo scale Solve Dead-end chemistry. Heterocycle synthesis

H-Cube Pro & Gas Module: Reagent gases

Phoenix Flow Reactor: Endothermic chemistry

IceCube: Exothermic Chemistry

Reactor  Pladorms  

Page 17: Thales overview jan 2014

H-Cube Catalysis Platform: Making hydrogenations safe, fast, and selective

Page 18: Thales overview jan 2014

•  HPLC pumps continuous stream of solvent •  Hydrogen generated from water electrolysis •  Sample heated and passed through catalyst •  Up to 150°C and 100 bar. (1 bar=14.5 psi)

Hydrogenation reactions: § Nitro Reduction § Nitrile reduction § Heterocycle Saturation § Double bond saturation § Protecting Group hydrogenolysis § Reductive Alkylation § Hydrogenolysis of dehydropyrimidones § Imine Reduction § Desulfurization

H-­‐Cube  –  How  it  Works  

Page 19: Thales overview jan 2014

•  Large cylinders contain 4360 litres of compressed H2

•  They are a severe safety hazard •  H-Cube doesn’t use gas cylinders •  Only water •  Clean •  No transportation costs •  Low energy •  Safe •  Just 2 mL H2 @ 1bar

No  more  hydrogen  cylinders!  

Page 20: Thales overview jan 2014

Hydrogen generator cell §  Solid Polymer Electrolyte

High-pressure regulating valves

Water separator, flow detector, bubble detector

Water  Electrolysis  

Page 21: Thales overview jan 2014

• Benefits •  Safety •  No filtration necessary •  Enhanced phase mixing

• Over 100 heterogeneous and Immobilized homogeneous catalysts

10% Pd/C, PtO2, Rh, Ru on C, Al2O3 Raney Ni, Raney Co Pearlmans, Lindlars Catalyst Wilkinson's RhCl(TPP)3 Tetrakis(TPP)palladium Pd(II)EnCat BINAP 30

• Different sizes • 30x4mm • 70x4mm (longer residence time or scale up)

• Ability to pack your own CatCarts • CatCart Packer (with vacuum) • CatCart Closer (no vacuum)

Catalyst  System  -­‐  CatCarts  

Page 22: Thales overview jan 2014

10% Pd/C, RT, 1 bar Yield: 86 - 89% Alternate reductions Ketone: Pt/C Aromatic: Ru/O2

Raney Ni, 70°C, 50 bar, 2M NH3 in MeOH, Yield: >85%

Simple  ValidaQon  ReacQons  (out  of  5,000)  

Page 23: Thales overview jan 2014

10% Pd/C, 60˚C, 1 bar Yield: >90%

Batch reaction of {3-[(2-carbazol-9-yl-acetylamino)-methyl]-benzyl}-carbamic acid benzyl ester Reagent: H2, catalyst: 10% Pd/C, EtOH, 1 atm, Yield: 76 % Conn, M. Morgan; Deslongchamps, Ghislain; Mendoza, Javier de; Rebek, Julius; JACSAT; J. Am. Chem. Soc.; EN; 115; 9; 1993; 3548-3557.

Raney Ni, 80˚C, 80 bar Yield: 90%

Batch reference: Reagent: HCOONH4, catalyst: 10% Pd/C, solvent: MeOH, Reaction time: 30 min, 1 atm. Yield: 78 % Kaczmarek, Lukasz; Balicki, Roman; JPCCEM; J. Prakt. Chem/Chem-Ztg.; EN; 336; 8; 1994; 695-697

Simple  ValidaQon  ReacQons  (out  of  5,000)  

Page 24: Thales overview jan 2014

Batch: 200°C, 200 bar, 48 hours

Batch: 150°C, 80 bar, 3 days

Difficult  Hydrogenatons  

Page 25: Thales overview jan 2014

Selective reduction in presence of benzyl protected O or N 5% Pt/C, 75°C, 70 bar, 0,01M, ethanol,no byproduct Yield: 75%

Batch reference: Reagent: aq. NaBH4, Solvent: THF; 0°C, Yield: 76,1 % Nelson, Michael E.; Priestley, Nigel D.; JACSAT; J. Am.

Chem. Soc.; EN; 124; 12; 2002; 2894-2902

Route A: Raney Ni, abs. EtOH, 0,01 M, 70 bar, 25°C. Yield: 80%

Route B: Raney Ni, abs. EtOH, 0,01 M, 70 bar, 100°C. Yield: 85%

No batch reference

SelecQve  HydrogenaQons  

Page 26: Thales overview jan 2014

Conditions: 1% Pt/C, 70 bar, 100°C, residence time 17s Results: 100% conversion, 97% yield

Conditions: 1% Pt/C, 70 bar, 30°C, residence time 17s Results: 100% conversion, 100% yield

Conditions: Au/TiO2, 70 bar, 30°C, residence time 17s Results: 100% conversion, 100% yield

H-Cube® - Chemoselective hydrogenations

Ürge, L.et al. submitted for publication

Selective hydrogenation of the double-bond

Selective hydrogenation to afford oxime

Selective hydrogenation of the double-bond

SelecQve  HydrogenaQons  

Page 27: Thales overview jan 2014

Conditions: 10% Pd/C, 70 bar, 0°C, residence time 16s Results: 100% conversion, 100% yield

Conditions: 1% Pt/C, 70 bar, 30°C, residence time 11-17s Results: 100% conversion, 100% yield

Conditions: 1% Pt/C, 70 bar, 100°C, residence time 17s Results: 100% conversion, 100% yield

Ürge, L.et al. submitted for publication

H-Cube® - Chemoselective hydrogenations

Nitro group reduction in the presence of a halogen

Nitro group reduction in the presence of Cbz-group

Nitro group reduction without retro-Henry as a

side-reaction

SelecQve  HydrogenaQons  

Page 28: Thales overview jan 2014

Flow rate

(mL/min)

Pressure (bar) Temperature (oC)

Bubdet Catalyst Amount A (%)

Amount B (%)

Amount C (%)

Amount D (%)

1 20 (∆p:5 bar) 110 50 10% Pd/C 26.7% 61.5% - 7% 1 20 (∆p:3 bar) 110 50 1% Pd/C 61,90% 29,40% - 2,50% 1 20 (∆p:13

bar) 110 50 5% Rh/C 78.9% 5.1% - 9.2%

1 20 (∆p:10 bar)

110 50 5% Pd/C 26.7% 60.9% - 6.7%

1 20 (∆p:5 bar) 110 50 5% Pd/C(S) 25% 63.4% - 6.6%

Objective: Match similar selectivity of 60% but without additives of CsF, S, K2CO3 and PPh3

SelecQve  DehydrochlorinaQon  

Page 29: Thales overview jan 2014

Optimised reaction parameters: -  H-Cube Pro -  Temperature: 100oC -  Pressure: 100 bar -  Hydrogen amount: Maximum

Results:

•  Generate new non-planar molecules from existing stocks. •  New molecules have new Log P and other characteristics.

•  Cheap •  Clean •  Quick •  Only on H-Cube: High P + Selective control.

Flow  rate  (ml/min)   Conversion  %  of  A  %  of  B  %  of  C  0.3   100%   100   0   0  0.5   100%   92   8   0  1.0   100%   86   14   0  

ParQal  SaturaQon  of  Heterocycles  

Page 30: Thales overview jan 2014

Chiral Phosphine-phosphoramidite ligands packed in CatCart

Asymmetric  HydrogenaQon  

Page 31: Thales overview jan 2014

Substrate Product Deuterium content(%)

Isolated yield / %

99 99

97 98

93 97

96 98

96 99

Mándity, I.M.; Martinek, T.A.; Darvas, F.; Fülöp, F.; Tetrahedron Letters; 2009, 50, 4372–4374

DeuteraQon  

Page 32: Thales overview jan 2014

• Original 2005 R&D100 award winner • 20mg-10g/day • Ambient to 100°C • Limited H2 control: Full H2 mode (30ml/min), Controlled H2 mode, No H2

• Improved H-Cube • 20mg-50g/day •  -10°C to 150°C • H2 production variability from 0ml/min – 60ml/min (selectivity!) • Reaction timer with auto switching valves • Software for logs, graphs, reaction guide, module control

• High throughput • Larger MidiCart Catalysts • 20mg-500g/day • Ambient to 150°C • H2 production variability from 0ml/min – 125ml/min • Reaction timer with auto switching valves

Which H-Cube is best for me?

H-­‐Cube  Family  

Page 33: Thales overview jan 2014

• Touch Screen Interface • Now can control hydrogen variability (0-60ml/min) for selectivity • Suggested reaction parameters for each functional group • Reaction Timer with automatic valve switching • Logs and graphs for viewing achieved reaction parameters

New  Sooware  with  H-­‐Cube  Pro  

Page 34: Thales overview jan 2014

2 cells for higher hydrogen production: 60 mL/min

Compare to H-Cube SS where maximum concentration is 0.2M

100% conversion

H-­‐Cube  Pro  =  Higher  Throughput  

Page 35: Thales overview jan 2014

H-­‐Cube  Pro  =  Higher  Temp  Capability  

Page 36: Thales overview jan 2014

T (oC) p (bar) Flow rate (ml/min) Conversion (%) B Selectivity (%)

20 1, controlled 1 37 99 20 1, controlled 2 65 93 20 1, controlled 3 87 77

Solvent Conc. Temp. (°C) Pressure (bar)

Flow Rate (mL/min)

Product Distribution (%, GC-MS)

A B C EtOH 0.1 M 10 10 1 0 100 0

H-Cube

H-Cube Pro

H-­‐Cube  Pro  –  Lower  Temp  SelecQvity  

Page 37: Thales overview jan 2014

Parameters: -  p= 1-100 bar -  T=10-150°C -  v=0.1-3 ml/min - c=0.01-0.1 M - H2 production = up to 60ml/min - CatCarts = 30x4mm or 70x4mm

Parameters: -  p= 1-100 bar -  T=25-150°C -  v=5-25 ml/min - c=0.05-0.25 M - H2 production = up to 125ml/min - CatCarts = 90x9.5mm

Milligram to Gram Scale

Half Kilogram Scale

H-­‐Cube  Midi  –  Reactor  for  Scale  Up  

Page 38: Thales overview jan 2014

Gilson 271 Liquid Handler §  402 single Syringe pump (10 mL) §  Direct GX injector (Valco) §  Low-mount fraction collection (Bio-Chem) §  Septum-piercing needle §  Static drain wash station §  Tubes, connectors, fittings

Open vial collection Collection through probe (into closed vial)

H-­‐Cube  Autosampler  

Page 39: Thales overview jan 2014

Expanding H-Cube Beyond Hydrogenation

Page 40: Thales overview jan 2014

Purity (LCMS): 63%

Batch parameters: Pd(OAc)2, PPh3, TEA, DMF, 3 days, 110°C, yield: 70% Reference: J. Chem. Soc. Dalton Trans., 1998, 1461-1468 J. Chem. Soc. Dalton Trans., 1998, 1461-1468

Heck C-C cross coupling:

CatCartTM: Pd (PPh3)4, TBAF, 2-propanol, 0.05M, 100oC, 1 bar, 0.2 ml/min.

Coupling  ReacQons  

Page 41: Thales overview jan 2014

Conversion: 90-95% (TLC) Purity: 70% (LC-MS) without work-up

Batch parameters: K3PO4, TBA-Br, Pd(OAc)2, DMF, 2 hours, 130 °C Reference: (Zim, Danilo; Monteiro, Adriano L.; Dupont, Jairton; Tetrahedron Lett.; EN; 41; 43; 2000; 8199-8202)

Suzuki-Miyaura C-C cross coupling:

Br

N O 2 B

O H O H

N O 2 CatCart TM 70*4 mm Pd EnCat TM BINAP 30, 2-propanol, TBAF, 80°C, 20 bar, 0.05M, 0.5 ml/min

+

Coupling  ReacQons  

Page 42: Thales overview jan 2014

The  condiQons  were:  

1  equivalent  of  2,6-­‐dichloroquinoxaline  with  1.2  equivalent  of  o-­‐Tolylboronic  acid    

ConcentraQon  set  to  0.02M  

Solvent:  Methanol  

Base:  NaOH  

AnalyQcs:  GC-­‐MS  

SelecQve  Coupling  ReacQon  

Page 43: Thales overview jan 2014

Flow  rate  (ml/min)  

Pressure   Temperature  Catalyst   Base  

Result  (bar)   (oC)   LC-­‐MS,  220nm  

0.8   20   100  Fibrecat  1007  

(70mm)   3  ekv  Conversion:  82%  SelecQvity:  48%  

0.3   20   100  Fibrecat  1007  

(70mm)   3  ekv  Conversion:  99%  SelecQvity:  48%  

0.8   20   100  Fibrecat  1035  

2.5  ekv  Conversion:  16%  

(30mm)   SelecQvity:  100%  

0.8   20   100  Fibrecat  1029  

(30mm)   2.5  ekv  Conversion:  18%  SelecQvity:  100%  

0.8   20   100  Fibrecat  1048  

(30mm)   2.5  ekv  Conversion:  40%  SelecQvity:  100%  

0.8   20   100  10%  Pd/C  

2.5  ekv  Conversion:  89%  

(30mm)   SelecQvity:  14%  

0.5   20   50  Fibrecat  1048  

2.5  ekv  Conversion:17%  

(30mm)   SelecQvity:  ~100%  

0.5   20   100  Fibrecat  1048  

2.5  ekv  Conversion:  35%  

(30mm)   SelecQvity:  ~100%  

0.2   20   100  Fibrecat  1007  

2.5  ekv  Conversion:  93%  

(70mm)   SelecQvity:  73%  

0.2   20   100  Fibrecat  1007  

2.5  ekv  Conversion:  93%  

(70mm)   SelecQvity:  80%  

0.2   20   100  Fibrecat  1029  

2.5  ekv  Conversion:  12%  

(30mm)   SelecQvity:  100%  

SelecQve  Coupling  ReacQon  1  equivalent  of  2,6

-­‐dichloroquinoxaline  with  1.2  equivalent  of  o-­‐Tolylboronic  acid    

ConcentraQon  set  to  0.02M  

Solvent:  Methanol,  Base:  NaOH  

AnalyQcs:  GC-­‐MS  

Page 44: Thales overview jan 2014

•   Versa6le:    Compressed  Air,  O2,  CO,  C2H4,  SynGas,  CH4,  C2H6,  He,  N2,  N2O,  NO,  Ar.  

•   Fast:    ReacQons  with  other  gases  complete  in  less  than  10  minutes  

•   Powerful:    Up  to  100  bar  capability.  

•   Robust:    All  high  quality  stainless  steel  parts.  

•   Simple:    3  buson  stand-­‐alone  control  or  via  simple  touch  screen  control  on  H-­‐Cube  Pro™.  

Other  Reagent  Gases  

Page 45: Thales overview jan 2014

Ø  Conditions: 100oC, 30 bar, CO gas, 0.5 ml/min liquid flow rate, 0.01 M in THF Ø  Catalyst: Polymer supported Pd(PPh3)4 Ø  Reaction was repeated Ø  Different gas flow rates were tested

Observed reproducible conversion at each gas flow rate

ApplicaQon  1:  CarbonylaQon  

Page 46: Thales overview jan 2014

ApplicaQon  2:  Green  OxidaQon  

Page 47: Thales overview jan 2014

Pressure Temp. (oC) CatCart Conversion Selectivity

40 25 1 % Au/TiO2 0 – 40 65 1 % Au/TiO2 6.5 >85 40 25 1 % Au

/Fe2O3 0 – 40 65 1 % Au

/Fe2O3 12.7 0 40 25 5 % Ru

/Al2O3 2.8 ~100 40 65 5 % Ru

/Al2O3 3.6 ~100 100 65 5 % Ru

/Al2O3 2.7 ~100 100 100 5 % Ru

/Al2O3 8.5 ~100 100 140 5 % Ru

/Al2O3 15.5 ~100 100 65 1 % Au/TiO2 5.6 84 100 100 1 % Au/TiO2 47.2 93 100 140 1 % Au

/TiO2 ~100 93 100 65 1 % Au

/Fe2O3 4 0 100 100 1 % Au

/Fe2O3 31 7 100 • Area% of desired product in GC-MS / (100 – Area% of reactant in GC-MS)

General conditions: H-Cube Pro with Gas Module, 50 mL/min oxygen gas, 1 mL/min liquid flow rate (0.05M in acetone, 20 mL sample volume), CatCart: 70mm., 1 % Au/TiO2 (cartridge: 70mm, THS 01639),

Batch ref.: Oxygen; perruthenate modified mesoporous silicate MCM-41 in toluene T=80°C; 24 h; Bleloch, Andrew; et al. Chemical Communications, 1999 , 8,1907 - 1908

Very fast addition of alcohol to gold surface. Alkoxide formation.

Green  OxidaQon  OpQmizaQon  

Page 48: Thales overview jan 2014

Reaction parameters were tested: -  H-Cube Pro with and without GasModule -  Oxidizing agent: Hydrogen-peroxide and Oxygen -  Catalyst: MnO2, Amerlyst 36, Au/TiO2 -  Solvent: Acetone/H2O2, Acetone -  Temperature 60-150oC, pressure 20-50 bar, flow rate 1 ml/min, concentration: 0.05 mmol/ml

Oxidizing  agent   Solvent   Catalyst  

Temperature  (oC)  

Pressure  (bar)   Conversion   Comment  

MnO2   Acetone   MnO2   60   20   82%   Blockage  aoer  10  minutes  

H2O2  Acetone  -­‐  H2O2  

(4-­‐1)   Au/TiO2   70   20  68%  aoer  1  run  78%  aoer  2  run  

H2O2  Acetone  -­‐  H2O2  

(4-­‐1)   Au/TiO2   100   30  68%  aoer  1  run  98%  aoer  2  run  

The  catalyst  was  reacQvated  with  H2O2  between  the  runs.  

O2  (10  ml/min)   Acetone   Au/TiO2   75   11   8%  

O2  (10  ml/min)   Acetone   Au/TiO2   150   11   95%  

Aoer  10  minutes  the  conversion  was  dropped  to  

50%  

O2  (50  ml/min)   Acetone   Au/TiO2   150   20   >  98%  

AromiQzaQon  of  Heterocycles  

Page 49: Thales overview jan 2014

Accessing New Molecules or Chemical Space

Page 50: Thales overview jan 2014

Heterocyclic rings of the future, J. Med. Chem., 2009, 52 (9), pp 2952–2963.

•  3000 potential bicyclic systems unmade • Many potential drug like scaffolds Why? • Chemists lack the tools to expand into new chemistry space to access these new compounds. •  Time • Knowledge

The  Quest  for  Novel  Heterocycles  

Page 51: Thales overview jan 2014

•  Standard benzannulation reaction •  Good source of:

•  Quinolines •  Pyridopyrimidones •  Naphthyridines

→ Important structural drug motifs

Disadvantages: • Harsh conditions • High b.p. solvents • Selectivity • Solubility

W. A. Jacobs, J. Am. Chem. Soc.; 1939; 61(10); 2890-2895

High  Temp  Chemistry  –  In  Batch  

Page 52: Thales overview jan 2014

• Replacement of diphenyl ether (b.p: 259°C) with THF (b.p.: 66 °C)

Cyclization conditions: a: 360 °C, 130 bar, 1.1 min b: 300 °C, 100 bar, 1.5 min c: 350 °C, 100 bar, 0.75 min

Pyridopyrimidinone Quinoline

No THF polymerization!

Batch conditions: 2 hours

Gould  Jacobs  ReacQon  -­‐  Overview  

Page 53: Thales overview jan 2014

The nature of the substituents is critical because they increase or decrease the nucleophilicity of the ring: Electron donating groups increase yields, Electron withdrawing groups decrease yields.

53

• Meldrum’s acidic route to pyridopyrimidones and to hydroxyquinolines

Cyclization conditions: a: 300 °C, 160 bar, 0.6 min b: 300 °C, 100 bar, 0.6 min c: 360 °C, 100 bar, 1 min d: 350 °C, 130 bar, 4 min e: 300 °C, 100 bar, 1.5 min

Lengyel L., Nagy T. Zs., Sipos G., Jones R., Dormán Gy., Ürge L., Darvas F., Tetrahedron Lett., 2012; 53; 738-743

Process  ExploraQon  

Page 54: Thales overview jan 2014

5 novel bicyclic scaffolds generated-fully characterized. Many more to follow

New  Scaffold  GeneraQon  

Page 55: Thales overview jan 2014

Powerful: Up to 450°C

Versatile: Heterogeneous and homogeneous capabilities.

Fast: Reactions in seconds or minutes.

Innovative: Validated procedure to generate novel bicyclic compounds

Simple: 3 button stand-alone control or via simple touch screen control on H-Cube Pro™.

Phoenix  Flow  Reactor  

Page 56: Thales overview jan 2014

•  Choice of stainless steel, teflon, or Hastelloy

•  Different length coils to vary residence time

•  Easy to recoil

Phoenix  Homogeneous  ReacQons  

Page 57: Thales overview jan 2014

•  Use same H-Cube Pro or Midi CatCarts

•  Phoenix metal-metal Catcarts for >250°C reactions

Phoenix metal-metal CatCarts (125mm/250mm)

H-Cube Pro CatCarts (30 or 70mm)

Phoenix  Heterogeneous  ReacQons  

Page 58: Thales overview jan 2014

Ring closure on aryl NH : key step •  Mitsunobu reaction or traditional heating with T3P did not

furnish the bicyclic heterocycle. •  Reaction proceeded smoothly in Phoenix reactor at 300oC with

65% yield despite requirement for the cis amide conformer in transition state.

Mitsunobu  ReacQon  not  Possible  in  Batch  

Page 59: Thales overview jan 2014

RaNi 70mm 200C, 80bar 0.5ml/min

N-­‐AlkylaQon  with  RaNi  CatCart  

Page 60: Thales overview jan 2014

60 The total amount of dialkylated products was 18%.

Alkylation coupled with dehydrogenation

AlkylaQon  of  2-­‐methyl-­‐indone  

Page 61: Thales overview jan 2014

61

Ring closure is coupled with hydrogenation of double bond

Ring closuring of 2-methyl-indole with 1,3-butanediol

AlkylaQon  with  Diol  –  Ring  Closure  

Page 62: Thales overview jan 2014

cf. MW reaction: Bagley, M. C.; et al. J. Org. Chem. 2005, 70 , 7003

In AcOH/2-propanol (3:1) (0.5M) 150 °C, 60 bars,

1.0 mL min-1 (4 min res. time) 88% isolated yield

Continuous Flow Results (4 mL or 16 mL Coil) Scale-up

200 °C, 75 bars, 5.0 mL min-1 (~3 min res. time)

96% isolated yield

25 g indole/hour

Fischer-­‐Indole  Synthesis  –  Scale  Out  

Page 63: Thales overview jan 2014

Conditions: p = 70 bar T = 270°C v = 0.4 mL/min c = 0.04 M (NMP) Result: 82% yield

Kappe, O. C. et al. Eur. J. Org. Chem., 2009, 9, 1321-1325.

X-Cube FlashTM – Kolbe Synthesis Conditions: p = 60 bar T = 180°C v = 4 mL/min Residence time: 440 s c = 0.49 M (H2O) Best result: 51% conversion

Kappe, O. et al. Chem. Eng. Technol. 2009, 32(11), 1-16.

X-Cube FlashTM – SNAr reaction

Other  High  T/p  Flow  ReacQons  

Page 64: Thales overview jan 2014

• Reactions from 10-450C and 1-100bar (1450 psi) • Up to 13 different reagent gases • Heterogeneous or homogeneous catalysis

Fully Automated system now available

VersaQle  Catalysis  System  

Page 65: Thales overview jan 2014

High  Energy  

Reac6ons  

Page 66: Thales overview jan 2014

Safe:  Low  reacQon  volume,  excellent  temperature  control,  SW  controlled  –  including  many  safety  control  points  

Simple  to  use:  easy  to  set  up,  default  reactor  structures,  proper  system  construcQon  

Powerful:  Down  to  -­‐50°C/-­‐70°C,  up  to  80°C  

Versa6le  chemistry:  Ozonolysis,  nitraQon,  lithiaQon,  azide  chemistry,  diazoQzaQon  

Versa6le  reactors:  Teflon  loops  for  2  reactors  with  1/16”  and  1/8”  loops  

High  Chemical  resistance:  Teflon  wesed  parts  

Mul6step  reac6ons:  2  reacQon  zones  in  1  system  Modular:  OpQon  for  Ozone  Module  or  more  pumps  

Size:  Stackable  to  reduce  footprint  

IceCube  

Page 67: Thales overview jan 2014

First  Reac6on  Zone   Second  Reac6on  Zone  

Water  inlet  and  outlet  

Reactor  Plate  • Aluminum  stackable  blocks  • Teflon  tubing  for  ease  in  addressing  blocks  • Easy  to  coil  for  desired  pre-­‐cooling  and  desired  residence  Qme  aoer  mixing  • Different  mixers  types  available  

A  B  

D  

-­‐70-­‐+80ºC   -­‐30-­‐+80ºC  

C  First  Reac6on  Zone   Second  Reac6on  Zone  

ReacQon  Zones  

Page 68: Thales overview jan 2014

A  

B  C  

A  B  

C  

D  

Pre-­‐cooler/Mixer   Reactor  

-­‐70-­‐+80ºC  

-­‐70-­‐+80ºC   -­‐30-­‐+80ºC  

Applica6ons:  Azide,  Lithia6on,  ozonolysis,  nitra6on,  Swern  oxida6on  

Azide,  nitra6on,  Swern  oxida6on  

Ideal for reactive intermediates or quenching

Single  or  MulQ-­‐Step  ReacQons  

Page 69: Thales overview jan 2014

Halogena6on  

Nitra6on  Azides  

Mul6step  reac6ons  

Reac6ve  Intermediates  

Lithia6on  

Ozonolysis  

Swern  Oxida6on  

IdenQfied  ApplicaQons  

Page 70: Thales overview jan 2014

Welcome  screen  of  the  IceCube  

Ozonolysis  set-­‐up   3  pump  –  2  reactor  set-­‐up  

Touch  Screen  Interface  

Page 71: Thales overview jan 2014

•   2pcs  rotary  piston  pumps    

•   2pcs  3-­‐way  inlet  valves  

•   Flow  rate:  0.2  –  4.0  mL/min  

•   Max  pressure:  6.9  bar  

•   Main  reactor  block  temp:    -­‐70/50°C  –  +80°C    

•   Main  reactor  volume  up  to  8  mL  

•   Tubing:  1/16”  or  1/8”  OD  PTFE  

•   Secondary  reactor  block  temp.:    -­‐  30  –  +80°C  

•   Secondary  reactor  volume  up  to  4  mL  

Cooling  Module  

•   ConQnuous  ozone  producQon  

•   Controlled  oxygen  introducQon  

•   Max.  100  mL/min  gas  flow  

•   14%  Ozone  producQon  

Pump  Module   Ozone  Module  

Modular  for  a  Variety  of  Chemistry  

Page 72: Thales overview jan 2014

Batch  reac6on:  Max.  -­‐60°C  to  avoid  side  reacQon  

In  Flow:  

Even  at  -­‐10°C  without  side  product  formaQon  

0.45  M  in  DCM,  0.96  mL/min  

0.45  M  alcohol,  0.14  M  DMSO  in  DCM  0.94  mL/min  

3.6  M  in  MeOH,  0.76  mL/min  

*  Aoer  purificaQon  

When  compared  to  batch  condiQons,  IceCube  can  sQll  control  reacQons  at  warmer  temperatures  due  to  beser  mixing  and  more  efficient  heat  transfer.  

ApplicaQon  1:  Swern  OxidaQon  

Page 73: Thales overview jan 2014

•  Ozonolysis  is  a  technique  that  cleaves  double  and  •  triple  C-­‐C  bonds  to  form  a  C-­‐O  bond.  

Flow  Ozonolysis  and  Rebirth  of  O-­‐Cube  

Page 74: Thales overview jan 2014

•  Highly  exothermic  reacQon,  high  risk  of  explosion    

•  Normally  requires  low  temperature:  -­‐78°C.  •  In  addiQon,  the  batchwise  accumulaQon  of  ozonide  is  associated  again  with  risk  of  explosion  

•  There  are  alternaQve  oxidizing  agents/systems:  •  Sodium  Periodate  –  Osmium  Tetroxide  (NaIO4-­‐OsO4)  

•  Ru(VIII)O4    +  NaIO4  

•  Jones  oxidaQon  (CrO3,  H2SO4)  

•  Swern  oxidaQon  •  Most  of  the  listed  agents  are  toxic,  difficult,  and/or    expensive  to  use.  

Why  is  Ozonolysis  neglected?  

Page 75: Thales overview jan 2014

SM1  /  Reactant  or  Solvent  

SM2  /  Quench  or  Solvent  

Product  or  Waste  

IceCube  Ozonolysis  Setup  

Page 76: Thales overview jan 2014

M.  Irfan,  T.  N.  Glasnov,  C.  O.  Kappe,  Org.  Les.,  

Flow  Ozonolysis  of  Styrenes  

Page 77: Thales overview jan 2014

Oxida6on  of  alkynes  

Oxida6on  of  amines  to  nitro  groups  

M.  Irfan,  T.  N.  Glasnov,  C.  O.  Kappe,  Org.  Les.,  

More  Flow  Ozonolysis  

Page 78: Thales overview jan 2014

M.  Irfan,  T.  N.  Glasnov,  C.  O.  Kappe,  Org.  Les.,  

Flow  Ozonolysis  of  Tioanisole  

Page 79: Thales overview jan 2014

•  2 Step Azide Reaction in flow •  No isolation of DAGL •  Significantly reduced hazards

TKX50

Making  Azide  Chemistry  Safer  

Page 80: Thales overview jan 2014

Entry   Vflow  (ml/min)  A  -­‐  B  -­‐  C  

T  (°C)   τ  (1.  loop,  min)  

τ  (2.  loop,  min)  

Isolated  Yield  (%)  

1   0.4   0   2.12   3.33   91  

2   0.9   0   0.94   1.48   91  

3   0.6   0   1.42   2.22   85  

4   0.9   10   0.94   1.48   85  

5   1.5   10   0.56   0.88   86  

6   1.5   15   0.56   0.88   98  

7   1.2   15   0.71   1.11   84  

8   1.8   15   0.47   0.74   86  

Aniline  HCl  sol.   Pump  A  

Pump  B  NaNO2    sol.  

Pump  C  

Phenol    NaOH  sol.   •  Most  aromaQc  diazonium  salts  

are  not  stable  at  temperatures  above  5°C  •  Produces  between  65  and  150  kJ/mole  and  is  usually  run  industrially  at  sub-­‐ambient  temperatures  •  Diazonium  salts  decompose  exothermically,  producing  between160  and  180  kJ/mole.    •  Many  diazonium  salts  are  shock-­‐sensiQve  

DioaziQzaQon  and  azo  coupling  

Page 81: Thales overview jan 2014

NitraQon  of  AromaQc  Alcohols  

Pump  A   Pump  B   Temperature  (oC)  

Loop  size  (ml)  

Conversion  (%)  

SelecQvity  (%)  

SoluQon  Flow  rate  (ml/

min)   SoluQon  Flow  rate  (ml/

min)  

ccHNO3   0.4  1g  PG/15ml  ccH2SO4   0.4   5  -­‐  10   7   100  

0  (different  products)  

1.48g  NH4NO3/15ml  ccH2SO4   0.7  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13   100   100  

1.48g  NH4NO3/15ml  ccH2SO4   0.5  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13   50   80  (20%  dinitro)  

70%  ccH2SO4  30%  ccHNO3   0.6  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13  (3  bar)   100   100  

70%  ccH2SO4  30%  ccHNO3   0.6  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13  (1  bar)   80  

70  (30%  dinitro  and  nitro)  

Currently  invesQgaQng  selecQvity  at  lower  temperatures  on  IceCube  

Scaffolds  from  Explosive  Intermediates  

Page 82: Thales overview jan 2014

•  LithiaQon  experiments  (collaboraQons)  

•  FluorinaQon  experiments  (collaboraQons)  

•  Low  temperature  selecQve  reacQons,  not  necessarily

 exothermic  nature  

•  Very  low  temperature  experiments,  where  batch

 condiQons  required  liquid  nitrogen  temperature  or

 below  

Coming  soon…  

Page 83: Thales overview jan 2014

Our chemistry team is full of flow chemistry and catalysis experts

We aim to solve your challenging chemistry in flow!

Phoenix Flow Reactor - High temperature and pressure reactor for novel heterocycle and compound synthesis (up to 450C)

H-Cube Pro and Gas Module - for gas reagent chemistry from hydrogenation to oxidation

IceCube - for low temperature and high energy reactions

Free chemistry services on Thalesnano flow platforms for up to a week. No strings attached.

Ship us your compound or visit our labs in Budapest, Hungary. CDAs and NDAs are approved quickly.

Free  Chemistry  Services  

Page 84: Thales overview jan 2014

We can visit your site for chemistry demos and seminars. Impress your colleagues and bring flow chemistry to your lab.

Phoenix Flow Reactor - High temperature and pressure reactor for novel heterocycle and compound synthesis (up to 450C)

H-Cube Pro and Gas Module - for gas reagent chemistry from hydrogenation to oxidation

H-Cube Midi – scale up H-Cube for 10-500g/day hydrogenations

IceCube - for low temperature and high energy reactions

Heather Graehl, MS, MBA Director of Sales North America

Based in sunny San Diego [email protected]

Onsite  Demos  &  Seminars  Available  

Page 85: Thales overview jan 2014

THANK YOU FOR YOUR ATTENTION!!

ANY QUESTIONS?