Top Banner
170 6.4 Group 13 : B, Al, Ga, In, Tl Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 – 13.20; Ch. 4, Sections 4.4.-4.11 Trivalent: B, Al, Ga. Mono- and trivalent: In, Tl. Inert Pair effect: Although the ionization energy decreases down the group with increasing atomic radius (heavier elements form cations more readily), the heavier elements also show greater stability of M + (ns 2 np 0 ). One possible explanation is that the ns 2 electrons are harder to remove due to a relativistic contraction experienced by heavier elements (RECALL!!) The first element, boron is unique and metalloid; all others are metals. This is an example of the diagonal relationship: The first element of a group often shows properties/reactivity patterns similar to the second element of the next group to the right – this particularly important for the first 4 groups: H Li Be B C Na Mg Al Si Explanation: The charge densities (defined as the ratio charge/radius) of the corresponding cations (Li + /Mg 2+ , Be 2+ /Al 3+ , B 3+ /Si 4+ ) are comparable. These pairs show a similar balance of covalent/electrostatic bonding to more electronegative partners and therefore similar reactivity patterns. Electronegativity: B > Al < Ga > In > Tl The anomaly in the general trend to lower EN down the group is called the alternation effect and results from increased effective nuclear charges of the 4p elements due to the presence of their poorly shielding 3d electrons. (The alternation effect is also seen in Group 14 where Ge is more electronegative than Si.) Lewis acidity: Neutral compounds of Group 13 elements tend to be Lewis acids. Boron : Typical compounds : Boranes: B 2 H 6 (diborane is a dimer of BH 3 ); B 10 H 14 , B 6 H 10 , B 4 H 10 , etc… a large variety of cage-like structures). Flammable!
14

Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 ... · Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 – 13.20; Ch. 4, Sections 4.4.-4.11 ... their “free”

Apr 10, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 ... · Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 – 13.20; Ch. 4, Sections 4.4.-4.11 ... their “free”

170

6.4 Group 13: B, Al, Ga, In, Tl

Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 – 13.20; Ch. 4, Sections 4.4.-4.11 • Trivalent: B, Al, Ga. Mono- and trivalent: In, Tl. Inert Pair effect: Although the ionization energy decreases down the group with increasing atomic radius (heavier elements form cations more readily), the heavier elements also show greater stability of M+ (ns2np0). One possible explanation is that the ns2 electrons are harder to remove due to a relativistic contraction experienced by heavier elements (RECALL!!) • The first element, boron is unique and metalloid; all others are metals. This is an example of the diagonal relationship: The first element of a group often shows properties/reactivity patterns similar to the second element of the next group to the right – this particularly important for the first 4 groups:

H

Li Be B C

Na Mg Al Si

Explanation: The charge densities (defined as the ratio charge/radius) of the corresponding cations (Li+/Mg2+, Be2+/Al3+, B3+/Si4+) are comparable. → These pairs show a similar balance of covalent/electrostatic bonding to more electronegative partners and therefore similar reactivity patterns. • Electronegativity: B > Al < Ga > In > Tl The anomaly in the general trend to lower EN down the group is called the alternation effect and results from increased effective nuclear charges of the 4p elements due to the presence of their poorly shielding 3d electrons. (The alternation effect is also seen in Group 14 where Ge is more electronegative than Si.) • Lewis acidity: Neutral compounds of Group 13 elements tend to be Lewis acids.

Boron: Typical compounds: • Boranes: B2H6 (diborane is a dimer of BH3);

B10H14, B6H10, B4H10, etc… a large variety of cage-like structures). Flammable!

Page 2: Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 ... · Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 – 13.20; Ch. 4, Sections 4.4.-4.11 ... their “free”

171

• Tetrahydroborate ion: NaBH4 and LiBH4 (drying agents, like LiAlH4; reducing agents) • Trihalides: BF3 (gas), BCl3 (liquid), BI3 (solid). Monomeric. Lewis acids. Trigonal planar. • Oxygen compounds: B2O3 (a glass), B(OH)3 (boric

acid), Na2(B4O7)•10 H2O (Borax), boronic acids and boronic esters for Suzuki coupling (2010 Nobel Prize)

• Nitrogen compounds: (BN)n; H3BNH3, B3N3H6 Lewis acid: an electron pair acceptor. I.e., has an energetically low lying LUMO. Lewis base: an electron pair donor. I.e., has an energetically high lying HOMO. Adduct: Reaction of a Lewis acid with a Lewis base results in a coordination compound. Def.: A coordination compound (or complex) is a chemical entity that consists of two or more components that can also exist “by themselves”. For an adduct to form, the symmetries of the HOMO (base) and the LUMO (acid) must match! Note: The shapes and thus the symmetries of the acid and base components may change from their “free” state in order to meet this condition. An example: BH3-CO

• During the reaction, the symmetry of diborane (D2h) changes to that of two C3v BH3 fragments, i.e. analogous to NH3 BUT, unlike NH3, the 3a1 orbital is empty forming the LUMO of the acid.

• The MOs of CO and NH3 are found in your lecture notes. • The two fragments combine to give the only known main group carbonyl coordination

compound.

Page 3: Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 ... · Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 – 13.20; Ch. 4, Sections 4.4.-4.11 ... their “free”

172

• Just as AO's of individual atoms can be combined to give MO's, the MO's of the fragments BH3(C3v) and CO(C∞v) can be combined to give the adduct H3B-CO:

Source: Purcell + Kotz, Inorganic Chemistry, 1977, Holt-Saunders • The important interaction is the new σ-bond between

the LUMO of the acid BH3 (a1 in C3v) and the HOMO of the base CO (Σ+ = a1 in C∞v).

• There is also a much weaker secondary retrodative π-interaction between the HOMO of the acid (e symmetry) and the LUMO of the base (also e symmetry)

• The last point leads to a phenomenon called synergistic bonding (give a little, take a little), which is extremely important in transition metal complexes (→ CHEM 365).

HOMEWORK: Sketch the MOs and construct an MO energy diagram for the formation of the BH3NH3 adduct. To which hydrocarbon is this analogous?

Page 4: Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 ... · Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 – 13.20; Ch. 4, Sections 4.4.-4.11 ... their “free”

173

Boron Nitride – inorganic graphite (replace all atoms with carbon and you get graphite). • High temperature lubricant – used in rocket engines and

nuclear reactors. • Insulator (graphite is a two-dimensional conductor). • Also exists in a diamond-like cubic allotrope that is

formed at high pressure (> 50000 bar).

Def.: Allotropes are compounds or elements of the same bulk compositions, but different molecular structure and hence chemical and physical properties.

• The structure of the cubic diamond-like allotrope of (BN)n: all atoms have a Td environment.

• Replace all atoms with carbon and you get

diamond, which is thus isoelectronic and isostructural to cubic boron nitride.

• Both materials are very hard, in fact diamond is the hardest material known – a direct

consequence of the molecular structure. • The most important application of (synthetic) diamond is in drill bits for technical and

geological applications, e.g. this one … … was used here

… for the US-DOE geothermal energy program.

Diamonds are a drill’s best friend!

Page 5: Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 ... · Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 – 13.20; Ch. 4, Sections 4.4.-4.11 ... their “free”

174

Isoelectronic and Isostructural Compounds: Def.: Two molcules are isoelectronic, if they possess the same number and types of bonds and the same total electron count, even though they consist of different atoms. • By necessity, isoelectronic molecules are also isostructural. • Not surprisingly, isoelectronic compounds are often (but not always!) similar in their

reactivity patterns and bulk material properties. Examples: • The graphite- and diamond-like modifications of boron nitride are isoelectronic to carbon

based graphite and diamond, respectively – see above. • Borazine and benzene:

• Methane and aluminum tetrahydride:

Aluminum, Gallium, Indium, Thallium: Typical compounds: • Halides: mono- and tri-valent halogenides AlX3, GaX3, TlX. AlX3 is dimeric: Lewis acidity reflects hardness. Acidity toward hard bases: BCl3 > AlCl3 > GaCl3 Acidity toward soft bases: GaX3 > AlX3 > BX3 • Oxides: Al2O3 (alumina), K2SO4Al2(SO4)3 = potash alum

Page 6: Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 ... · Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 – 13.20; Ch. 4, Sections 4.4.-4.11 ... their “free”

175

The elements: • Aluminum: use in the automotive and aerospace industry as DURALUMINIUM alloyed with

Mg and Cu; in ship building as HYDRONALIUM, alloyed with 3-12 % Mg – with disastrous consequences in the BC SeaCat Ferry building program and the Falkland War: Al/Mg + n O2(g) → Al2O3 + MgO + lots of heat ! in water: Al/Mg + n H2O(l) → Al2O3 + MgO + n H2(g) ! …, i.e. Mg and Al burn underwater once ignited !

This reaction has a high activation energy, because the metal passivates itself with an oxide layer a few µm thick – a very common phenomenon with reactive metals.

Aluminum forms an amalgam with mercury. Although mercury will not react with the aluminum oxide layer, even a small scratch exposing the metal aluminum can start the formation of the amalgam. For this reason, mercury is banned from transport on aircrafts.

Thermite is a solid mixture of metal and metal oxide, often aluminum metal and iron oxide. The aluminum metal reduces the iron oxide in an extremely exothermic reaction used for railway welding. Fe2O3 + 2Al → 2Fe + Al2O3 + heat

• Gallium has the largest liquid range of all elements. It melts at 29.76 °C and boils at 2204 °C. It is therefore used in high-temperature thermometers.

• Thallium is extremely toxic causing liver and kidney failure, deafness and blindness. Tl2SO4

has been used as rat poison in the past. (Suspected thallium poisoning of ex-KGB spy Alexander Litvinenko in 2007 turned out to be 210Po poisoning!)

Page 7: Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 ... · Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 – 13.20; Ch. 4, Sections 4.4.-4.11 ... their “free”

176

Amphoterism and Isopolyoxo Ions Amphoterism: Being able to do two opposite things at the same time. In chemistry: Acid/Base amphoterism, Redox amphoterism Definitions: Acidic oxide: Generates an acidic species upon dissolution in water:

Based on these equilibria, what could be a potential effect of an increased CO2 concentration in atmosphere on the world's oceans? Basic oxide: Generates a basic species upon dissolution in water:

… if you combine the last three reactions with this one

CaCO3 + heat → CaO + CO2(g)

… you can build castles, bridges, houses, etc. - why ?

Amphoteric Oxide: Can react with both acids and bases, acting either as an acidic or basic oxide, depending on conditions:

Page 8: Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 ... · Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 – 13.20; Ch. 4, Sections 4.4.-4.11 ... their “free”

177

• Amphoteric behaviour of oxides is primarily observed for BeO, Al2O3, Ga2O3, SnO2, and

Sb2O3.

• In general the elements on the borderline metallic/non-metallic show amphoterism:

Q. Why do some elements form acidic oxides, some basic oxides and some amphoteric oxides?

Element oxides and their reaction in water

• For all elements except fluorine (why not?) and the noble gases (with the exception of xenon)

the following reactions are possible:

1) x E + y/2 O2(g) → ExOy

2) ExOy + y H2O → E(OH)2y

3) E(OH)2y → E(O)(OH)2y-2 + H2O

• But for which elements do the hydroxides react as bases and for which as acids?

• Are there any trends and can we rationalized them?

Page 9: Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 ... · Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 – 13.20; Ch. 4, Sections 4.4.-4.11 ... their “free”

178

Periodic trends in oxo-acids and oxo-bases:

Metals Semi-metals Non-metals

weak acid

B(OH)3

NaOH Mg(OH)2 Al(OH)3 Si(OH)4 PO(OH)3 SO2(OH)2 ClO3(OH)

Ga(OH)3

In(OH)3

Tl(OH)3

strong base weak base strong acid

• The more electro-positive the oxygen binding partner, the more ionic the element-oxygen

bond and the easier OH- ions are formed → basic reaction in water.

• The more electronegative the oxygen binding partner, the more covalent the element-oxygen

bond and the easier H3O+ ions are formed → acidic reaction in water.

• With increasing valence, the more OH functional groups can be accommodated at the central

atom…however the tendency to eliminate water also increases.

E(OH)n → E(O)(OH)n-1 + H2O

This introduces E=O bonds, which due to their electron withdrawing effect increase the

polarization of the Eδ--O-Hδ

+ bond system further → acidic reaction in water.

A. Correlates with the nature of the element oxygen bond (E-O): Basic oxides: Ionic bond Amphoteric oxides: Both, ionic and covalent contributions Acidic oxides: Covalent bond

Page 10: Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 ... · Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 – 13.20; Ch. 4, Sections 4.4.-4.11 ... their “free”

179

• For the transition metals (cf. CHEM 365) the basicity/acidity of their oxide is a function of their oxidation states, which are much more variable than for the main group elements.

Source: Shriver & Atkins, Inorganic Chemistry, 3rd Edition, Freeman.

HOMEWORK: Exercises 4.13 – 4.23; 13.2 – 13.6, 13.10, 13.18

Isopolyoxo Ions: Al as an example • In strongly acidic solution at pH < 3 the hexaaqua species [Al(OH2)6]3+ is stable.

• With increasing pH > 3 condensation reactions take place (liberating water and a proton)

yielding higher aggregates until precipitation occurs:

Page 11: Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 ... · Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 – 13.20; Ch. 4, Sections 4.4.-4.11 ... their “free”

180

• In the higher aggregate each Al atom is surrounded by six oxygens in an octahedral environment. Exception: The central Al atom in [Al13O14(OH)24(H2O)12]7+ is tetrahedral.

• The average charge of a single Al atom decreases with aggregation.

• At pH values > 10 the isopolyoxo ions re-dissolve due the formation of Al(OH)4

-. • TAKE HOME MESSAGE: Aluminum equipment

will dissolve in your acid bath and in your base bath! • Similar phenomena occur with B2O3, SiO2, and

P2O5, BUT in these cases the isopolyoxo ions are anions, as these compounds are acids.

Source: Shriver & Atkins, Inorganic Chemisty, 3rd Edition, Freeman.

6.5 Group 14: C, Si, Ge, Sn, Pb

Textbook: Chapter 14; Chapter 3, Section 3.18-3.20

• Tetravalent (or divalent, e.g., carbenes R2C: ). PbIV is very oxidizing (inert pair effect).

• Carbon is non-metallic and easily forms carbon-carbon bonds → diamond, graphite, bucky

balls, (bio)organic & polymer chemistry.

Page 12: Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 ... · Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 – 13.20; Ch. 4, Sections 4.4.-4.11 ... their “free”

181

• Silicon, germanium and the α-modification of tin have a diamond structure and are semi-

conductors.

• β-tin and lead are metallic and conduct electricity.

Typical compounds:

• Hydrides : CnH2n+2 (many short- and long- chain hydrocarbons)

SiH4 (silanes up to Si4H10)

EH4 (E = Ge, Sn, Pb less stable; no catenation of hydrides)

Def.: Catenation is the formation of chains of like atoms. (-E-E-E-)

• Organyls: Many catenation compounds of Si, Ge, and Sn are

known with substituent CH3 or C2H5 groups, including chains,

rings, cages, etc.

SnxRy comounds are considered organometallic. Tin organyls (e.g.

Bu3SnH) are important radical reagents in organic chemistry and

also find use as pesticides (e.g. R3SnX), and stabilizers for PVC

(e.g. R2SnX2.). Organo-tin compounds are used for Stille coupling.

Pb(C2H5)5 was used as an anti-knock agent for Otto engines. It

prevents early ignition by acting as a radical scavenger.

Like all lead organyls it is very toxic. It has been replaced by MTBE

(methyl-t-butyl ether) in most of the first world nations.

Page 13: Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 ... · Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 – 13.20; Ch. 4, Sections 4.4.-4.11 ... their “free”

182

• Oxides: CO2 (carbon dioxide), etc.;

(SiO2)n (quartz, silica gels, glass, ceramics, rocks),

Aluminosilicates (rocks, zeolites) e.g., type A zeolite Na12(AlO2)12(SiO2)12·xH2O

Silicones (condensation polymers of di-/mono-alkyl-silane-diols and -triols)

PbIVO2 (The primary use of Pb today is in lead-acid batteries - rechargeable car,

truck, submarine). PbO2(s) + HSO4-(aq) + 3H+(aq) + 2e- → PbSO4(s) + 2H2O(l)

Source: Inorganic Chemistry: An Industrial and Environmental Perspective; T. W. Swaddle, Academic Press, 1997.

Some interesting trivia

• From antiquity up to ca.1910, “lead white” was used as a white pigment (lead white = PbCO3

· x Pb(OH)2 ). Rembrandt used lead white in his paintings. The typical dark brown

appearance of the old Dutch masters is an artifact of the formation of brown lead sulfide PbS:

PbCO3 • x Pb(OH)2 + (x +1) H2S → (x+1) PbS + CO2 + (x+2) H2O

• Through the use of lead piping the Romans found out that Pb(OAc)2 tastes very sweet and

used to add it to their wine. Some historians claim that this habit contributed to the collapse

of their empire – they were all a little dumber than they should have been …

Page 14: Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 ... · Textbook: Ch. 13, Intro & Sections 13.1 – 13.10, 13.13 – 13.20; Ch. 4, Sections 4.4.-4.11 ... their “free”

183

Semiconductors

• Silicon and germanium find extensive use in the electronics industry as semiconductors.

• Doping of Si or Ge with other elements can lead to extrinsic semiconductors with specific

properties (i.e., “tuned” band gaps).

p-type semiconductors: “hole doped” semiconductors

If one atom of Ge is replaced by an atom of Ga, but the structure of the solid stays the same, the

valence band will be one electron short…there will be a “hole” in the valence band!

n-type semiconductors: “electron doped” semiconductors

If one atom of Ge is replaced by an atom of As, the conduction band will have one electron!

Related Textbook Exercises 14.8 – 14.10, 14.12, 14.14 – 14.17