Top Banner
MRS Spring Symposium, Tutorial: Advanced CMOS—Substrates, Devices, Reliability, and Characterization, April 13, 2009, San Francisco Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara [email protected] 805-893-3244, 805-893-5705 fax
67

Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Mar 21, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

MRS Spring Symposium, Tutorial: Advanced CMOS—Substrates, Devices, Reliability, and Characterization, April 13, 2009, San Francisco

Technology Development for InGaAs/InP-channel MOSFETs

Mark Rodwell University of California, Santa Barbara

[email protected] 805-893-3244, 805-893-5705 fax

Page 2: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Scope of Presentation

Topic of discussion is channel materials for CMOS...the potential use of III-V materials...and their advantages and limitations

To understand this, we must examine in some detailMOSFET scaling limits

Page 3: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Z th O d Zeroth-Order MOSFET O iMOSFET Operation

Page 4: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Bipolar Transistor ~ MOSFET Below Threshold

beV ceV

cI

)/exp(al)(exponenti thermalison distributienergy emitter Because

bec kTqVI ∝

voltagecollector with little variesit through pass base reaching electrons allAlmost

cI→

Page 5: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Field-Effect Transistor Operation

gatesource drain

g

Positive Gate VoltagePositive Gate Voltage→ reduced energy barrier→ increased drain current

Page 6: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

FETs: Computing Their Characteristics

chdC /~ DACgs ε chd−

/ where/ electrongd vLQI == ττ

gs

dschdgsgs VCVCQ δδδ −+=

ττδδδ / and / where chdgdgsmdsdsgsmd CGCgVGVgI −==⋅+⋅=

Page 7: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

FET Characteristics

ID

increasingVGS

hdC/~ DAC ε

GS

chdC − / DACgs ε

VGVgI δδδ ⋅+⋅=

VDS

dsdsgsmd VGVgI δδδ ⋅+⋅=

LCGC /// electrongchdgdgsm vLCGCg / / / === − τττ

Page 8: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

FET Subthreshold Characteristics

kT)()( δδ

s

s

ox

schanneloxgate

Vq

kTqnqn

CqnVVV

ithlinearly wvarieschargechannel:drivegateStrong

)()( ⋅+=+=δδδδδ

gs

gs

VV

lly withexponentia variescharge channel :drive gateWeak ithlinearly wvarieschargechannel :drive gate Strong

Page 9: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Classical Long-Channel MOSFET Theory

:sAssumption

)( .channel in field lateral Moderate1)

:sAssumption

xnE

*/ :channeloff-pinchedofendat city Exit velo3)

)()(usiondrift/diffby modeledTransport )2

mkTvvxxnqDExnqJ

thermalexit

nn

==

∂∂

+= μ

/:c a eop c edoe datc tyt ve o3) mkvv thermalexit

Page 10: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Classic Long-Channel MOSFET Theory

t t t

Idmobility-limited

ID

Ohmi

cconstant-current

velocity-limitedincreasingVGS

VgsVthVDS

c rrentlimitedmobilit ExpressiondGeneralize

:saturation nlarger tha voltagesdrainFor

gthgsgoxD LVVWcI 2/)(current limitedmobility

2, −=

μμ1

ExpressiondGeneralize2

=⎟⎟⎞

⎜⎜⎛

+⎟⎟⎞

⎜⎜⎛

DD

II

II

)(current limitedvelocity

, thgsexitgoxvD VVvWcI −=− ,,

⎟⎠

⎜⎝

⎟⎠

⎜⎝ μDvD II

Page 11: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Classic Long-Channel FET : Far Above Threshold

IdΔVΔV

VgsV gsVth

/h1/)(for )( thgsthgsexitgoxD

LVVVVVVVvWcI

Δ

>>Δ−Δ−−≈

μ/ where gexitLvV =Δ

Page 12: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Exponential, Square-Law, Linear FET Characteristics

Page 13: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Relevance of DC Parameters

Digital circuit speed largely controlled by on-state current

Standby power consumption controlled by off-state current

Dynamic power consumption controlled by supply Voltage

→ Examine VLSI Power & Delay Relationships

Page 14: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Z th O dZeroth-OrderS fVLSI Performance

Analysis

Page 15: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

CMOS Power Dissipation & Gate Delay

delayGateC

dominatesusually ecapacitanc g wirin2/)(2/

delayGate++=≈ onddPFETNFETwireonddtotalgate IVCCCIVCτ

Vdd

Cwire

PFETC

onI

y)probabilitswitching(frequency

: ndissipatiodower Dynamic2

⋅⋅= ddtotald

VCPNFETC y)probabilitswitching(frequency2

=dynamicP

IVdd

thonoff nkTqVII −> )/exp(/current state Off offI dd

ddoffstatic VIP ⋅>on DissipatiStatic

kTqVonddstaticddwiredynamic

theIVPpfVCP /2 ~ ~ :ndissipatio dynamic and static between Tradeoff −⋅

Page 16: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Why Large Current Density is Needed

S D S D S D S

G

Wgg nWW

n widthtotal widthof each

fingers, 6 withFET=→

=

G

Wg

C ,delay at drive To τwireC

Vdd

Cwire

PFETC

onI

.2/current requires τddwired VCI =

NFETC needed. are FETslarge small, is If gd /WI. large wireslong FETsLarge wireC→→

Page 17: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Device Requirements

High on-state current per unit gate width

Low off-state current→ subthreshold slope

Low device capacitance; but only to point where wires dominate

Low supply voltage: probably 0.5 to 0.7 V

Page 18: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

What Are Our Goals ?

Low off state current (10 nA/μm) for low static dissipationLow off-state current (10 nA/μm) for low static dissipation→ good subthreshold slope → minimum Lg / Toxlow gate tunneling, low band-band tunneling

Low delay CFET ΔV/I d in gates wheretransistor capacitances dominate.~1 fF/μm parasitic capacitances→ low Cgs is desirable,

but high Id is imperativeg d p

Low delay C ΔV/I in gates whereLow delay Cwire ΔV/Id in gates wherewiring capacitances dominate.large FET footprint → long wires between gates→ need high Id / Wg ; target ~5 mA/μm @ ΔV= 0.7V

target ~ 3 mA/μm @ ΔV= 0.5V

Page 19: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

I i FETImproving FETsby Scalingby Scaling

Page 20: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Simple FET ScalingGoal double transistor bandwidth when used in any circuit

→ reduce 2:1 all capacitances and all transport delays→ keep constant all resistances, voltages, currents

All lengths, widths, thicknesses reduced 2:1

S/D contact resistivity reduced 4:1

ε~/d WC

oxgm TvWg /~/ ε If Tox cannot scale with gate length, Cparasitic / Cgs increases,

ε/ ggd WC

oxgggs TLWC /~/ ⋅ε

ε~/ gfgs WC

gm / Wg does not increasehence Cparasitic /gm does not scale

, gfgs

subcgsb TLWC /~/ ⋅ε

Page 21: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

FET scaling: Output Conductance & DIBLeffects)D.O.S.neglectsexpression( gsC )gp( gs

hd WC ε~/~ TLWC ε gchd WC ε−

dhdd VCVCQQI δδδτ +== where/

/ oxgggs TLWC ε

dschdgsgsd VCVCQQI δδδτ −+== where/

transconductance output conductance

→ Keep Lg / Tox constant as we scale Lg

Page 22: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

FET Scaling LawsGL

Changes required to double transistor bandwidth:( )GW widthgate

parameter changegate length decrease 2:1

Changes required to double transistor bandwidth:

gate dielectric capacitance density increase 2:1gate dielectric equivalent thickness decrease 2:1channel electron density increase 2:1channel electron density increase 2:1source & drain contact resistance decrease 4:1current density (mA/μm) increase 2:1

Page 23: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

nm Transistors: it's all about the interfaces

Metal-semiconductor interfaces (Ohmic contacts):very low resistivity

Dielectric-semiconductor interfaces (Gate dielectrics):very high capacitance density

Transistor & IC thermal resistivity.

Page 24: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

FET Scaling LawsGL

Changes required to double transistor bandwidth:( )GW widthgate

parameter changegate length decrease 2:1

Changes required to double transistor bandwidth:

gate dielectric capacitance density increase 2:1gate dielectric equivalent thickness decrease 2:1channel electron density increase 2:1channel electron density increase 2:1source & drain contact resistance decrease 4:1current density (mA/μm) increase 2:1

What do we do if gate dielectric cannot be further scaled ?

Page 25: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Why Consider MOSFETs with III-V Channels ?

If FETs cannot be further scaled, instead increase electron velocity:

III-V materials → lower m*→ higher velocityId / Wg = qnsv Id / Qtransit = v / Lg

III V materials → lower m → higher velocity( need > 1000 cm2 /V-s mobility)

Candidate materials (?) In Ga As InP InAs ( InSb GaAs)

Difficulties:

Candidate materials (?) InxGa1-xAs, InP, InAs ( InSb, GaAs)

High-K dielectricsIII-V growth on Sibuilding MOSFETsbuilding MOSFETslow m* constrains vertical scaling, reduces drive current

Page 26: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

III-V CMOS: The Benefit Is Low Mass, Not High Mobility

h h ldbfdhdiff id ifSi l :thresholdabovefar ate,nondegenertheory,diffusion -drift Simple

)/(~ where 1/2*mkTvv thermalinjection = )( VVVvWcI thgsinjectiongoxD Δ−−≈

Idμ/ginjectionLvV =Δ

thatEnsure )( VVV −<<Δ⇒

VmV700

that Ensure

~

)( thgs VVV <<Δ⇒

VgsVthlow effective mass → high currentslow effective mass high currents

mobilities above ~ 1000 cm2/V-s of little benefit at 22 nm Lg

Page 27: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

III-V MOSFETs for VLSI

Wh t i it ?What is it ?MOSFET with an InGaAs channel

Why do it ?l l t ff ti hi h l t l itlow electron effective mass→ higher electron velocitymore current, less charge at a given insulator thickness & gate lengthvery low access resistance

What are the problems ?low electron effective mass→ constraints on scaling !must grow high-K on InGaAs, must grow InGaAs on Si

Device characteristics must be considered in more detail

Page 28: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

III V MOSFETIII-V MOSFETCharacteristicsCharacteristics

Page 29: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Low Effective Mass Impairs Vertical Scaling

Shallow electron distribution needed for high gm / Gds ratio, l d i i d d b i l ilow drain-induced barrier lowering.

2*2 ./ 2*2wellTmL∝

For thin wells,only 1st state can be populated

Energy of Lth well state

only 1st state can be populated.For very thin wells,

1st state approaches L-valley.

Only one vertical state in well. Minimum ~ 5 nm well thickness.→ Hard to scale below 22 nm Lg.

Page 30: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Semiconductor (Wavefunction Depth) Capacitance

energy state Bound./ 2*2

wellwell TmLE ∝

123

V)

Tsemi

ecapacitanctor Semiconduc

-2-101

Ener

gy(e

VsemiTc /

p

torsemiconduc ε=

-4-3

0 50 100 150 200 250Y (Ang.)

Page 31: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Density-Of-States Capacitance

)//( 2* hπnmnEE swellf =−motion) nalbidirectio(

2*2 /h h

dosswellf cVV /ρ=−

and n is the # of band minima

22 / where hπnmqcdos =

Two implications:- With Ns >1013/cm2, electrons populate satellite valleys

Fischetti et al, IEDM2007

- Transconductance dominated by finite state densitySolomon & Laux , IEDM2001

Page 32: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Current Including Density of States, Wavefunction Depth

h h ldbfdhdiff id ifSi l :thresholdabovefar ate,nondegenertheory,diffusion -drift Simple

)( VVVvWcI thgsthermalgeqD Δ−−≈

IDOSoxeq /c /c /c/c 111 1 where torsemiconduc ++=

Id

VgsVth...but with III-V materials, we must also consider degenerate carrier concentrations.

Page 33: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Current of Degenerate & Ballistic FET ...) Asbeck, , FischettiSolomon, Laux,Natori, , Lundstrom(

dHi hl

motion) ional(unidirect 2//:states ofDensity 2*⋅=fs mndEdN πh

( )/)(l ii

),)(2/( :density electron :degenerateHighly

2/1*

2* −⋅= cfs EEmnn πh

( ).)3/4( : velocityelectron ean M

,/)(2 : velocity ermi F 2/1*

=

−=

f

cff

vvmEEvπ

( ) ( )/)(2

:densityCurrent 2/32/1*2/52/3 −⋅

⎟⎞

⎜⎛ f qEEmnq ( ) ( )

mA

/)(32

2/32/1*

22

⎟⎞

⎜⎛ −

⎟⎞

⎜⎛⎟⎞

⎜⎛

⎟⎟⎠

⎞⎜⎜⎝

⎛==

cf

cfs

EEm

qEEmnqvqnJ

π h

eV 1mmA84

0⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⋅= cf

mmn

μ

Page 34: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

2D vs. 1D Field-Effect Transistors in Ballistic LimitDrain

mAmAmA

)04.0/( channel InGaAs FET;-2D2/32/32/1*

0*

⎞⎛⎞⎛⎞⎛⎞⎛⎞⎛

=

EEEEm

mm

Id

gateE

tor.semiconduc inshift levelFermieV0.3for

m

mA8.2eV 1m

mA17eV 1m

mA840 μμμ

=⎟⎟⎠

⎞⎜⎜⎝

⎛ −⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛ −⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛≅ cfcf EEEE

mmJ

Lg

Wg gate

g

Source

Id

Drains

d

gateE S78/2 eV, 37.0

*2

pitchnm 6@wellsInGaAsnm5 FETs;-1DofArray

2,2

22

μπ==== wellm

wellwell hqg

TmE h

Lg

Wg gate

torsemiconduc inshift level FermieV 0.3for m

mA9.3eV 1m

mA13eV 1nm 6

A 78μμ

μ=⎟⎟

⎞⎜⎜⎝

⎛ −⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛ −⎟⎠⎞

⎜⎝⎛= cfcf EEEE

J

Sources

Page 35: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

2D FET vs. Carbon Nanotube FET

Drain

mA82mA17

)04.0/*( channel InGaAs FET;-2D2/3

0

⎟⎟⎞

⎜⎜⎛ −⎟⎟⎞

⎜⎜⎛

=

cf EEJ

mmId

Drain

gate

tor.semiconduc inshift level FermieV 0.3for

, m

8.2eV 1m

17μμ

=⎟⎟⎠

⎜⎜⎝⎟⎟⎠

⎜⎜⎝

≅ cfJ

L

Wg gate

Lg

Source

Drains

mAmAA78

S78/2 pitch nm 5 nanotubes, carbon ofArray

2,

μ

μ

⎟⎞

⎜⎛ −⎟⎞

⎜⎛

⎟⎞

⎜⎛ −⎟⎞

⎜⎛

==

ff

tubem

EEEE

hqggate

torsemiconduc inshift level FermieV 0.3for m

mA7.4eV 1m

mA5.15eV 1nm 5

A78μμ

μ=⎟⎟

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛= cfcf EEEE

J

Lg

Wg

Sources

Page 36: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Ballistic/Degenerate Drive Current vs. Gate Voltage

More careful analyses by Taur & Asbeck Groups, UCSD; Fischetti Group: U-Mass: IEDM2007

Page 37: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Drive Current in the Ballistic & Degenerate Limits

( ) 2/1*2/3⎞⎛⎞⎛ ( )

( ) 2/3*,

2/1*2/3

)/()/(1 where,

V 1mmA84

ooxodos

othgs

mmnccmmnK

VVKJ

⋅⋅+

⋅=⎟⎟

⎞⎜⎜⎝

⎛ −⋅⎟⎟⎠

⎞⎜⎜⎝

⎛⋅=

μ

0 25

0.2

0.250.7 nm, n=6 0.4 nm, n=6

Error bars on Si data points correct for (Ef-Ec)>> kT

0.15

K

0.8 nm, n=1 n = # band minimacdos,o = density of

(Ef Ec) kT approximation

0 0

0.11.0 nm, n=1

,states capacitance for m*=mo & n=1

0

0.05

EOT includes wavefunction depth (0.5 nm for 3.5 nm InGaAs well)

0.01 0.1 1m*/m

o

Page 38: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

High Drive Current Requires Low Access Resistance

sidewall

metal gategate dielectric

source contact drain contact

barrier

quantum well / channelN+ source N+ drain

source contact drain contact

current, drive onimpact 10% For <

substrate

1.0)/( <− thDDSD VVRI

V 5.0)( @ mmA/ 3~/Target V3.0)(@mmA/5.1~/Target

μ

μ

=−

=−

thDDgD

thDDgD

VVWIVVWI

m 2015 μ−Ω−<→ gsWR

Page 39: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

M i l S l iMaterials Selection;What channel material What channel material

should we use ?should we use ?

Page 40: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET
Page 41: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Common III-V Semiconductors B. Brar

1350

450

GaSb770

AlSb1550

1350 200

500450

250

InGaP1900InSb

AlAs2170

InAs

770GaAs1420 InGaAs

760

InAlAs1460 InP

1350200

1900220

2170

360

200

150

550170

200

6.48 A lattice constant

6.48 A lattice constant 5.65 A lattice constant;grown on GaAs

5.87 A lattice constant;grown on InP

Page 42: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Semiconductor & Metal Band Alignments M. Wistey

Page 43: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Materials of Interest

Source: Ioffe Institutehttp://www.ioffe.rssi.ru/SVA/NSM/Semicondrough #s only

material Si Ge GaAs InP In0.53Ga0.47As InAs

n 6 6 1 1 1 1

m*/m0 0.98 ml 1.6 ml 0.063 0.08 0.04 0.023m /m0 0.98 ml 1.6 ml 0.063 0.08 0.04 0.0230.19 mt 0.08 mt

Γ-(L/X) separation, eV -- -- 0.29 ~0.5 0.5 0.73( ) p ,

bandgap, eV 1.12 0.66 1.42 1.34 0.74 0.35

mobility, cm2/V-s 1000 2000 5000 3000 10,000 25,000

high-field velocity 1E7 1E7 1-2E7 3.5E7 3.5E7 ???

Page 44: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Drive Current in the Ballistic & Degenerate Limits

( ) 2/1*2/3⎞⎛⎞⎛ ( )

( ) 2/3*,

2/1*2/3

)/()/(1 where,

V 1mmA84

ooxodos

othgs

mmnccmmnK

VVKJ

⋅⋅+

⋅=⎟⎟

⎞⎜⎜⎝

⎛ −⋅⎟⎟⎠

⎞⎜⎜⎝

⎛⋅=

μ

0 25

0.2

0.250.7 nm, n=6 0.4 nm, n=6

Error bars on Si data points correct for (Ef-Ec)>> kT

0.15

K

0.8 nm, n=1 n = # band minimacdos,o = density of

(Ef Ec) kT approximation

SiGe

0 0

0.11.0 nm, n=1

,states capacitance for m*=mo & n=1InPInGaAs

0

0.05

EOT includes wavefunction depth (0.5 nm for 3.5 nm InGaAs well)

0.01 0.1 1m*/m

o

Page 45: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Intervalley Separation Source: Ioffe Institutehttp://www.ioffe.rssi.ru/SVA/NSM/Semicond

Intervalley separation sets:-high-field velocity throughhigh field velocity throughintervalley scattering-maximum electron density in channel without increased carrier effective mass

Page 46: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Choosing Channel Material: Other Considerations

Ge: low bandgap

G A l i t ll tiGaAs: low intervalley separation

InP: good intervalley separationGood contacts only via InGaAs→ band offsetsmoderate mass→ better vertical scaling

InGaAs good intervalley separationbandgap too low ? → quantizationl hi h ll ti l lilow mass→ high well energy→ poor vertical scaling

InAs: good intervalley separationbandgap too lowvery low mass→ high well energy→ poor vertical scaling

Page 47: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Non-Parabolic Bands

zero.near for only parabolic~ are Bands

k

hyperbolicnearlybecomebands energies, highAt

velocitygroupAsyptotic

.hyperbolicnearly become

→tors.semiconducmost inSimilar

velocity.group Asyptotic→

c.pessimistigenerally aresexpression FETband-Parabolic

pg y

Page 48: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Non-Parabolic Bands

T. Ishibashi, IEEE Transactions on Electron Devices, 48,11 , Nov. 2001,

Page 49: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

MOSFET D iMOSFET DesignA i Assuming

G CIn0.5Ga0.5As Channel

Page 50: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Device Design / Fabrication Goalssidewall

metal gate

quantum well / channel

gate dielectric

N+ source N+ drain

source contact drain contact

substrate

barrier

quantum well / channel

DeviceDevicegate overdrive 700 500 300 mVdrive current 5 3 1.4 mA/μmN 6*1012 4*1012 2.5*1012 1/cm2Ns 6 10 4 10 2.5 10 1/cm

Dielectric: EOT 0.6 nm target, ~1.5 nm short term

Channel : 5 nm thickμ > 1000 cm2/V-s @ 5 nm, 6*1012 /cm2

S/D access resistance: 20 Ω-μm resistivity→ 0.5 Ω-μm2 contacts , ~2*1013 /cm2 , ~4*1019 /cm3 , 5 nm depth

Page 51: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Target Device Parameters

sidewall

gate dielectricmetal gate

quantum well / channelN+ source N+ drain

source contact drain contact

substrate

barrier

thicknm5cm/105~:well 212⋅n thicknm5,cm/105~ :well ⋅sn

213319 cm1052 thicknm 5 , cm105 /./ ⋅=→⋅ sn

m 10contact widenm 25 )m 250 2 μμ −Ω=−Ω )/(.(

Page 52: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Device StructureDevice Structure& &

P FlProcess Flow

Page 53: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Device Fabrication: Goals & Challenges

III-V HEMTs are built like this→ Source Drain

GateSource Drain

K Shinohara

and most ....and most III-V MOSFETs are built like this→

Page 54: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Device Fabrication: Goals & Challenges

εr

TiWN+ drainregrowth

N+ sourceregrowth

Yet, we are developing,at great effort,

εr

InGaAs wellInP well

at great effort,a structure like this →

barrierInP well

Why ?Why ?

So rce DrainGate

Source Drain

K Shinohara

Page 55: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Why not just build HEMTs ? Gate Barrier is Low !

Gate

Gate barrier is low: ~0.6 eV

Source DrainGate

K Shinohara

Tunneling through barrier Emission over barrier

K Shinohara

g g→ sets minimum thickness

Ec EcEF

→ limits 2D carrier density

Ewell-Γ

EF

Ewell-Γ

EF

eV 6.0~)( ,cm/10At 213cfs EEN −=

Page 56: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Why not just build HEMTs ? Gate barrier also lies under source / drain contacts

Gate

Gate barrier also lies under source / drain contacts

Source DrainGate

widegap barrier layer

N+ layer

K Shinohara

low leakage: low resistance:

K Shinohara

EcEF

gneed high barrier under gate

Ec

need low barrier under contacts

Ewell-ΓN+ caplayerEwell-Γ

EF

Page 57: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

sidewall

The Structure We Need -- is Much Like a Si MOSFET sidewall

metal gategate dielectric

source contact drain contact

barrier

quantum well / channelN+ source N+ drain

substrate

no gate barrier under S/D contacts

high-K gatebarrier

Overlap between gateand N+ source/drain

How do we make this device ?

Page 58: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

S/D RegrowthS/D Regrowth Process Flow

Page 59: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Regrown S/D FETs: VersionsWistey et al2008 MBE conference

planar regrowthregrowth under sidewalls

need thin sidewalls(now ~20-30 nm)

..or doping under sidewalls

Page 60: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

S/D Regrowth by Migration-Enhanced Epitaxy Wistey et al2008 MBE conference

MBE growth is line-of-sight → gaps in regrowth near gate edges

MEE pro ides s rface migration d ring regro th eliminates gapsMEE provides surface migration during regrowth→ eliminates gaps

SEM Cross Section SEM Side View (Oblique)

SiO2 dummy t

SiO2 dummy t

Top of gate

Side of gate

Original InterfaceInGaAs Regrowth

gate

InGaAs Regrowth

gate

g

SEM: Greg Burek

No gapsSEM: Uttam Singisetti

High Si activation (4x1019 cm-3)

60

g pSmooth surfaces.

High Si activation (4x10 cm ). Quasi-selective: no growth on sidewalls

Page 61: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Self-Aligned Planar III-V MOSFETs by RegrowthWistey Singisetti BurekLee

N+ InGaAs regrowth, Mo contact metal

Mo contact metal

gate

Page 62: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Self-Aligned Planar III-V MOSFETs by RegrowthWistey Singisetti BurekLee

Page 63: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Regrown S/D FETs: Images

Page 64: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Regrown S/D FETs: Images

Page 65: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

III-V MOSIII V MOS

Page 66: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

InGaAs / InP MOSFETs: Why and Why Not

lo m*/m high more c rrent

0.250.7 nm, n=6 0 4 nm n=6

low m*/m0 → high vcarrier → more currentlow m*/m0 → low density of states → less current

ballistic / degenerate

0.15

0.2

K

0.8 nm, n=1

0.7 nm, n 6 0.4 nm, n=6

( ) 2/1*

2/3

where

, V 1m

mA84

⋅=

⎟⎟⎠

⎞⎜⎜⎝

⎛ −⋅⎟⎟⎠

⎞⎜⎜⎝

⎛⋅=

o

thgs

mmnK

VVKJ

μError bars on Si data points correct for (Ef-Ec)>> kT approximation

calculation

0.05

0.1

K

1.0 nm, n=1

( )2/3*

,1

where

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⋅⋅⎟⎟

⎞⎜⎜⎝

⎛+

=

oox

odos

mmn

cc

Kn = # band minimacdos,o = density of states capacitance for m*=mo & n=1

00.01 0.1 1

m*/mo

EOT includes wavefunction depth (0.5 nm for 3.5 nm InGaAs well)

Low m* impairs vertical (hence L ) scaling ;Low m impairs vertical (hence Lg ) scaling ;InGaAs no good below 22-nm.

InGaAs allows very low access resistance

Si wins if high-K scales below 0.6 nm EOT; otherwise, III-V has a chance

InGaAs allows very low access resistance

Page 67: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

InGaAs/InP Channel MOSFETs for VLSI

Low-m* materials are beneficial only if EOT cannot scale below ~1/2 nm

Devices cannot scale much below 22 nm Lg→ limits IC density

Little CV/I benefit in gate lengths below 22 nm LgLittle CV/I benefit in gate lengths below 22 nm Lg

Need device structure with very low access resistanceNeed device structure with very low access resistanceradical re-work of device structure & process flow

Gate dielectrics, III-V growth on Si: also under intensive development