Top Banner
Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of Mechanical Engineering Atlanta, GA 30332–0405 USA
22

Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of.

Dec 21, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of.

Temperature Gradient Limits for Liquid-Protected

Divertors

S. I. Abdel-Khalik, S. Shin, and M. Yoda

ARIES Meeting (June 2004)

G. W. Woodruff School ofMechanical Engineering

Atlanta, GA 30332–0405 USA

Page 2: Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of.

2

• Work on Liquid Surface Plasma Facing Components and Plasma Surface Interactions has been performed by the ALPS and APEX Programs

• Operating Temperature Windows have been established for different liquids based on allowable limits for Plasma impurities and Power Cycle efficiency requirements

• This work is aimed at establishing limits for the maximum allowable temperature gradients (i.e. heat flux gradients) to prevent film rupture due to thermocapillary effects

Problem Definition

Page 3: Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of.

3

• Spatial Variations in the wall and Liquid Surface Temperatures are expected due to variations in the wall loading

• Thermocapillary forces created by such temperature gradients can lead to film rupture and dry spot formation in regions of elevated local temperatures

• Initial Attention focused on Plasma Facing Components protected by a “non-flowing” thin liquid film (e.g. porous wetted wall)

Problem Definition

Page 4: Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of.

4

)2

-(2

cos2

)(L

xL

TTxT s

ms

Problem Definition

Non-uniform wall temperature

Wall

• Two Dimensional Cartesian (x-y) Model (assume no variations in toroidal direction)

• Two Dimensional Cylindrical (r-z) Model has also been developed (local “hot spot” modeling)

periodic B.C. in x direction

open B.C. at top,L

Gas

ho initial film thickness

yl>>ho

Liquid

x

y

0

y

T

y

v

y

u

Initially, quiescent liquid and gas (u=0, v=0, T=Tm at t=0)

Page 5: Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of.

5

Variables definition

L

ha o

oh

yy

oh

ax

L

xx

)/( L

uu

LL

)/( La

vv

LL

)/( 2LLL

tt

oL

Lg h

V

32

22

FroL

L

o

g

hggh

V

ooL

L

o

ogL

h

hV

22

We

L

LL

k

cPr

LL

oso hT

Ms

m

T

TTT

•Non-dimensional variables

Page 6: Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of.

6

• Energy

• Momentum

• Conservation of Mass

Governing Equations0

y

v

x

u

y

uv

x

uu

t

ua 2

y

vv

x

vu

t

va 4

y

Tk

yx

Tk

x

a

y

Tcv

x

Tcu

t

Tca

Pr

1

Pr

22

jtn ˆ2Fr

224

dss

ay

v

ya

y

u

xa

x

v

xa

y

p

itn ˆ2 22

dssx

v

ya

y

u

yx

u

xa

x

p

T M/Pr)(We/1

Page 7: Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of.

7

0FrPr)/(M2

3

We

Fr3

32

x

Th

x

hh

x

ha s

Asymptotic Solution

• Long wave theory with surface tension effect (a<<1)

Governing Equations reduce to: [Bankoff, et al. Phys. Fluids (1990)]

• Generalized Charts have been generated for the Maximum non-dimensional temperature gradient (aM/Pr) as a function of the Weber and Froude numbers

Page 8: Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of.

8

Asymptotic Solution

• Similar Plots have been obtained for other aspect ratios

• In the limit of zero aspect ratio

1/Fr

(T

s/L)/

(L2/

Loh

o2)

Max

imum

Non

-di

men

sion

al T

empe

ratu

re

Gra

dien

t 1/We=107

1/We=106

1/We=105

1/We=104

1/We=103

1/We=102

Fr

1

12Pr/M

2crit

a=0.02

Page 9: Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of.

9

Results

• Asymptotic solution used to analyze cases for Lithium, Lithium-lead, Flibe, Tin, and Gallium with different mean temperature and film thickness

• Asymptotic solution produces conservative (i.e. low) temperature gradient limits

• Limits for “High Aspect Ratio” cases analyzed by numerically solving the full set of conservation equations using Level Contour Reconstruction Method

Page 10: Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of.

10

Property Ranges (ho=1mm)*

2

2

ooL

L

h

Parameter

LithiumLithium-

LeadFlibe Tin Gallium

573K 773K 573K 773K 573K 773K 1073K 1473K 873K 1273K

Pr 0.042 0.026 0.031 0.013 14 2.4 0.0047 0.0035 0.0058 0.0029

1/Fr 1.2104

2.2105

1.9105

6.3105

1.2103

3.8104

5.3105

6.7105

5.7105

8.2105

1/We 7.8105

1.3106

9.4105

3.0106

1.3104

4.0105

4.2106

4.8106

6.9106

1.0107

[K/m] 2.8 1.5 4.4 1.3 140 4.3 0.72 0.55 1.6 1.1

* 1/We ho, 1/Fr ho3

Page 11: Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of.

11

Results -- Asymptotic Solution (ho=1mm)

CoolantMean

Temperature [K]

Max. Temp. Gradient(Ts/L)max [K/cm]

Lithium 573 13

Lithium-Lead 673 173

Flibe 673 38

Tin 1273 80

Ga 1073 211

Page 12: Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of.

12

• Evolution of the free surface is modeled using the Level Contour Reconstruction Method

• Two Grid Structures Volume - entire computational domain

(both phases) discretized by a standard, uniform, stationary, finite difference grid.

Phase Interface - discretized by Lagrangian points or elements whose motions are explicitly tracked.

Phase 2

Phase 1

F

Numerical Method

Page 13: Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of.

13

Force on a line element

NUMERICAL METHOD

)( moo TT

Numerical Method

Variable surface tension :

A single field formulationConstant but unequal material properties Surface tension included as local delta function sources

n : unit vector in normal direction

t : unit vector in tangential direction

: curvature

AtA-BtB

nBtB

e

-CtC

A

B

s

ssss

)( t

tt

tn

)(d)(

d BBAA

A

Bs

e ss

ss

F ttt

tn

thermocapillary force

normal surface tension force

Page 14: Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of.

14

•Material property field

Variables definition

L

G

kk

k

L

G

L

G

cc

c

L

G

),()1(1 tI x

),()1(1 tI x

),()1(1 tIcc x

),()1(1 tIkk x

Page 15: Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of.

15

• Two-dimensional simulation with 1[cm]0.1[cm] box size, 25050 resolution, and ho=0.2 mm

Dimensional Simulation (Lithium)

x [m]

y [m

]

time [sec]

y [m

]

maximum y location

minimum y location

black :

blue :

red :

]K/cm[20max

L

T

dx

dT s

]K/cm[40max

L

T

dx

dT s

]K/cm[60max

L

T

dx

dT s

a=0.02

Page 16: Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of.

16

• Two-dimensional simulation with 1.0[cm]0.1[cm] box size and 25050 resolution

• ho=0.2 mm, Ts=20 K

velocity vector plot

temperature plot

Dimensional Simulation (Lithium)

Page 17: Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of.

17

Results (1/Fr=1)

1/We

(T

s/L)/

(L2/

Loh

o2)

Max

imum

Non

-di

men

sion

al T

empe

ratu

re

Gra

dien

t

Pr=40Pr=0.4

Pr=0.004Asymptotic

Solution

a=0.02

Page 18: Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of.

18

Results (1/Fr=103)

1/We

(T

s/L)/

(L2/

Loh

o2)

Max

imum

Non

-di

men

sion

al T

empe

ratu

re

Gra

dien

t

Pr=40Pr=0.4

Pr=0.004Asymptotic

Solution

a=0.02

Page 19: Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of.

19

Results (1/Fr=105)

1/We

(T

s/L)/

(L2/

Loh

o2)

Max

imum

Non

-di

men

sion

al T

empe

ratu

re

Gra

dien

t

Pr=40Pr=0.4

Pr=0.004Asymptotic

Solution a=0.02

Page 20: Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of.

20

Results -- Numerical Solution (ho=1mm)

CoolantMean

Temperature [K]

Max. Temp. Gradient(Ts/L)max [K/cm]

Num. Sol. Asymp. Sol.

Lithium 573 30 13

Lithium-Lead 673 570 173

Flibe 673 76 38

Tin 1273 113 80

Ga 1073 600 211

Page 21: Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of.

21

Experimental Validation

Page 22: Temperature Gradient Limits for Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting (June 2004) G. W. Woodruff School of.

22

• Limiting values for the temperature gradients (i.e. heat flux gradients) to prevent film rupture can be determined

• Generalized charts have been developed to determine the temperature gradient limits for different fluids, operating temperatures (i.e. properties), and film thickness values

• For thin liquid films, limits may be more restrictive than surface temperature limits based on Plasma impurities limit

• Experimental Validation of Theoretical Model has been initiated

• Preliminary results for Axisymmetric geometry (hot spot model) produce more restrictive limits for temperature gradients

Conclusions