Top Banner
tens of MeV + NNN + .... D angular momentum and isospin restored calculation with the Skyrme EDF Wojciech Satuła ab initio tro: define fundaments my model is „standing on” p mean-field (or nuclear DFT) beyond mean-field (projection after variatio Summary Symmetry (isospin) violation and restoration: unphysical symmetry violation isospin projection Coulomb rediagonalization (explicit symmetry violation) in collaboration with J. Dobaczewski, W. Nazarewicz & M. Rafalski structural effects SD bands in 56 Ni ISB corrections to superallowed beta decay isospin impurities in ground-states of e-e nuclei Results
25

tens of MeV

Feb 24, 2016

Download

Documents

beate

3D angular momentum and isospin restored calculations w ith the Skyrme EDF. Wojciech Satuła. in collaboration with J. Dobaczewski , W. Nazarewicz & M. Rafalski. Intro :  define fundaments my model is „standing on” - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: tens  of  MeV

tens of MeV+ NNN + ....

3D angular momentum and isospin restored calculationswith the Skyrme EDF

Wojciech Satuła

ab initio

Intro: define fundaments my model is „standing on” sp mean-field (or nuclear DFT) beyond mean-field (projection after variation)

Summary

Symmetry (isospin) violation and restoration: unphysical symmetry violation isospin projection Coulomb rediagonalization (explicit symmetry violation)

in collaboration with J. Dobaczewski, W. Nazarewicz & M. Rafalski

structural effects SD bands in 56Ni ISB corrections to superallowed beta decay

isospin impurities in ground-states of e-e nucleiResults

Page 2: tens  of  MeV

Skyrme-force-inspired local energy density functional(without pairing)

Skyrme (nuclear) interaction conserves: rotational (spherical) symmetry isospin symmetry: Vnn = Vpp = Vnp (in reality approximate)

LS LS LS

Mean-field solutions (Slater determinants) break (spontaneously) these symmetries

Y | v(1,2) | Yaverage Skyrme interaction (in fact a functional!) over

the Slater determinant

local energy density functional

Deformation (q)

Tota

l ene

rgy

(a.u

.)

Symmetry-conserving

configurtion

Symmetry-breaking

configurations

SV is the only Skyrme interactionBeiner et al. NPA238, 29 (1975)

Page 3: tens  of  MeV

Euler anglesin space or/and isospace

gauge angle

Restoration of broken symmetry

rotated Slater determinantsare equivalent

solutions

where

Beyond mean-field multi-reference density functional theory

Page 4: tens  of  MeV

There are two sources of the isospin symmetry breaking:- unphysical, caused solely by the HF approximation- physical, caused mostly by Coulomb interaction (also, but to much lesser extent, by the strong force isospin non-invariance)

Find self-consistent HF solution (including Coulomb) deformed Slater determinant |HF>:

in order to create good isospin„basis”:

Apply the isospin projector:

Isospin symmetry restoration

Engelbrecht & Lemmer, PRL24, (1970) 607

Diagonalize total Hamiltonian in„good isospin basis” |a,T,Tz> takes physical isospin mixing

aC = 1 - |aT=Tz

|2AR n=1

aC = 1 - |bT=|Tz||2

BR

See: Caurier, Poves & Zucker, PL 96B, (1980) 11; 15

Page 5: tens  of  MeV

0

0.2

0.4

0.6

0.8

1.0

aC

[%]

40 44 48 52 56 60Mass number A

0.01

0.1

1

44 48 52 5640 60

0

0.2

0.4 BRARSLy4

Ca isotopes:

eMF = 0

eMF = e

Numerical results:(I) Isospin impurities in ground states of e-e nuclei

Here the HF is solved without Coulomb |HF;eMF=0>.

Here the HF is solved with Coulomb |HF;eMF=e>.

In both cases rediagonalizationis performed for the total Hamiltonian including Coulomb

W.Satuła, J.Dobaczewski, W.Nazarewicz, M.Rafalski, PRL103 (2009) 012502

Page 6: tens  of  MeV

0123456

00.20.40.60.81.0

20 28 36 44 52 60 68 76 84 92A

ARBR

SLy4

aC [%

]E

-EH

F [M

eV]

N=Z nuclei

100

This is not a single Slater determinatThere are no constraints on mixing coefficients

AR

AR

BR

BR

(II) Isospin mixing & energy in the ground states of e-e N=Z nuclei:

~30%DaC

HF tries to reduce the isospin mixing by:

in order to minimize the total energy

Projection increases the ground state energy(the Coulomb and symmetryenergies are repulsive)

Rediagonalization (GCM)

lowers the ground state energy but only slightlybelow the HF

Page 7: tens  of  MeV

Excitation energy of the T=1 doorway state in N=Z nuclei

20

25

30

35

20 40 60 80 100A

SIII SLy4 SkP

E(T

=1)-

EH

F [M

eV]

meanvalues

Sliv & Khartionov PL16 (1965) 176

based on perturbation theoryDE ~ 2hw ~ 82/A1/3 MeV

Bohr, Damgard & Mottelsonhydrodynamical estimate

DE ~ 169/A1/3 MeV

31.5 32.0 32.5 33.0 33.5 34.0 34.5

y = 24.193 – 0.54926x R= 0.91273

doorway state energy [MeV]

4567

aC [%

] 100Sn

SkO

SIIIMSk1

SkP SLy5

SLy4SkO’

SLySkPSkM*

SkXc

Dl=0, Dnr=1 DN=2

Page 8: tens  of  MeV

aligned configuration

p pnn

anti-aligned configurationn p or n porn p n p

T=0

Isospin projection

T=1

T=0n p n p

Mean-field

nn p p

four-fold degeneracy of the sp levels

Spontaneous isospin mixing in N=Z nuclei in other but isoscalar configs

yet another strong motivation for isospin projection

Page 9: tens  of  MeV

D. Rudolph et al. PRL82, 3763 (1999)

f7/2

f5/2p3/2

neutrons protons

4p-4h

[303]7/2

[321]1/2

Nilsson

1

space-spin symmetric

2

f7/2

f5/2p3/2

neutrons protons

g9/2 pp-h

two isospin asymmetricdegenerate solutions

Isospin symmetry violation insuperdeformed bands in 56Ni

Page 10: tens  of  MeV

4

8

12

16

20

5 10 15 5 10 15

Exp. band 1Exp. band 2Th. band 1Th. band 2

Angular momentum Angular momentum

Exc

itatio

n en

ergy

[MeV

] Hartree-Fock Isospin-projection

aC [%

]

band 12468 band 2

56Ni

Mean-field

pph

nph

T=0

T=1centroiddET

dET

Isospin projection

W.Satuła, J.Dobaczewski, W.Nazarewicz, M.Rafalski, PRC81 (2010) 054310

Page 11: tens  of  MeV

SVD

SVD eigenvalues(diagonal matrix)

Isospin-projection is non-singular:

singularity (if any) at b=p

is inherited by r

1 + |N-Z| - h + |N-Z|+2kk is a multiplicity of zero singular values

h > 3in the worst case

W.Satuła, J.Dobaczewski, W.Nazarewicz, M.Rafalski, PRC81 (2010) 054310

ij

-1r =S yi* Oij jj

~

Page 12: tens  of  MeV

0

10

20

30

40

1 3 5 7

aC

[%]

2K

isospin

isospin & angular momentum

0.586(2)%

42Sc – isospin projection from [K,-K] configurations with K=1/2,…,7/2

Isospin and angular-momentum projected DFT is ill-defined except for the hamiltonian-driven functionals

there is no alternative but Skyrme SV

Page 13: tens  of  MeV

0.0001

0.001

0.01

0.1

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

|OV

ER

LA

P|

bT [rad]

only IP

IP+AMP

p

inverse of theoverlap matrix

space & isospin rotatedsp state

HF sp state

Why we have to to use Skyrme-V?

T

ij

-1r =S yi* Oij jj

Page 14: tens  of  MeV

Primary motivation of the project isospin corrections

for superallowed beta decay

s1/2

p3/2

p1/2

p2

8

n p2

8

n

d5/2

14O 14NHartree-Fock

Experiment:Fermi beta decay:

f statistical rate function f (Z,Qb)t partial half-life f (t1/2,BR)

GV vector (Fermi) coupling constant <t+/-> Fermi (vector) matrix element

|<t+/->|2=2(1-dC)

Tz=-/+1 J=0+,T=1

J=0+,T=1t+/-

BR

(N-Z=-/+2)

(N-Z=0)Tz=0Qb

t1/2

10 cases measured with accuracy ft ~0.1% 3 cases measured with accuracy ft ~0.3%

Page 15: tens  of  MeV

~2.4%Marciano & Sirlin,

PRL96, 032002, (2006)

nucleus-independent

~1.5% 0.3% - 2.0%

eg

n

NS-independent

The 13 precisely known transitions, after including theoretical corrections, are used to

NS-dependent

test the CVC hypothesis

Towner & HardyPhys. Rev. C77, 025501 (2008)

Towner, NPA540, 478 (1992)PLB333, 13 (1994)

eg

n

courtesy of J.Hardy

Page 16: tens  of  MeV

one can determine

mass eigenstates

CKMCabibbo-Kobayashi-Maskawaweak eigenstates

With the CVC being verified and knowing Gm (muon decay)

test unitarity of the CKM matrix

0.9491(4) 0.0504(6) <0.0001

|Vud|2+|Vus|2+|Vub|2=0.9996(7)

|Vud| = 0.97425 + 0.00023

test of three generation quark Standard Model of electroweak interactions

Page 17: tens  of  MeV

Towner & HardyPhys. Rev. C77, 025501 (2008)

„Hidden” model dependence

Liang & Giai & MengPhys. Rev. C79, 064316 (2009)

spherical RPACoulomb exchange treated in the

Slater approxiamtion

dC=dC2+dC1shell

modelmeanfield

Miller & SchwenkPhys. Rev. C78 (2008) 035501;C80 (2009) 064319

radial mismatch of the wave functions

configuration mixing

Page 18: tens  of  MeV

Isobaric symmetry violation in o-o N=Z nuclei

ground stateis beyond mean-field!

T=0n pT=0

T=1n p

Mean-field can differentiate between n p and n p

only through time-odd polarizations!

aligned configurationsn p

nn p p

n panti-aligned configurations

or n por n p

nn p pCORE CORE

Tz=-/+1 J=0+,T=1

J=0+,T=1t+/-

BR

(N-Z=-/+2)

(N-Z=0)Tz=0Qb

t1/2

ISOSPIN PROJECTION

MEAN FIELD

Page 19: tens  of  MeV

Hartree-Fock

ground statein N-Z=+/-2 (e-e) nucleus

antialigned statein N=Z (o-o) nucleus

Project on good isospin (T=1) and angular momentum (I=0)

(and perform Coulomb rediagonalization)

<T~1,Tz=+/-1,I=0| |I=0,T~1,Tz=0>t+/-

CPU~ few h

~ few years

14O 14NH&T dC=0.330%

L&G&M dC=0.181%our: dC=0.303% (Skyrme-V; N=12)

~ ~

Project on good isospin (T=1) and angular momentum (I=0)

(and perform Coulomb rediagonalization)

Page 20: tens  of  MeV

10 14 18 22 30 34 42

d C [%

]

00.20.40.60.81.01.21.4

A

Tz= 1 Tz=0

26 42 50 66 74 A0

0.5

1.0

1.5

2.0

d C [%

]

Tz=0 Tz=1

26 38

34 58

Vud=0.97418(26)

Vud=0.97447(23)

Ft=3071.4(8)+0.85(85)

Ft=3070.4(9)our (no A=38):

H&T:

|Vud|2+|Vus|2+|Vub|2==1.00031(61)

W.Satuła, J.Dobaczewski, W.Nazarewicz, M.Rafalski,

PRL106 (2011) 132502

Page 21: tens  of  MeV

0.970

0.971

0.972

0.973

0.974

0.975

0.976

|Vud

|

superallowed b-decay

p+-decay

n-decay

T=1/2 mirrorb-transitions

H&T’08

Liang et al.

ourmodel

Page 22: tens  of  MeV

0 5 10 15 20 25 30 35 40

dC(SV)

dC(EXP)

d C [

%]

Z of daughter

0

0.5

1.0

1.5

2.0

2.5

Confidence level test based on the CVC hypothesisTowner & Hardy, PRC82, 065501 (2010)

dC = 1+dNS - Ftft(1+dR)

‚(EXP)

Minimize RMS deviationbetween the caluclated and experimental dC withrespect to Ft

c2/nd=5.2for Ft = 3070.0s

75% contribution to thec2 comes from A=62

Page 23: tens  of  MeV

0

0.5

1.0

1.5

2.0

0 10 20 30 40 50 60 70 80

2.5Tz Tz+1

Tz = -1Tz = 0

d C [

%]

A

Ncutoff=10 Ncutoff=12SUMMARY OF THE CALCULATIONS

A=18

A=38

A=58

Page 24: tens  of  MeV

Summary

[Isospin projection, unlike the angular-momentum and particle-number projections, is practically non-singular !!!]

Elementary excitations in binary systems may differfrom simple particle-hole (quasi-particle) exciatationsespecially when interaction among particles posseses additional symmetry (like the isospin symmetry in nuclei)

Superallowed 0+0+beta decay: encomaps extremely rich physics: CVC, Vud, unitarity of the CKM matrix, scalar currents… connecting nuclear and particle physics … there is still something to do in dc business …

Projection techniques seem to be necessary to account for those excitations - how to construct non-singular EDFs?

Pairing & other (shape vibrations) correlations can be„realtively easily” incorporated into the scheme by combining projection(s) with GCM

Page 25: tens  of  MeV

0

2

4

6

10 20 30 40 50

a’sy

m [

MeV

]

SV

SLy4LSkML*

SLy4

A (N=Z)

„NEW OPPORTUNITIES” IN STUDIES OF THE SYMMETRY ENERGY:

T=0

T=1n p

E’sym = a’symT(T+1)

12a’sym

asym=32.0MeV

asym=32.8MeV

SLy4:

In infinite nuclear matter we have:

SV:

asym=30.0MeVSkM*:

asym= eF + aintmm*

SLy4: 14.4MeV SV: 1.4MeV SkM*: 14.4MeV