Top Banner
Technology Progress 7/99 - 12/99 Technology Progress 7/99 - 12/99
27

Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

Aug 26, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

Technology Progress 7/99 - 12/99Technology Progress 7/99 - 12/99

Page 2: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

LWIM in the FieldLWIM in the FieldContinuous system demonstrations and research guidance

• Sept 96 29 Palms USMC data collection• Sept 96 29 Palms USMC Desert Fire• Dec 96 29 Palms USMC Steel Knight• April 97 29 Palms USMC Desert Scimitar•June 97 Aberdeen Proving Ground Army• October 97 USS Rushmore US Navy• December 97 29 Palms Steel Knight• February 97 Army NTC US Army data acquisition• April 98 Army NTC US Army data acquisition• September 99 Aberdeen PG US Army data acquisition

Page 3: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

Micropower Infrared Sensor ElementMicropower Infrared Sensor Element

•Bi-Sb junctions -- 105µV/Kper junction

•0.5 µm Silicon Nitridethermal isolation mem-brane

•Low resistance metallicthermopiles yield lowthermal noise

•Electrical resistance isabout 60 kΩ for a 116junction thermopile

Page 4: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

44××4 Sensor Array4 Sensor Array

•A 4x4 array of infraredsensors allows diversemotion detectioncapability

•Significant extensionover conventional singleand dual element devices

Page 5: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

Thermopile Performance CharacteristicsThermopile Performance Characteristics

•Responsivity of 2.1V/W with no gain

•Estimated NEP of1.7 x 10-8 (W/√Hz)

•Transient responsestarts dropping offat a few Hz 100

Frequency responseFrequency response

0.1

1

10

0.1 1 10Frequency (Hz)

Vol

tage

(V)

Page 6: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

Pyroelectric Pyroelectric Infrared SensorInfrared Sensor

10-1 100 101 102 103 104

10-2

10-1

100

101 Rf = 750 MΩ Rf = 400 MΩ Rf = 50 MΩ

Vol

tage

(V)

Frequency (Hz)

Bottom Electrodes

LiTaO3 Film IR AbsorptiveUpper Electrode

+ +

- - To Preamp

Bottom Electrodes

IR

Voltage

Page 7: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

Infrared Focal Plane SystemInfrared Focal Plane System• The infrared focal plane

system is composed ofseveral elements:

– micromachined thermalinfrared sensor die

– multifunction pixel processor– microcontroller

•The pixel processor has 8functions:– shutdown– single pixel quantization– horizontal / vertical edge motion

detection– horizontal / vertical high pass

filtering– horizontal / vertical low pass

filtering

Analog SignalProcessing ADC

Control

A

Pixel Processor

µCon

trolle

r

Sen

sor A

rray

Page 8: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

Source Motion Detection/ Spatial FilteringSource Motion Detection/ Spatial Filtering

Target Motion

11 01 01 01 Digital Output

00 11 01 01 Digital Output

HighPassFilter

Infrared Radiation Gradient

0

8

0

0

4

12

12

12

0

-8

8

8

4

4

-4

-4

Page 9: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

IR Pixel Processor LayoutIR Pixel Processor Layout

The block level schematicillustrates the componentplacement of the pixel processor.

32 Preamplifiers

32 Element VariableCapacitor and Switch Array

Bias

4 ParallelSigma-DeltaModulators with8 Bit Resolution

4 ParallelOTAs

4 Parallel2 Bit ADC

Sigma Delta DecimationFilters, Processor ControlLogic, and Clock GenerationThe 32 channel pixel processor is

fabricated in 0.5µm HPCMOS.

Page 10: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

LWIM Spectrum AnalyzerLWIM Spectrum Analyzer

StandardFFT

Cached-FFT

Cache Size = √NN= 64 => C= 8

•Continuous computation of tactical sensorpower spectral density

•Scalable and programmable•Cached-FFT Algorithm (B. Bass)

Page 11: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

-70dBm

Cellular Bluetooth

Noise Figure

Sensitivity

8dB

-102dBm

Est (- 26)

LWIM

~ -80dBm

~ 25dB

Data rate ~10 kbps 1Mbps ≤ 100kbps

Current consumption 35 - 40mA ≤ 20mA ~ 1 mA

•Range and bandwidth reduction : 60 - 80dB gainin link budget

LWIM Comparison to Existing Wireless SystemLWIM Comparison to Existing Wireless System

Page 12: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

Two Receiver ArchitecturesTwo Receiver Architectures

Goal: 1mA entire receiver system peak current drain•High-Q inductive loads•Off chip integration: LTCC components•Two receiver architecture has been developed :

» Multi stage architecture: Preselector /LNA/Mixer» Single stage architecture: Preselector/Combined LNA and Mixer

LOI

basebandpreselector

High gain

LOQ

LNA

Page 13: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

Two ArchitecturesTwo Architectures

Preselector LNA

Mixer

Mixer

1 0.8 µ technology

Multi stage: Gain achieved by•Preselector: High Q elements•LNA transistors gm: Small due to thesmall current and relatively smalltransistor sizes

•LNA output Impedance: High Qcomponents to generate largeimpedance at the output

•Mixer input: High impedance

Preselector

Mixer

Mixer

2 0.6 µ technology

Single stage: Gain achieved by•Preselector: High Q elements•Mixer transistors gm: Small

due to the small current andrelatively small transistor sizes

•Mixer output Impedance: Highimpedance

Page 14: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

PreselectorsPreselectors

1 2

~Lg

Cg

LNA inputVgs

Rbias

Vbias

Rpar Cpar

Rin

~Lg

Cg

Mixer inputVgs

Rbias

Vbias

Rpar Cpar

Rin

Off-chip High-Q components

ω res=Rbias /√ L((Cg+ Ctotal) Rbias²-L)

Rbias → ∞ ω res ≈ 1/√ L(Cg+Ctotal)

Rin ≈ L/Rbias(Cg|| Ctotal)

Vgs/ Vs ≈ Rbias√(Cg||Ctotal)/L Passive

• Filtering• Matching

Choose L and C input impedance

at ω res:

• Gain from Vs to Vgs:

Page 15: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

MixersMixers•Double-balanced Gilbert cell•Direct conversion•High output impedance•Output bandwidth > 100 kHz

LNA output

LO+LO-

IF+IF-

Vbias

3V

LNA output

25 µA

Preselector output

Preselector output

LO-

IF+IF-

Vbias

3V

LO+

70 µA

Total current drain = 110 µA Total current drain = 140 µA

1 2

Page 16: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

LNA

Mixer

Mixer

•Multiple stagearchitecture, 0.8 µmtechnology

•Single stagearchitecture, 0.6 µmtechnology

Receiver Front EndReceiver Front End

Page 17: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

Gain / Noise for Single StageGain / Noise for Single Stage

Gain = 30 dB

1 kHz

NF = 27 dB

Gain = 29.5 dB

NF = 17.5 dB

50 kHz

Gain = 29 dB

NF = 16 dB

100 kHz

Page 18: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

Gain/Noise /1dB Compression for Multi StageGain/Noise /1dB Compression for Multi Stage

This front-end:At 1KHz: NF ≈ 28dB

At 25KHz: NF ≈ 19.5 dB

1-dB compression

-30

-20

-10

0

10-60 -50 -40 -30 -20 -10 0

Input Power (dBm)

Ou

tpu

t P

ow

er

(dB

m)

1-dB compression

-30

-20

-10

0

10-60 -50 -40 -30 -20 -10 0

Input Power (dBm)

Ou

tpu

t P

ow

er

(dB

m)

1-dB compression at -25dBm(effective power)

LNA input = -43dBvrms Mixer output = -17.85dBvrms

Gain = 25 dB

Page 19: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

IF Frequency DependenceIF Frequency Dependence• Multi-stage Architecture (0.8 µm)

@1 khz @25 khzGain 25 dB 24 dBNF 26 dB 19.5 dBIP3 -15 dBm -15 dBm1 dB -25 dBm -25 dBm

• Single-stage Architecture (0.6 µm)@1 khz @25 khz

Gain 30 dB 30 dBNF 27 dB 21 dBIP3 -13 dBm -13 dBm1 dB -23 dBm -23 dBm

Page 20: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

Frequency Synthesizer DesignFrequency Synthesizer Design• Frequency synthesizer requirements:

– switching time: less than 2 msec is adequate for typicalwireless sensor applications (latency tolerant)

– frequency resolution: 250/500 kHz– low power operation: < 1.5 mA drain current

• Frequency synthesizer techniques:– direct digital frequency synthesizer: fast switching, fine

frequency resolution, but very high power– PLL: complex tradeoffs among frequency resolution, switching

speed, and spurs; possible low power solution

• PLL architecture choice:– integer-N architecture: wide channel spacing and relaxed

switching time requirements permit this low power PLLarchitecture

Page 21: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

Wide Tuning Range and Low NoiseWide Tuning Range and Low Noise

b0 b1 b2

2CC 4C

Vtuning

VhighVlow

fvco,upper

fvco,lower

fHfL

VHVL

Vtuning

000001010011100101110111

Vtuning

Freq

uenc

y

large KVCO small KVCO

fH

fL

desired range

• minimize KVCO by breaking a wide-range tuning curve into severalnarrower-range tuning curves

» require continuous and discrete tuningelements

• continuous tuning: CMOS varactor• discrete tuning: select L or C

» choose C, mature for CMOSimplementation

» binary-weighted SC tuning

• require an auxiliary loop in the PLL toautomatically search for the properswitch state

• searching algorithm is based onfrequency comparison

» This is done by comparing voltagequantity!

Page 22: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

PLL with SC Coarse Tuning LoopPLL with SC Coarse Tuning Loop

PD2 CP2 LF2

LF1PD1

VCO

CP1 up/down3b-counter

Vlow

Vhigh

ComparisonLogic

up down

ok

fref2

fref1

÷N1/÷N2

4M

(N1= 28, N2=29)

125k

÷2

÷4

÷512 ÷ (7,8)

÷ (25~127)Main synthesizer loopMain synthesizer loop

SC coarse tuning loopSC coarse tuning loop

synthesizer outputBB

AA•VCO (@111) < 902 & 928 ⇒ tuning voltage → VDD

⇒ comparison stage → down ⇒ 111 → 110, C↓ ⇒ VCO → higher frequency•VCO (@000) > 902 & 928 ⇒ tuning voltage → VSS

⇒ comparison stage → up ⇒ 000 → 001, C↑ ⇒ VCO → lower frequency

Example: assume fL=902, fH=928 MHz

Page 23: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

Measurement ResultsMeasurement Results

•Complete PLL operation(a) 000 → 011 (b) 111 → 011

Page 24: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

• VCO gain: 20MHz/V• overall tuning range: ~20% (180MHz)• spur: -55dBc• phase noise: -102dBc/Hz @100kHz

• VCO gain: 20MHz/V• overall tuning range: ~20% (180MHz)• spur: -55dBc• phase noise: -102dBc/Hz @100kHz

Measurement ResultsMeasurement Results

916MHz, 200kHz span (RBW:1kHz)

916MHz, 1MHz span

000

001

010

011

100

101

110

111

fH: 928MHz

fL: 896MHz

Vhigh:2.6VVlow:0.4V

Measured VCO tuning

Page 25: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

1 mm

0.7

mm

SC coarse tuning loopwith on-chip loop filter

VCO mainsynthesizerloop

channel switching from end to end

frequency hops across the ISM band

Measurement ResultsMeasurement Results

• switching time ~ 2msec• 0.6 µm CMOS technology• total current: 2.5mA (2.2mA with SC

loop disabled)

• switching time ~ 2msec• 0.6 µm CMOS technology• total current: 2.5mA (2.2mA with SC

loop disabled)

Page 26: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

tuning waveforms at the LF1 output SC loop output spectrum at the ‘ok’ state

Measurement Results: SC LoopMeasurement Results: SC Loop

• the SC loop at the ‘ok’ switch state will lock the VCOto 896 and 928 MHz periodically

• the SC loop at the ‘ok’ switch state will lock the VCOto 896 and 928 MHz periodically

Page 27: Technology Progress 7/99 - 12/99projects.mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensorn… · – horizontal / vertical low pass filtering Analog Signal Processing ADC Control

LWIM LTCC IntegrationLWIM LTCC Integration

MEMS Sensors ceramicsubstrate

Micropower RF Network Components

DSP, ControlData Conversion

Signal Conditioning

passives

•LTCC: Low Temperature Co-fired Ceramic– low loss substrate– high quality RF passives– microsensor integration