Top Banner
Supplement (Basic and Technical Data) 1
36

Technical

Nov 14, 2014

Download

Documents

shahzad afzal

Supplement (Basic and Technical Data) 1

Supplem ent (Basic and Technical Data)

Table of Contents
■ Operating Conditions ......................................... 3 ■ Selection Table of Bearings ................................ 4 ■ Friction Characteristics ..................................... 5 ■ Installation ........................................................ 6 ■ Calculations of Punching Force ........................... 7 ■ Steel Materials ..............................................
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Technical

Supplement (Basic and Technical Data) 1

Page 2: Technical

Supplement (Basic and Technical Data) 2

Table of Contents

Supplement (Basic and Technical Data)

......................................... 3................................ 4

..................................... 5........................................................ 6

........................... 7.................................................. 8

......................................... 9

................................................. 10............................ 11

........................................... 13........... 15

............. 16

............. 17............................................... 18

....................................... 23

............................... 24............................................................ 26

........................ 32...................... 33

..................... 34........... 36

................................... 36

Operating Conditions Selection Table of Bearings Friction Characteristics Installation Calculations of Punching Force

Areas of Plane Figures Volumes, Surface Area,

Centers of Gravity of Solids SI Units Table of Unit Conversion Factors Hexagon Socket Head Cap Screw Compression and

Extension Coil Spring Design Data Coefficients of Linear Thermal Expansion Average Specific Gravity

Steel MaterialsNon-ferrous MaterialsQuenching / Surface Treatment and Hardness TestsConversion Table of HardnessSurface RoughnessGeneral Dimensional Tolerance of CuttingTolerances of Commonly Used Hole FitsTolerances of Commonly Used Shaft FitsOilless Bearings

Page 3: Technical

Supplement (Basic and Technical Data) 3

Properties

Products

Allowable Range

Lubricationstatus

Allowable Pressure(kgf/cm )

AllowableVelocity(m/min)

Allowable PVvalue

(kgf/cm ㆍm/min)

AllowableTemperature

( )

#500SP

NoLubrication

300 (1,000) 30 1,000 +300

500(SL4) (1,000) 15 1,000 + 80

PeriodicLubrication

300 (1,000) 60 2,000 +150

#500B

NoLubrication

150(500) 50 600 +400

PeriodicLubrication

150 100 1,000 +150

#500F

NoLubrication

50(750) 50 500 +400

PeriodicLubrication

80 100 1,000 +150

#100No

Lubrication200 70 1,500 + 80

#200A+GrNo

Lubrication200 25 1,000 + 80

#200APeriodic

Lubrication200 100 1,500 +120

#200B Underwater 150 1,000 3,000 + 60

LB SeriesNo

Lubrication500(2,800) 30 1,080(2,160) +270

LX SeriesPeriodic

Lubrication500(1,400) 70 1,080(2,760) +110

LI Series PeriodicLubrication

350(1,000) 120 2,500 +150

LD SeriesPeriodic

Lubrication300 150 2,000 +150

- ( ) Static allowable loads (without sliding or very low speed)- (Sl4): Solid lubricant for underwater or extremely high load application

Note

Operating Conditions

Page 4: Technical

Supplement (Basic and Technical Data) 4

Selection Table of Bearings

×: , : , : , : Excellent Good Possible Not Good

ProductsApplications

DDU01(LB)

DBX01(LX) #500SP #200 #100 LI & LD

Operating

Conditions

High Load × Impact/Oscillating Load × Rotational Motion Reciprocating Motion Angular Rocking Motion Low Speed Medium Speed High Speed × ×

(Water)

High/Load Temperature × × × ×Chemical Resistance × × Underwater(marine) × Harsh Environments × × × ×

Machinery

Automobiles Home Appliances × × Agricultural Machinery Office Equipments × × Transportation Machinery × Construction Machinery × Machine Tools Vessels × Water Gates/Generators × Steel Mills × × Press Dies(Stamping Tools) × × Textile Machinery Printing/Packaging Machinery Injection Molding Machinery Tire Manufacturing × Hydraulic/Pneumatic Machinery Bridges/Structures × × × ×Chemical Machinery × × ×Paper Mills × Reduction/Transmission × Waste-water Treatments/WaterPumps × × × ×

Miscellaneous

With Lubrications Price Dimension Stabil i ty Standard Size Light Weight/Compact Design

Page 5: Technical

Supplement (Basic and Technical Data) 5

Friction Characteristics

Page 6: Technical

Supplement (Basic and Technical Data) 6

Installation

Press Fit-A screw or hydraulic press is used for press fitting.-Press fitting is accomplished by using a jig, which is perpendicular to the center of bushing.-Insert-end of housing ID is chamfered to 15 ~20 .

SI Units : Consistent unit recommended and adopted in the general meeting of weights and measures.

Please use following methods when retaining bushings within a housing.

Bearing Retention

Conversion Table of Units

-0.1

~ -0

.2

O.D

O.D

(H7) Force

( )Jig-Mandrel ( )Bushing ( )Housing (Press Fitting)

3.2

I.D

15 ~

20

˚˚

I.D˚ ˚

Indication Conversion

Length 1mm = 0.03937inch, 1inch = 25.4mm

Mass 1kg = 2.2046lb 1lb = 0.4536kg

Force1N = 1.0197 × 10 kgf 1Kgf = 9.8N1N = 0.2248lbf, 1lbf = 4.448N

Pressure1N/mm = 1Mpa = 1.0197×10kgf/cm = 10bar1kgf/cm = 9.8×10 N/mm1N/mm = 145psi

Velocity1m/sec = 60m/min, 1m/min = 0.01667m/sec1m/sec = 196.85f/min, 1f/min = 0.00508m/sec

Revolutions per Minute 1S = 60RPM 1RPM = 0.01667S

Frequency 1S = 60CPM 1CPM = 0.01667S

Angle 1rad = 1° = rad

Temperature = +32 = (-32)

-1

2

2

2

2

-2 2

-1

-1

-1

-1

180

95

π180°

95

π

Page 7: Technical

Supplement (Basic and Technical Data) 7

Calculations of Punching Force

Shearing and Tensile Strength of Various Materials

< >

P :

: (mm)

t : (mm)

(N/mm )

τ

:

2

Meaning of SymbolsPunching Force (KN)

Punching profile length

Material Thickness

Shearing Strength of Material

P =1000ℓ× ×τt

MaterialShearing Strength (N/mm ) Tensile Strength (N/mm )

Soft Hard Soft Hard

Lead 20 ~ 30 - 25 ~ 40 -

Tin 30 ~ 40 - 40 ~ 50 -

Aluminum 70 ~ 110 130 ~ 160 80 ~ 120 170 ~ 220

Zinc 120 200 150 250

Copper 180 ~ 220 250 ~ 300 220 ~ 280 300 ~ 400

Brass 220 ~ 300 350 ~ 400 280 ~ 350 400 ~ 600

Bronze 320 ~ 400 400 ~ 600 400 ~ 500 500 ~ 750

Nickel Silver 280 ~ 360 450 ~ 600 350 ~ 450 550 ~ 700

Silver 190 - 260 -

Hot-Rolled Soft SteelPlates, Sheets, Strips

260 over 280 over

Cold-Rolled Carbon SteelPlates, Sheets, Strips

260 over 280 over

Steel Plates forstructural use (SS400) 330 ~ 420 410 ~ 520

Steel (0.1% C) 250 320 320 400

Steel (0.2% C) 320 400 400 500

Steel (0.3% C) 360 480 450 600

Steel (0.4% C) 450 560 560 720

Steel (0.6% C) 560 720 720 900

Steel (0.8% C) 720 900 900 1100

Steel (1.0% C) 800 1050 1000 1300

Stainless Steel 520 560 650 ~ 700 -

Nickel Steel 250 - 440 ~ 500 570 ~ 630

Page 8: Technical

Supplement (Basic and Technical Data) 8

Steel Materials

Korea Industrial Standards TensileStrength(N/mm )

Elongation(%)

Hardness(HB) JIS AISIㆍASTM DIN

Name(No.) Code

Rolled Steels forGeneral StructuralUse (KS D 3503)

SS400 400~510 17~24 - SS400 ASTM 45~65 St44-2, -3

Carbon SteelsBars for GeneralStructural Use(KS D 3566)

SPS400 400 over 23 over - STK400 - St44-2

Carbon SteelsBars for MachineStructural Use(KS D 3517)

STKM11A 290 over 30 over - STKM11A ASTM 1008 St34-2

Carbon Steels forMachine StructuralUse (KS D 3752)

SM20C 400 over 28 over 116~174 S20C AISI 1020 CK22

SM45C 570 over 20 over 167~229 S45C AISI 1045 CK45

Nickel-ChromiumSteels(KS D 3708)

SNC415 780 over 17 over - SNC415 - -

SNC418 980 over 12 over - SNC418 - -

Chromium-Molybdenum Steels(KS D 3711)

SCM420 830 over 14 over 262~352 SCM420 - -

SCM435 930 over 15 over 269~331 SCM435 AISI 4135 34CrMo4SCM440 980 over 12 over 285~352 SCM440 AISI 4140 42CrMo4

Carbon ToolSteels(K S D 3751)

STC1 - - 217 under SK1 ASTM W1-13 -STC3 - - 212 under SK3 ASTM W1-10 C105W1STC5 - - 207 under SK5 ASTM W1-8 C80W1

High-Speed ToolSteels(KS D 3522)

SKH3 - 269 under SKH3 ASTM T4 S18-1-2-5SKH10 - - 285 under SKH10 ASTM T15 S12-1-4-5SKH55 - - 277 under SKH55 - S6-5-2-5SKH59 - - 277 under SKH59 ASTM M42 S2-10-1-8

Alloy Tool Steels(KS D 3753)

STS2 - - 217 under SKS2 - 105WCr6STD11 - - 255 under SKD11 ASTM BD2 -STD6 - - 299 under SKD6 ASTM H11 X38CrMoV51

Spring Steels(KS D 3071)

SPS3 1226 over 9 over 341~401 SUP3 AISI 1075 -SPS7 1230 over 9 over 363~429 SUP7 AISI 9260 -SPS9 1230 over 9 over 363~429 SUP9 - 55Cr3

High CarbonChromium Steels(KS D 3525)

STB2 - - 217 under SUJ2 ASTM 52100 100Cr6

STB3 - - 217 under SUJ3 - -

Carbon SteelCastings(KS D 4101)

SC450 450 over 19 over - SC450 ASTM 65-35 GS-45

Gray Iron Castings(KS D 4301)

GC200 200 over - 223 under FC200 ASTM Class35 -

GC250 250 over - 241 under FC250 ASTM Class40 -

SpheroidalGraphite IronCastings(KS D 4302)

GCD450 450 over 10 over 143~217 FCD450 ASTM 65-45-12 GGG-45

GCD600 600 over 3 over 192~269 FCD600 ASTM 80-55-06 GGG-60

Page 9: Technical

Supplement (Basic and Technical Data) 9

Nonferrous Metal Materials

( ) : Old Codes

Korea Industrial Standards TensileStrength(N/mm )

Elongation(%)

Hardness(HB)

Related to Foreign Standards

Name(No.) Code JIS UNS(ASTM) DIN

Brass Castings(KS D 6024)

CAC202(YBsC2) 195 over 20 over - CAC202 C85400 CuZn33Pb

CAC203(YBsC3) 245 over 20 over - CAC203 C85700 CuZn37Pb

High StrengthBrass Castings(KS D 6024)

CAC301(HBsC1) 430 over 20 over 90 over CAC301 C86500 CuZn35Al1

CAC302(HBsC2) 490 over 18 over 100 over CAC302 C86400 CuZn34Al1

CAC303(HBsC3) 635 over 15 over 165 over CAC303 C86200 CuZn25Al5

CAC304(HBsC4) 755 over 12 over 200 over CAC304 C86300 CuZn25Al5

BronzeCastings(KS D 6024)

CAC401(BC1) 165 over 15 over - CAC401 C84400 -

CAC402(BC2) 245 over 20 over - CAC402 C90300 -

CAC403(BC3) 245 over 15 over - CAC403 C90500 CuSn10Zn

CAC406(BC6) 195 over 15 over - CAC406 C83600 CuSn5ZnPb

CAC407(BC7) 215 over 18 over - CAC407 C92200 -

PhosphorBronzeCastings(KS D 6024)

CAC502A(PBC2) 195 over 5 over 60 over CAC502A - CuSn10

CAC502B(PBC2B) 295 over 5 over 80 over CAC502B C90700 CuSn12

CAC503B(PBC3B) 265 over 3 over 90 over CAC503B C91000 CuSn12

LeadBronzeCastings(KS D 6024)

CAC602(LBC2) 195 over 10 over 65 over CAC602 - CuPb5Sn

CAC603(LBC3) 175 over 7 over 60 over CAC603 C93700 CuPb10Sn

CAC604(LBC4) 165 over 5 over 55 over CAC604 C93800 CuPb15Sn

CAC605(LBC5) 145 over 5 over 45 over CAC605 - CuPb20Sn

AluminiumBronzeCastings(KS D 6024)

CAC701(AIBC1) 440 over 25 over 80 over CAC701 C95200 CuAl10Fe

CAC702(AIBC2) 490 over 20 over 120 over CAC702 C95400 CuAl9Ni

CAC703(AIBC3) 590 over 15 over 150 over CAC703 C95800 CuAl10Ni

CAC704(AIBC4) 590 over 15 over 160 over CAC704 C95700 -

Silicon BronzeCastings(KS D 6024)

CAC801(SzBC1) 345 over 25 over - CAC801 C87400 -

CAC802(SZBC2) 440 over 12 over - CAC802 C87500 CuZn15Si4

CAC803(SzBC3) 390 over 20 over - CAC803 - -

Page 10: Technical

Hardness Tests and Applicable Parts

Heat Treatment for Steels

Supplement (Basic and Technical Data) 10

TypeVickers

Hardness(HV)

QuenchingDepth(mm)

Strain ApplicableMaterial

TypicalMaterial Remarks

Quenching Max.750 Full DepthVaries

accordingto material

High CarbonSteels

(C>0.45%)

STB2SKH55STC4

SM45C

* Not recommended dedfor long or precisionparts

Carburizingand

QuenchingMax.750 Standard:0.5

Max.:2 ModerateLow Carbon

Steel(C<0.3%)

SCM415SNCM220

* Quenching depth andarea specified ondrawings

* Applicable to precisionparts

HighFrequencyQuenching

Max.500 1~2 High

MediumCarbon

Steel(0.3%<0.5%)

SM45C

* Quenching depth andarea specified ondrawings

* Expensive in smallvolume

* Good Strain resistance

Nitriding 900~1000 0.1~0.2 Low NitralloySteel SACM645

* Applicable to precisionparts

* Obtains highest hardnessof all quenchingtechniques

* Applicable to spindlesfor radial bearings

Bluing - - - Wire Rods SWP-B

* Low temperatureannealing

* Removes internal stressin forming to enhanceelasticity

TestMethod Principles Applicable Heat

Treated Parts Characteristics

BrinellHardness

* A known load applied through a hardensteel ball will make permanentindentation in the metal. The Brinellhardness number is found as a numberequal to the applied load divided by thespherical surface area of indentation

* Annealed Parts

* Normalized Parts

* Applicable to unevenmaterials due to largeindentation

* Not applicable to smallor thin specimens

RockwellHardness

* The Rockwell hardness tester willmeasure hardness by determining thedepth of penetration of penetrator, asteel ball or a diamond spheroconicalpenetrator, into specimen under certainfixed condition of test

* Quenched-TemperedParts

* Carburized/NitridedSurfaces

* Thin Sheets, such asCopper, Brass,Bronze, etc.

* Hardness number isobtained very quickly

* Suitable for intermediatetest to actual products

* Be cautious becausevarious types of tests areavailable

VickersHardness

* Similar in principle to the Brinellhardness test. The standard Vickerspenetrator is a square-based diamondpyramid with 136. The Vickers hardnessnumber equals the applied load inkilograms divided by the area ofpyramidal impression

* Parts with HighFrequency quenching

* Harden layer depth incarburized/nitridedparts

* Applicable to small andthin specimens

* Applicable to all materialsbecause of diamondpenetrators

Page 11: Technical

Supplement (Basic and Technical Data) 11

Conversion Table of Hardness

Conversion table for approximate values for steel according to Rockwell hardness 'C' scale ①

RockwellC-Scale

Hardness(HRC)

VickersHardness

(HV)

Brinell Hardness (HB)Load: 3000kgf, 10mm

Ball

Rockwell Hardness

ShoreHardness

(HS)

TensileStrength

(Approximatevalue) Mpa(kgf/mm2)

RockwellC-Scale

Hardness(HRC)

StandardBall

TungstenCarbide

Ball

A-Scale60-kgf Load

DiamondConical

Penetrator(HRA)

B-Scale100-kgf

Load 1.6mm(1/16 inch)Ball (HRB)

D-Scale100-kgf Load

DiamondConical

Penetrator(HRD)

68 940 - - 85.6 - 76.9 97 - 68

67 900 - - 85.0 - 76.1 95 - 67

66 865 - - 84.5 - 75.4 92 - 66

65 832 - (739) 83.9 - 74.5 91 - 65

64 800 - (722) 83.4 - 73.8 88 - 64

63 772 - (705) 82.8 - 73.0 87 - 63

62 746 - (688) 82.3 - 72.2 85 - 62

61 720 - (670) 81.8 - 71.5 83 - 61

60 697 - (654) 81.2 - 70.7 81 - 60

59 674 - (634) 80.7 - 69.9 80 - 59

58 653 - 615 80.1 - 69.2 78 - 58

57 633 - 595 79.6 - 68.5 76 - 57

56 613 - 577 79.0 - 67.7 75 - 56

55 595 - 560 78.5 - 66.9 74 2075 (212) 55

54 577 - 543 78.0 - 66.1 72 2015 (205) 54

53 560 - 525 77.4 - 65.4 71 1950 (199) 53

52 544 (500) 512 76.8 - 64.6 69 1880 (192) 52

51 528 (487) 496 76.3 - 63.8 68 1820 (186) 51

50 513 (475) 481 75.9 - 63.1 67 1760 (179) 50

49 498 (464) 469 75.2 - 62.1 66 1695 (173) 49

48 484 451 455 74.7 - 61.4 64 1635 (167) 48

47 471 442 443 74.1 - 60.8 63 1580 (161) 47

46 458 432 432 73.6 - 60.0 62 1530 (156) 46

45 446 421 421 73.1 - 59.2 60 1480 (151) 45

44 434 409 409 72.5 - 58.5 58 1435 (146) 44

43 423 400 400 72.0 - 57.7 57 1385 (141) 43

42 412 390 390 71.5 - 56.9 56 1340 (136) 42

41 402 381 381 70.9 - 56.2 55 1295 (132) 41

40 392 371 371 70.4 - 55.4 54 1250 (127) 40

39 382 362 362 69.9 - 54.6 52 1215 (124) 39

Page 12: Technical

Supplement (Basic and Technical Data) 12

Conversion Table of Hardness

RockwellC-Scale

Hardness(HRC)

VickersHardness

(HV)

Brinell Hardness(HB) Load: 3000kgf,

10mm Ball

Rockwell Hardness

ShoreHardness

(HS)

Tensile Strength(Approximate

value)Mpa (kgf/mm2)

RockwellC-Scale

Hardness(HRC)

③Standard

BallTungstenCarbide

Ball

A-Scale60-kgfLoad

DiamondConical

Penetrator(HRA)

B-Scale100-kgf Load1.6mm (1/16

inch) Ball(HRB)

D-Scale100-kgf Load

DiamondConical

Penetrator(HRD)

38 372 353 353 69.4 - 53.8 51 1180 (120) 3837 363 344 344 68.9 - 53.1 50 1160 (118) 3736 354 336 336 68.4 (109.0) 52.3 49 1115 (114) 3635 345 327 327 67.9 (108.5) 51.5 48 1080 (110) 3534 336 319 319 67.4 (108.0) 50.8 47 1055 (108) 3433 327 311 311 66.8 (107.5) 50.0 46 1025 (105) 3332 318 301 301 66.3 (107.0) 49.2 44 1000 (102) 3231 310 294 294 65.8 (106.0) 48.4 43 980 (100) 3130 302 286 286 65.3 (105.5) 47.7 42 950 (97) 3029 294 279 279 64.7 (104.5) 47.0 41 930 (95) 2928 286 271 271 64.3 (104.0) 46.1 41 910 (93) 2827 279 264 264 63.8 (103.0) 45.2 40 880 (90) 2726 272 258 258 63.3 (102.5) 44.6 38 860 (88) 2625 266 253 253 62.8 (101.5) 43.8 38 840 (86) 2524 260 247 247 62.4 (101.0) 43.1 37 825 (84) 2423 254 243 243 62.0 100.0 42.1 36 805 (82) 2322 248 237 237 61.5 99.0 41.6 35 785 (80) 2221 243 231 231 61.0 98.5 40.9 35 770 (79) 2120 238 226 226 60.5 97.8 40.1 34 760 (77) 20

(18) 230 219 219 - 96.7 - 33 730 (75) (18)(16) 222 212 212 - 95.5 - 32 705 (72) (16)(14) 213 203 203 - 93.9 - 31 675 (69) (14)(12) 204 194 194 - 92.3 - 29 650 (66) (12)(10) 196 187 187 - 90.7 - 28 620 (63) (10)(8) 188 179 179 - 89.5 - 27 600 (61) (8)(6) 180 171 171 - 87.1 - 26 580 (59) (6)(4) 173 165 165 - 85.5 - 25 550 (56) (4)(2) 166 158 158 - 83.5 - 24 530 (54) (2)(0) 160 152 152 - 81.7 - 24 515 (53) (0)

Note)

The values in correspond to Table 1 of ASTM E 140 (Adjusted by SAE, ASM, and ASTM in collaboration)

The values and units in parentheses have been converted from psi based on conversion tables of JIS Z 8413 and Z 8438

The Values in parentheses are beyond the normal range and are given for reference only

Page 13: Technical

Supplement (Basic and Technical Data) 13

Surface Roughness

Typical methods for measuring surface roughness

Rmax=Rp+Rv

Rp

Rv

Rm

ax

m

Page 14: Technical

The interdependence for 3 classes is not strictly enforced. The evaluation lengths of Ra, Rmax and Rz : Five times the cut-off value and standard length respectively.

Reference : Relationship between arithmetical mean roughness(Ra) and conventional symbols

Supplement (Basic and Technical Data) 14

Surface Roughness

Arithmetical mean roughness(Ra)

Max.height(Rmax)

Ten-pointmean

roughness(Rz)

Standardlength ofRmaxㆍRz

(mm)

Triangularindication

Preferrednumberseries

Cut-offvalue π

C(mm)

Indication ofsurface texture on

drawingsPreferred number

series

0.012a 0.08

0.012 ~ 0.2

0.05s 0.05z

0.08

0.025a

0.25

0.1s 0.1z

0.05 a 0.2s 0.2z

0.25

0.1 a

0.8

0.4s 0.4z

0.2 a 0.8s 0.8z

0.8

0.4 a

0.4 ~ 1.6

1.6s 1.6z

0.8 a 3.2s 3.2z

1.6 a 6.3s 6.3z

3.2 a

0.25 3.2 ~ 6.3

2.5s 12.5z

2.56.3 a 25s 25z

12.5 a

8

12.5 ~ 25

50s 50z

25 a 100s 100z

8

50 a

50 ~ 100

200s 200z

~

100 a - 400s 400z -

Page 15: Technical

Supplement (Basic and Technical Data) 15

General Dimensional Tolerance of Cutting

3. Tolerance of angle dimension

1. General dimensional tolerance of cutting (excluding chamfered parts)

Note (') : Tolerance for standard dimensions of less than 0.5mm shall be specified individually.

2. Length dimensional tolerance in chamfered parts (corner roundness or chamfer dimension)

unit : mm

unit : mm

unit : mm

Length dimensional tolerance

Note (') : Tolerance for standard dimensions of less than 0.5mm shall be specified individually.

Degree Standard Dimension

Symbol Explanation

0.5(')to

3 incl.

Over 3to

6 incl.

Over 6to

30 incl.

Over 30to

120 incl.

Over 120to

400 incl.

Over 400to

1000 incl.

Over 1000to

2000 incl.

Over 2000to

4000 incl.Tolerance

f Fine ±0.05 ±0.05 ± 0.1 ±0.15 ± 0.2 ± 0.3 ± 0.5 -

m Medium ± 0.1 ± 0.1 ± 0.2 ± 0.3 ± 0.5 ± 0.8 ± 1.2 ± 2

c Coarse ± 0.2 ± 0.3 ± 0.5 ± 0.8 ± 1.2 ± 2 ± 3 ± 4

Degree Standard Dimension

Symbol Explanation0.5(') to 3 incl. Over 3 to 6 incl. Over 6

Tolerance

f Fine± 0.2 ± 0.5 ± 1

m Medium

c Coarse ± 0.4 ± 1 ± 2

Degree Shorter Side of Corner

Symbol Explanation10 or less

Over 10 to50 incl.

Over 50 to120 incl.

Over 120 to400 incl.

Over 400

Tolerance

f Fine± 1° ± 30' ± 20' ± 10' ± 5'

m Medium

c Coarse ± 1°30' ± 1° ± 30' ± 15' ± 10'

Page 16: Technical

Supplement (Basic and Technical Data) 16

Tolerances of Commonly Used Hole Fits

Tolerances of holes to be used in commonly used fitsUnit :

BasicSizeStep(mm)

Over ― 3 6 10 14 18 24 30 40 50 65 80 100 120 140 160 180 200 225 250 280 315 355 400 450

orless 3 6 10 14 18 24 30 40 50 65 80 100 120 140 160 180 200 225 250 280 315 355 400 450 500

B10 +180+140

+188+140

+208+150

+ 2 2 0+ 1 5 0

+ 2 4 4+ 1 6 0

+270+170

+280+180

+310+190

+320+200

+360+220

+380+240

+420+260

+440+280

+470+310

+525+340

+565+380

+605+420

+690+480

+750+540

+830+600

+910+680

+1010+760

+1090+840

C9 +85+60

+100+70

+116+80

+ 1 3 8+ 9 5

+ 1 6 2+ 1 1 0

+182+120

+192+130

+214+140

+224+150

+257+170

+267+180

+300+200

+310+210

+330+230

+355+240

+375+260

+395+280

+430+300

+460+330

+500+360

+540+400

+595+440

+635+480

C10 +100+60

+118+70

+138+80

+ 1 6 5+ 9 5

+ 1 9 4+ 1 1 0

+220+120

+230+130

+260+140

+270+150

+310+170

+320+180

+360+200

+370+210

+390+230

+425+240

+445+260

+465+280

+510+300

+540+330

+590+360

+630+400

+690+440

+730+480

D8 +34+20

+48+30

+62+40

+ 7 7+ 5 0

+ 9 8+ 6 5

+ 1 1 9+ 8 0

+ 1 4 6+ 1 0 0

+ 1 7 4+ 1 2 0

+ 2 0 8+ 1 4 5

+ 2 4 2+ 1 7 0

+ 2 7 1+ 1 9 0

+ 2 9 9+ 2 1 0

+ 3 2 7+ 2 3 0

D9 +45+20

+60+30

+763+40

+ 9 3+ 5 0

+ 1 1 7+ 6 5

+ 1 4 2+ 8 0

+ 1 7 4+ 1 0 0

+ 2 0 7+ 1 2 0

+ 2 4 5+ 1 4 5

+ 2 8 5+ 1 7 0

+ 3 2 0+ 1 9 0

+ 3 5 0+ 2 1 0

+ 3 8 5+ 2 3 0

D10 +60+20

+78+30

+98+40

+ 1 2 0+ 5 0

+ 1 4 9+ 6 5

+ 1 8 0+ 8 0

+ 2 2 0+ 1 0 0

+ 2 6 0+ 1 2 0

+ 3 0 5+ 1 4 5

+ 3 5 5+ 1 7 0

+ 4 0 0+ 1 9 0

+ 4 4 0+ 2 1 0

+ 4 8 0+ 2 3 0

E7 +24+14

+32+20

+40+25

+ 5 0+ 3 2

+ 6 1+ 4 0

+ 7 5+ 5 0

+ 9 0+ 6 0

+ 1 0 7+ 7 2

+ 1 2 5+ 8 5

+ 1 4 6+ 1 0 0

+ 1 6 2+ 1 1 0

+ 1 8 2+ 1 2 5

+ 1 9 8+ 1 3 5

E8 +28+14

+38+20

+47+25

+ 5 9+ 3 2

+ 7 3+ 4 0

+ 8 9+ 5 0

+ 1 0 6+ 6 0

+ 1 2 6+ 7 2

+ 1 4 8+ 8 5

+ 1 7 2+ 1 0 0

+ 1 9 1+ 1 1 0

+ 2 1 4+ 1 2 5

+ 2 3 2+ 1 3 5

E9 +39+14

+50+20

+61+25

+ 7 5+ 3 2

+ 9 2+ 4 0

+ 1 1 2+ 5 0

+ 1 3 4+ 6 0

+ 1 5 9+ 7 2

+ 1 8 5+ 8 5

+ 2 1 5+ 1 0 0

+ 2 4 0+ 1 1 0

+ 2 6 5+ 1 2 5

+ 2 9 0+ 1 3 5

F6 +12+6

+18+10

+22+13

+ 2 7+ 1 6

+ 3 3+ 2 0

+ 4 1+ 2 5

+ 4 9+ 3 0

+ 5 8+ 3 6

+ 6 8+ 4 3

+ 7 9+ 5 0

+ 8 8+ 5 6

+ 9 8+ 6 2

+ 1 0 8+ 6 8

F7 +16+6

+22+10

+28+13

+ 3 4+ 1 6

+ 4 1+ 2 0

+ 5 0+ 2 5

+ 6 0+ 3 0

+ 7 1+ 3 6

+ 8 3+ 4 3

+ 9 6+ 5 0

+ 1 0 8+ 5 6

+ 1 1 9+ 6 2

+ 1 3 1+ 6 8

F8 +20+6

+28+10

+35+13

+ 4 3+ 1 6

+ 5 3+ 2 0

+ 6 4+ 2 5

+ 7 6+ 3 0

+ 9 0+ 3 6

+ 1 0 6+ 4 3

+ 1 2 2+ 5 0

+ 1 3 7+ 5 6

+ 1 5 1+ 6 2

+ 1 6 5+ 6 8

G6 +8+2

+12+4

+14+5

+ 1 7+ 6

+ 2 0+ 7

+ 2 5+ 9

+ 2 9+ 1 0

+ 3 4+ 1 2

+ 3 9+ 1 4

+ 4 4+ 1 5

+ 4 9+ 1 7

+ 5 4+ 1 8

+ 6 0+ 2 0

G7 +12+2

+16+4

+20+5

+ 2 4+ 6

+ 2 8+ 7

+ 3 4+ 9

+ 4 0+ 1 0

+ 4 7+ 1 2

+ 5 4+ 1 4

+ 6 1+ 1 5

+ 6 9+ 1 7

+ 7 5+ 1 8

+ 8 3+ 2 0

H6 +60

+80

+90

+ 1 10

+ 1 30

+ 1 60

+ 1 90

+ 2 20

+ 2 50

+ 2 90

+ 3 20

+ 3 60

+ 4 00

H7 +100

+120

+150

+ 1 80

+ 2 10

+ 2 50

+ 3 00

+ 3 50

+ 4 00

+ 4 60

+ 5 20

+ 5 70

+ 6 30

H8 +140

+180

+220

+ 2 70

+ 3 30

+ 3 90

+ 4 60

+ 5 40

+ 6 30

+ 7 20

+ 8 10

+ 8 90

+ 9 70

H9 +250

+300

+360

+ 4 30

+ 5 20

+ 6 20

+ 7 40

+ 8 70

+ 1 0 00

+ 1 1 50

+ 1 3 00

+ 1 4 00

+ 1 5 50

H10 +400

+480

+580

+ 7 00

+ 8 40

+ 1 0 00

+ 1 2 00

+ 1 4 00

+ 1 6 00

+ 1 8 50

+ 2 1 00

+ 2 3 00

+ 2 5 00

JS6 ±3 ±4 ±4.5 ± 5 . 5 ± 6 . 5 ±8 ±9 . 5 ±1 1 ±1 2 . 5 ±1 4 . 5 ±1 6 ±1 8 ±2 0

JS7 ±5 ±6 ±7 ± 9 ± 1 0 ±1 2 ±1 5 ±1 7 ±2 0 ±2 3 ±2 6 ±2 8 ±3 1

K6 0-6

+2-6

+2-7

+ 2- 9

+ 2- 1 1

+ 3- 1 3

+ 4- 1 5

+ 4- 1 8

+ 4- 2 1

+ 5- 2 4

+ 5- 2 7

+ 7- 2 9

+ 8- 3 2

K7 0-10

+3-9

+5-10

+ 6- 1 2

+ 6- 1 5

+ 7- 1 8

+ 9- 2 1

+ 1 0- 2 5

+ 1 2- 2 8

+ 1 3- 3 3

+ 1 6- 3 6

+ 1 7- 4 0

+ 1 8- 4 5

M6 -2-8

-1-9

-3-12

- 4- 1 5

- 4- 1 7

- 4- 2 0

- 5- 2 4

- 6- 2 8

- 8- 3 3

- 8- 3 7

- 9- 4 1

- 1 0- 4 6

- 1 0- 5 0

M7 -2-12

0-12

0-15

0- 1 8

0- 2 1

0- 2 5

0- 3 0

0- 3 5

0- 4 0

0- 4 6

0- 5 2

0- 5 7

0- 6 3

N6 -4-10

-5-13

-7-16

- 9- 2 0

- 1 1- 2 4

- 1 2- 2 8

- 1 4- 3 3

- 1 6- 3 8

- 2 0- 4 5

- 2 2- 5 1

- 2 5- 5 7

- 2 6- 6 2

- 2 7- 6 7

N7 -4-14

-4-16

-4-19

- 5- 2 3

- 7- 2 8

- 8- 3 3

- 9- 3 9

- 1 0- 4 5

- 1 2- 5 2

- 1 4- 6 0

- 1 4- 6 6

- 1 6- 7 3

- 1 7- 8 0

P6 -6-12

-9-17

-12-21

- 1 5- 2 6

- 1 8- 3 1

- 2 1- 3 7

- 2 6- 4 5

- 3 0- 5 2

- 3 6- 6 1

- 4 1- 7 0

- 4 7- 7 9

- 5 1- 8 7

- 5 5- 9 5

P7 -6-16

-8-20

-9-24

- 1 1- 2 9

- 1 4- 3 5

- 1 7- 4 2

- 2 1- 5 1

- 2 4- 5 9

- 2 8- 6 8

- 3 3- 7 9

- 3 6- 8 8

- 4 1- 9 8

- 4 5- 1 0 8

R7 -10-20

-11-23

-13-28

- 1 6- 3 4

- 2 0- 4 1

- 2 5- 5 0

-30-60

-32-62

-38-73

-41-76

-48-88

-50-90

-53-93

-60-106

-63-109

-67-113

-74-126

-78-130

-87-144

-93-150

-103-166

-109-172

S7 -14-24

-15-27

-17-32

- 2 1- 3 9

- 2 7- 4 8

- 3 4- 5 9

-42-72

-48-78

-58-93

-66-101

-77-117

-85-125

-93-133

-105-151

-113-159

-123-169 ― ― ―

T7 ― ― ― ― ― - 3 3- 5 4

-39-64

-45-70

-55-85

-64-94

-78-113

-91-126

-107-147

-119-159

-131-171 ― ― ― ―

U7 -18-28

-19-31

-22-37

- 2 6- 4 4

- 3 3- 5 4

- 4 0- 6 1

-51-76

-61-86

-76-106

-91-121

-111-146

-131-166 ― ― ― ― ―

X7 -20-30

-24-36

-28-43

- 3 3- 5 1

- 3 8- 5 6

- 4 6- 6 7

- 5 6- 7 7 ― ― ― ― ― ― ― ―

Tole

ranc

e Zo

ne C

lass

of H

ole

Page 17: Technical

Supplement (Basic and Technical Data) 17

Tolerances of Commonly Used Shaft Fits

Tolerances of Shafts to be used in commonly used fitsUnit :

BasicSizeStep(mm)

Over ― 3 6 10 14 18 24 30 40 50 65 80 100 120 140 160 180 200 225 250 280 315 355 400 450

orless 3 6 10 14 18 24 30 40 50 65 80 100 120 140 160 180 200 225 250 280 315 355 400 450 500

b9 - 1 4 0- 1 6 5

- 1 4 0- 1 7 0

- 1 5 0- 1 8 6

- 1 5 0- 1 9 3

- 1 6 0- 2 1 2

- 1 7 02 3 2

- 1 8 0- 2 4 2

- 1 9 0- 2 6 4

- 2 0 0- 2 7 4

-220-307

-240-327

-260-360

-280-380

-310-410

-340-455

-380-459

-420-535

-480-610

-540-670

-600-740

-680-820

-760-915

-840-995

c9 - 6 0- 8 5

- 7 0- 1 0 0

- 8 0- 1 1 6

- 9 5- 1 3 8

- 1 1 0- 1 6 2

- 1 2 0- 1 8 2

- 1 3 0- 1 9 2

- 1 4 0- 2 1 4

- 1 5 0- 2 2 4

-170-257

-180-267

-200-300

-210-310

-230-330

-240-355

-260-375

-280-395

-300-430

-330-460

-360-500

-400-540

-440-595

-480-635

d8 - 2 0- 3 4

- 3 0- 4 8

- 4 0- 6 2

- 5 0- 7 7

- 6 5- 9 8

- 8 0- 1 1 9

- 1 0 0- 1 4 6

- 1 2 0- 1 7 4

- 1 4 5- 2 0 8

- 1 7 0- 2 4 2

- 1 9 0- 2 7 1

- 2 1 0- 2 9 9

- 2 3 0- 3 2 7

d9 - 2 0- 4 5

- 3 0- 6 0

- 4 0- 7 6

- 5 0- 9 3

- 6 5- 1 1 7

- 8 0- 1 4 2

- 1 0 0- 1 7 4

- 1 2 0- 2 0 7

- 1 4 5- 2 4 5

- 1 7 0- 2 8 5

- 1 9 0- 3 2 0

- 2 1 0- 3 5 0

- 2 3 0- 3 8 5

e7 - 1 4- 2 4

- 2 0- 3 2

- 2 5- 4 0

- 3 2- 5 0

- 4 0- 6 1

- 5 0- 7 5

- 6 0- 9 0

- 7 2- 1 0 7

- 8 5- 1 2 5

- 1 0 0- 1 4 6

- 1 1 0- 1 6 2

- 1 2 5- 1 8 2

- 1 3 5- 1 9 8

e8 - 1 4- 2 8

- 2 0- 3 8

- 2 5- 4 7

- 3 2- 5 9

- 4 0- 7 3

- 5 0- 8 9

- 6 0- 1 0 6

- 7 2- 1 2 6

- 8 5- 1 4 8

- 1 0 0- 1 7 2

- 1 1 0- 1 9 1

- 1 2 5- 2 1 4

- 1 3 5- 2 3 2

e9 - 1 4- 3 9

- 2 0- 5 0

- 2 5- 6 1

- 3 2- 7 5

- 4 0- 9 2

- 5 0- 1 1 2

- 6 0- 1 3 4

- 7 2- 1 5 9

- 8 5- 1 8 5

- 1 0 0- 2 1 5

- 1 1 0- 2 4 0

- 1 2 5- 2 6 5

- 1 3 5- 2 9 0

f6 - 6- 1 2

- 1 0- 1 8

- 1 3- 2 2

- 1 6- 2 7

- 2 0- 3 3

- 2 5- 4 1

- 3 0- 4 9

- 3 6- 5 8

- 4 3- 6 8

- 5 0- 7 9

- 5 6- 8 8

- 6 2- 9 8

- 6 8- 1 0 8

f7 - 6- 1 6

- 1 0- 2 2

- 1 3- 2 8

- 1 6- 3 4

- 2 0- 4 1

- 2 5- 5 0

- 3 0- 6 0

- 3 6- 7 1

- 4 3- 8 3

- 5 0- 9 6

- 5 6- 1 0 8

- 6 2- 1 1 9

- 6 8- 1 3 1

f8 - 6- 2 0

- 1 0- 2 8

- 1 3- 3 5

- 1 6- 4 3

- 2 0- 5 3

- 2 5- 6 4

- 3 0- 7 6

- 3 6- 9 0

- 4 3- 1 0 6

- 5 0- 1 2 2

- 5 6- 1 3 7

- 6 2- 1 5 1

- 6 8- 1 6 5

g5 - 2- 6

- 4- 9

- 5- 1 1

- 6- 1 4

- 7- 1 6

- 9- 2 0

- 1 0- 2 3

- 1 2- 2 7

- 1 4- 3 2

- 1 5- 3 5

- 1 7- 4 0

- 1 8- 4 3

- 2 0- 4 7

g6 - 2- 8

- 4- 1 2

- 5- 1 4

- 6- 1 7

- 7- 2 0

- 9- 2 5

- 1 0- 2 9

- 1 2- 3 4

- 1 4- 3 9

- 1 5- 4 4

- 1 7- 4 9

- 1 8- 5 4

- 2 0- 6 0

h5 0- 4

0- 5

0- 6

0- 8

0- 9

0- 1 1

0- 1 3

0- 1 5

0- 1 8

0- 2 0

0- 2 3

0- 2 5

0- 2 7

h6 0- 6

0- 8

0- 9

0- 1 1

0- 1 3

0- 1 6

0- 1 9

0- 2 2

0- 2 5

0- 2 9

0- 3 2

0- 3 6

0- 4 0

h7 0- 1 0

0- 1 2

0- 1 5

0- 1 8

0- 2 1

0- 2 5

0- 3 0

0- 3 5

0- 4 0

0- 4 6

0- 5 2

0- 5 7

0- 6 3

h8 0- 1 4

0- 1 8

0- 2 2

0- 2 7

0- 3 3

0- 3 9

0- 4 6

0- 5 4

0- 6 3

0- 7 2

0- 8 1

0- 8 9

0- 9 7

h9 0- 2 5

0- 3 0

0- 3 6

0- 4 3

0- 5 2

0- 6 2

0- 7 4

0- 8 7

0- 1 0 0

0- 1 1 5

0- 1 3 0

0- 1 4 0

0- 1 5 5

js5 ±2 ±2 . 5 ±3 ±4 ±4 . 5 ±5 . 5 ±6 . 5 ± 7 . 5 ± 9 ± 1 0 ± 1 1 . 5 ± 1 2 . 5 ± 1 3 . 5js6 ±3 ±4 ±4 . 5 ±5 . 5 ±6 . 5 ±8 ±9 . 5 ± 1 1 ± 1 2 . 5 ± 1 4 . 5 ± 1 6 ± 1 8 ± 2 0js7 ±5 ±6 ±7 ±9 ±1 0 ±1 2 ±1 5 ± 1 7 ± 2 0 ± 2 3 ± 2 6 ± 2 8 ± 3 1

k5 + 40

+ 6+ 1

+ 7+ 1

+ 9+ 1

+ 1 1+ 2

+ 1 3+ 2

+ 1 5+ 2

+ 1 8+ 3

+ 2 1+ 3

+ 2 4+ 4

+ 2 7+ 4

+ 2 9+ 4

+ 3 2+ 5

k6 + 60

+ 9+ 1

+ 1 0+ 1

+ 1 2+ 1

+ 1 5+ 2

+ 1 8+ 2

+ 2 1+ 2

+ 2 5+ 3

+ 2 8+ 3

+ 3 3+ 4

+ 3 6+ 4

+ 4 0+ 4

+ 4 5+ 5

m5 + 6+ 2

+ 9+ 4

+ 1 2+ 6

+ 1 5+ 7

+ 1 7+ 8

+ 2 0+ 9

+ 2 4+ 1 1

+ 2 8+ 1 3

+ 3 3+ 1 5

+ 3 7+ 1 7

+ 4 3+ 2 0

+ 4 6+ 2 1

+ 5 0+ 2 3

m6 + 8+ 2

+ 1 2+ 4

+ 1 5+ 6

+ 1 8+ 7

+ 2 1+ 8

+ 2 5+ 9

+ 3 0+ 1 1

+ 3 5+ 1 3

+ 4 0+ 1 5

+ 4 6+ 1 7

+ 5 2+ 2 0

+ 5 7+ 2 1

+ 6 3+ 2 3

n5 + 8+ 4

+ 1 3+ 8

+ 1 6+ 1 0

+ 2 0+ 1 2

+ 2 4+ 1 5

+ 2 8+ 1 7

+ 3 3+ 2 0

+ 3 8+ 2 3

― ― ― ― ―

n6 + 1 0+ 4

+ 1 6+ 8

+ 1 9+ 1 0

+ 2 3+ 1 2

+ 2 8+ 1 5

+ 3 3+ 1 7

+ 3 9+ 2 0

+ 4 5+ 2 3

+ 5 2+ 2 7

+ 6 0+ 3 1

+ 6 6+ 3 4

+ 7 3+ 3 7

+ 8 0+ 4 0

p6 + 1 2+ 6

+ 2 0+ 1 2

+ 2 4+ 1 5

+ 2 9+ 1 8

+ 3 5+ 2 2

+ 4 2+ 2 6

+ 5 1+ 3 2

+ 5 9+ 3 7

+ 6 8+ 4 3

+ 7 9+ 5 0

+ 8 8+ 5 6

+ 9 8+ 6 2

+ 1 0 89 6 8

r6 + 1 6+ 1 0

+ 2 3+ 1 5

+ 2 8+ 1 9

+ 3 4+ 2 3

+ 4 1+ 2 8

+ 5 0+ 3 4

+ 6 0+ 4 1

+ 6 2+ 4 3

+73+51

+76+54

+88+63

+90+65

+93+68

+106+77

+109+80

+113+84

+126+94

+130+98

+144+108

+150+114

+166+126

+172+132

s6 + 2 0+ 1 4

+ 2 7+ 1 9

+ 3 2+ 2 3

+ 3 9+ 2 8

+ 4 8+ 3 5

+ 5 9+ 4 3

+ 7 2+ 5 3

+ 7 8+ 5 9

+93+71

+101+79

+117+92

+125+100

+133+108

+151+122

+159+130

+169+140

― ― ―

t6 ― ― ― ― ― + 5 4+ 4 1

+ 6 4+ 4 8

+ 7 0+ 6 0

+ 8 5+ 6 6

+ 9 4+ 7 5

+113+91

+126+104

+147+122

+159+134

+171+146

― ― ― ―

u6 + 2 4+ 1 8

+ 3 1+ 2 3

+ 3 7+ 2 8

+ 4 4+ 3 3

+ 5 4+ 4 1

+ 6 1+ 4 8

+ 7 6+ 6 0

+ 8 6+ 7 0

+ 1 0 6+ 8 7

+ 1 2 1+ 1 0 2

+146+124

+166+144

― ― ― ― ―

x6 + 2 6+ 2 0

+ 3 6+ 2 8

+ 4 3+ 3 4

+ 5 1+ 4 0

+ 5 6+ 4 5

+ 6 7+ 5 4

+ 7 7+ 6 4

― ― ― ― ― ― ― ―

Tole

ranc

e Zo

ne C

lass

of H

ole

Page 18: Technical

Supplement (Basic and Technical Data) 18

Oilless Bearings

What is an oilless bearing

Description.-Rolling bearing It has more merits in velocity and load capacity under the general condition.

-Sliding earingB

Operation proceed under contact onto Shaft or Sliding surface directly, small gap is required when it is working. It is more ideal than Ball & Roller bearing for a light and small shape, vibration and impact.

1. Oilless bearings (Using without oiling)

2. Simple oiling type sliding bearing (Oil or grease will be needed)

A bearing which can improve productivity and enable the saving cost and time by using in condition of high & low temperature, corrosion environment, alien sub stance, impactive load, or by using in where oiling is not easy or useless. There are various kind of shape or material for oilless bearing such as various metal, wooden material, plastic and ceramic.

The general concept and description of Bearing.

Concept.All elements that transfer the power under the condition of rotation, linear motion, thrust load, or angular pitching motion using it's own sliding or rolling character with ball, roller or self lubricating character regardless it's shape and material.

1. Ball bearing (Under high speed condition by using it's point contact working)2. Roller bearing (Under high load condition by using it's line contact working)

Spherical Roller ( ) Tapered Roller ( )

Cylindrical Roller ( ) Needle Roller ( )

3. Thrust Bearings (for Thrust Motion)

Ball Thrust Tapered Roller Thrust

Page 19: Technical

Supplement (Basic and Technical Data) 19

Oilless Bearings

Advantage Disadvantage& of each lubricating method

General lubricating of oilless bearing

DU01 EX) D dry bearing (PTFE + lead compound lubricant)

LuBo #500SP (natural graphite + PTFE lubricant)

Liquid lubricant (lubricating with oil or water)

Advantage & Disadvantage of Oilless bearing and Oiling method.

Dry lubrication = Using solid lubricant

EX) - Sintered metal bearing (Oiling into sintered metal) - LuBo #200B (Water lubricating by performing water film when it is using

in the water.

o

* Solid lubricant : Powder or solid type lubricant that is supposed to be used in harsh environments such as high & low temperature, corrosion environment and where can not use oil or grease. Generally it is made with natural graphite, M S , PTFE, Pb.2

Dry lubricating(Using solid lubricant)

Liquid lubricating(Using oil or water)

Advantage

- Possible to being used in high &low temperature.

- Possible to being used in corrosionenvironment

- High load and low speed conditionwhere oiling is useless, linearmotion, angular pitching motion,impactive load, and ideal indiscontinuous motion.

- Light or medium load and highspeed

* Liquid lubricating preventfriction between metal to metalby forming oil film withcontinuously rotating bycentrifugal force in theclearance of shaft and housing.

Disadvantage

- Not supposed to be used in highspeed when it is using in oillesscondition.

* Using it in high speed conditionmay occur melting or shorten lifecycle of bearing because solidlubricant has higher frictioncoefficient than liquid lubricant.

- Regular oiling is required- Can not be used in high & low

temperature.- Can not be used in corrosion

environment.- Not proper to be used in high

load & low speed as oil film ishard to be formed, impactiveload, angular pitching motion,discontinuous motion.

Page 20: Technical

Supplement (Basic and Technical Data) 20

Oilless Bearings

Rotary Motion

Bearing life and wear amount

The PV value is a very important reference for selecting bearings and it can be obtained simply by multiply P to V, where P is bearing surface pressure per unit area (Kgf/Cm , Estimation of bearing surface pressure per unit area wil l be obtained by multiply inner diameter to length), V is velocity per unit time.

2

PV value

W : (mm)Wear amountV : (m/min) VelocityP : (kgf/cm ) ²Surface pressureT : (hr)Running timeK : (mm / kgf/cm m/min hr)²ㆍ ㆍCoefficient of specific wear amount

W=K.P.V.T

Table (Experimental K value under different lubricating)

PV-Value Limit

Pmax

P

V max

W : Radial Load[kgf] D : Outside-Dia.[mm] L : Length[mm] N : RPM d : Inside-Dia.[mm]

The al lowable PV value is listed in the catalog. Please note that PV value can vary depending on its working condition temperature or lubrication. PV value of thrust washer & wear plate must not exceed of bushing PV value.1/2

The life of bearing is basically dependent on the acceptable amount of wear, which is mainly affected by friction conditions. Friction is influenced by load and velocity, foreign particles, condition of mating material, operational temperature, different modes of operation, type of lubricant used, etc. Therefore, it may not be possible to accurately estimate the life of bearing without sufficient application data. However, the wear amount may be estimated by the following method:

Lubrication condition K valueNo lubricant (Dry) 1X10

Boundary lubrication under low speed (LuBo #500, DDU01 Dry Bearing) 1X10

Periodic lubrication (DX) 1X10

Continuous lubrication under water application (#200B, Miscellaneous) 1X10

-3~-5

-5~-7

-6~-8

-8~-10

Bushing Thrust Washer

V (m/min) = V m/min =

P (kgf/cm²) = P kgf/cm²=

PV (kgf/cm²ㆍ m/min) =

PV kgf/cm²ㆍm/min =

Page 21: Technical

Supplement (Basic and Technical Data) 21

Oilless Bearings

Additional Lubrication

* t

For applications above 100 C, the mating shaft dimensions should be reduced to account for the hermal expansion of the material.

T ( ) r(d) ( )α × ×

Thermal expansion=hermal coefficient diamete application temperature-ambient temperatureexpansion

F ) :1.12 10 /α × -5or example low carbon steel

* *

2, 3 Chrome plating is ideal for sea water and liquid medicineNitrification of the mating shaft effectively reduces friction for high load and low speed applications.

Q= (kcal/min)μㆍ ㆍP V

J

J : ( 427kgf-m/kcal):

P : (kgf/cm )V : (m/min)

μ

²

Heat equivalent of workCoefficient of frictionPressure in kilograms per square centimeterVelocity in meter per minute

The frictional heat(Q) generated per unit time and unit area is as follows:

Frictional heat

Since velocity is the main factor which limits bearing performance, the friction heat is mainly affected by velocity rather than pressure. Therefore, for similar PV values, additional lubrication should be considered for a higher velocity application to prevent damage to the bearing or the mating shaft.

Mating Shaft

Additional lubrication with grease or oil reduces frictional heat and wear. Also it increases the bearing life and performance by reducing the amount of worn particles, preventing foreign particle interference(sealing effect), and reducing the noise as well as anti-rust effect of the shaft operation. Oil lubrication applied at the inner surface of a bearing in the installation stage, though no lubrication is required, reduces, the drastic wear th t occurs during initial operation.a

* that for the better life time and performance because this is very effective under high load, , and

Grease containing MoS is highly recommended excessive wear high frictional heat condition.

2

Type Shaft Material Hardness ShaftRoughness

General use General structural metal withS35C and higher strength Rockwell "C 35" and

above(higher strength material isrecommended when foreign

particles are present)

3~12 High Temperature Stainless steel or Chrome plating

CorrosiveEnvironment Chrome plating

Low load, High speed Low Viscosity 8~17cst (30 ) Spindle Oil, Miscellaneous

Medium load, Medium speed Medium Viscosity 7~15cst (98.9 ) Motor Oil, Turbine Oil, Miscellaneous

High Load, Low speed High Viscosity 100~1,000cst (37 ) Gear Oil, Cylinder Oil , Miscellaneous

Page 22: Technical

Supplement (Basic and Technical Data) 22

Oilless Bearings

h dOil groove and Lubrication ole esign

The formula of calculating ideal thickness

- h : O in an area

Lubricating ole ne hole is recommended where the load is not concentrated. Two holes on each side of the maximum load point are suggested for rotational motion. Use two holes along the length of each groove for longer bearing.

- g : D height g is

Oil roove istribute the oil grooves around the maximum load point as shown below. The length of an oil groove is approximately 80% of the bearing length. The radius (R and r) and

(H) of an oil roove selected based on the inner diameter (ID) of the bearing as shown in the table below. Use a circular oil groove on the inner surface of a housing or the outer surface of the bearing when oil is supplied from outside of the housing.

t = (0.05 ~ 0.07)d (2 ~ 5mm)+

Attention- S ( )- P P

S possible

foreign objects H

it is c ed.

haft must be ground.lease follow the tolerance as shown at the

dimension table in case of housing and shaft.- lease maintain the shaft horizontally to

prevent the shaft from eccentricity.- ealing is recommended because of

inflow of .- ardening is not required, but the life of bearing

will be extended if hrome plat

Edge(angle) chamferingIt is ideal to chamfer the oilless bearing as the chart on the right. ID/Chamfering level

How to insert into the housingPer drawing on the right, you can insert the bushinginto housing with a li ttle pressure using a guide bar.It will be easier to oil after cutting the edge of OD and ID.

(Unit : mm)

3S

Oil Groove

A

Detail of A

Lubricating Hole

HR

r

C

Inside-Dia.Chamfer

Guide Bar

Bushing

Housing

I.D. R r H Q'ty30 under 1.5 1.5 1.2 1~230 ~ 50 2.0 2.0 1.8 350 ~ 80 3.0 3.0 2.5 380 ~ 120 3.5 3.5 3.5 4120 ~ 180 4.0 4.0 5.0 4180 ~ 250 5.0 5.0 6.0 5250 ~ 315 6.0 6.0 7.0 6315 ~ 400 7.0 7.0 8.0 8400 ~ 500 8.0 8.0 8.0 8

I.D. Chamfer

ø80 under 0.5C

ø80 ~ 200 1.0C

ø200 ~ 300 1.5C

ø300 over 2.0C

Page 23: Technical

Supplement (Basic and Technical Data) 23

Areas of Plane Figures

A = Areaℓ = Length of Cycloid

πA = 3 r = 9.4548 r = 2.3562d = ( ) 3×Area of generating circleℓ = 8r = 4d

A = BCDArea

A = - ln + ab 2

xy 2

x a

y b

A = Area

(The area is equal to two-third of a rectangle which has x for base and y for its height)

A = xy2 3

A close approximation when x is small in proportion to y

p 2

ℓ =Length of Arc= 2p x 1 + 2x

p

+ ln + 1 + 2x p

2x p

- ℓ = y 1 + 2 5

x y

2 3

x y

또는 ℓ = y + x4 3

A = A = Area

If FG is the height of the segment and measured at right angle to BC, then

BFC = ( Area of parallelogram BCDE)×

2 3

2A = BFC = BC ×FG 3

2 4

2 2

22

2

A = Area

= 0.1075c

A = r - = 0 .2 1 5 rπ r 4

A = Area, α= Angle in Degree

A =

= 0 .0 0 8 7 3 α ( R - r )

= 0 .0 0 2 1 8 α (D - d )

απ (R - r )

360

= (D - d )α π

4 360×

A = , P = Area Perimeter of circumferenceA = πa b = 3.1416a b

Approximate formulas for P are:

1. P = 3.1416 2 ( + b )

2. P = 3.1416 2 ( + b ) - ( - b)

2.2

A = π (R - r ) = 3 .1 4 1 6 (R - r )

= 3.1416(R + r )(R - r ) = 0 .7 8 5 4 (D - d ) = 0.7854(D+d)(D-d)

ℓ= 1. 4 50 0 7 αr

c = 2 h(2 h)r-

A = [ r ℓ-c (r - h ) ]1

2

h = r - 1 2

, 4 r - c

r= c +4 h 8h ,

α = 57.296ℓr

α = 5 7 .2 9 6 ℓ

r

A = r1ℓ 2 0 .0 0 8 7 2 7α r=

r = = 57.296ℓα

2A ℓ

ℓ= = 0.01745 r α r × α× 3 .1 4 1 6 180

= 2Ar

2

22

2

2

22

22

22

22

2 2

2222

22

22

22

2 22

r

d DR r

c r

b

yD

Bb

a C

x

xP/2

y

y

x

E B

CG

FD

dr

h

c

r

Circular Sector Hyperbola

Circular Segment Parabola

ParabolaCircular Ring

Circular Ring Sector Segment of Parabola

CycloidSpandrel or Fillet

Ellipse

α

α

dD Rα

αα

αα

Page 24: Technical

Supplement (Basic and Technical Data) 24

Spherical SegmentSphere

Square Prizm Prizm (Regular Hexagon Base)Cubic

Frustum of ConeCone

V = 2.598α h

S = 5.1963α +6 αh

As = 6 αh

χ = h 2

d = h + 4α

χ = h 4

A b = = 2.598α3 3 α 2

V = 3A bh

R α = +r

b = R - r , ℓ= b + h

= πℓα , As

V = (R + Rr + r ) 3πh

= h 4

πα + πb13

χ = h

4 3R + 2Rr + r

R + Rr +r

V = αbh

αS = 2( b + αh + bh)

χ= h 2

d = α + b + h

As = 2h(α+b)

= V = 4.188790205r4 πr 3

= = 0.52359877dπd

6

S = 4πr = πd

r = = 0.620351 3v 4 π

V = d2

α = h (2r - h)

V = (3α + h ) = (3 r - h) πh 6 3

πh

χ = 3 4

(2 r - h)(3 r - h)

2 π r h = π ( α + h ) As =

Regular Polygon

Length of side

Number of sides

Area of base

A = s nhα

χ = h 2

S = 2A nhb + α

V = A h b

V = α

αS = 6

χ= α 2

d = 3 α = 1.7321 α

As = 4a

3

2

2

2 2 2

2

2

2 2

2 2

22

22

2 2

22

2 2

As = πRℓ

ℓ= R + h

= V πR h 3

χ = h 4

2

2 2

2

3

33

2

3

33

22

22

2

2

2

G

a

d a

a

dr

b

G hd

a

G

a

1.7321a

2aa

h

G

R

hG

r

h

R

G

Ab a

a

h

G

r

h

a

V= S= As= Ab= =Volum Surface Area Lateral Surface Area Base Area Distance from the base to the center of gravityχ

χ χ χ

χχ

χ

χ

Page 25: Technical

Supplement (Basic and Technical Data) 25

Spherical SectorFrustum of Pyramid with retangular base

Torus

Frustum of Pyramid Cylinder/Hollow Cylinder Portion of Cylinder

As = πR(h1+h2)

As = 2πr h

V = ( A b+ A b1+ )h 3

A b = = 2.598αα 2

3 3

χ = + +

h 4

+ 2 + 3

= 2.0943951024r h

S = πr (2h + α)

V = 2πr h

3

χ = 3 (2 r - h) 8

V = (3α+ 3b +h )πh 6

r = α + α - b - h

2h

21

h

D

h

R

D

r

R R

r

h

b

a

G

bA

h

r rRt

G

A b

Ab1

h

a

G

a1b1

b

h

a

G

r

h

a

V = πh (R - r )

ht ( = π 2R - t)

= πht (2 r+ t)

χ = h 2

22

S = 2πr (r+ h)

V = πr h = As h

A = 2πr hS

χ = h 2

2

V = πR h1+h2 2

2

)D = 4R+ (h2- h1 22

A bA b1

2 2

A b A bA b1 A b1

A b A bA b1 A b1

V = h 6 ( 2 α+α )b +α) b 1+ α(2

h b + α( +α ) (b +b )+α b

χ = h 2

+α b + α3 b2αb +αb +α b + α2 b

1

= 6

α

αb +αb

1 1 1 1

1 1 1 1 1 1 1 1

2 2

222

2

2

2V = 2π Rr = 19.739 Rr

= π Dd = 2.4674Dd

S = 4π Rr = 39.478Rr

= π Dd = 9.8696Dd

1 4

2

2

222

2 22 2 2 2

χχ

χχ

Spherical Zone

Page 26: Technical

Supplement (Basic and Technical Data) 26

SI Units

(1) Print in roman (upright) type regardless of the type used in the surrounding text. But symbols for quantities and variables are printed in italic

(Example: t=3 s (t time, s second))

(2) Print in lower-case letters except when the name of the unit is derived from the name of a person.

(Examples: m (meter), Pa (pascal), s (second), lm (lumen), V (volt), Wb (weber))

(3) Unaltered in the plural.

(Example: 1= 75 cm, but not 1 = 75 cms)

(4) Not followed by a period unless at the end of a sentence.

(5) Symbols for units formed from other units by multiplication are indicated by means of either a half-high (that is, centered) dot or a space.

(Example: N m or N m )ㆍ

Overview of the International System of Units (SI Units)The International System of Units was established by the 11 Conference Generale des Poids et Mesures (CGPM) in 1960. Universally abbreviated SI (from the French Le Systeme International d'Unites), it is the modern metric system of measurement used throughout the world. It is the responsibility of the CGPM to ensure that SI is widely disseminated and that it reflects the latestadvances in science and technology.

SI Units are currently divided into three classes, Base Units, Derived Units, and Supplementary Units, which together form what is called "the coherent system of SI units." The SI also includes prefixes to form decimal multiples and submultiples of SI units. Also certain units that are not part of SI units are essential and used so widely that they are accepted by the International Committee for Weights and Measures (CIPM) for use with SI units.

th

SI UnitsBase Units : The SI base units on which the SI is founded are seven base quantities assumed to be mutually independent. gives the names, symbols, and definitions of SI base units.

Supplementary Units : gives the names, symbols, and definitions of the SI supplementary units. They are now interpreted as so-called dimensionless derived units.

SI derived Units : The SI derived units are expressed algebraically in terms of base units or other derived units including two supplementary units. gives examples of derived units expressed in terms of SI base units only. gives certain SI derived units expressed in terms of other SI units, which have special names and symbols. Also example of SI derived units that can be expressed with the aid of SI derived units having special names and symbols are given in

SI prefixes : gives the SI prefixes that are used to form decimal multiples and submultiples of SI units. They allow very large or very small numerical values to be avoided.

Units outside SI units : shows examples of units that are not part of SI units but accepted for use with SI units because they are used so widely.

Table 1

Table 2

Table 3Table 4

table 5

Table 6

Table 7

Rules and Style conventions for printing and using SI units and Values of Quantities

'' ' '

'

Page 27: Technical

Supplement (Basic and Technical Data) 27

SI Units

(8) Symbols for units formed from other units by division are indicated by means of a solidus (oblique stroke, /), a horizontal line, or negative exponents. (Example : m/s, , or m s ) ㆍ

-1

However, to avoid ambiguity, the solidus must not be repeated on the same line unless parentheses are used.

(Examples: m/s or, m s , but not: m/s/s)2 -2ㆍ

(9) Unit symbols and unit names are not used together.

(Example: C/kg or coulomb per kilogram, but not coulomb/kg, C/kilogram; coulomb kg , C per kg,

-1ㆍ

or coulomb/kilogram)

(10) not permissible to use abbreviations for their unit symbols or names

(Example: sec (for either s or second), cc (for either cm or cubic centimeter), 3

mins (for either min or minutes), amps(for either A or amperes))

ms

Rules and Style conventions for SI prefixes

(1) Prefix symbols are printed in roman (upright) type regardless of the type used in the surrounding text, and are attached to unit symbols without a space between the prefix symbol and the unit symbol. This last rule also applies to prefixes attached to unit names.

(Examples: mL(milliliter), pm(picometer), THz(terahertz))

(2) Prefixes are normally printed in lowercase letters except for prefix symbols Y(yotta), Z (zetta),

E(exa), P(peta), T(tera), G(giga), and M(mega)

(3) Compound prefix symbols, that is, prefix symbols formed by the juxtaposition of two or more prefix symbols, are not permitted. This rule also applies to compound prefixes.

(Example: nm (nanometer), but not m m (millimicrometer))μ

(4) Prefix symbols cannot stand-alone and thus cannot be attached to the number 1, the symbol for the unit one.

(Example: the number density of Pb atoms is 5 x 10 /m , but not the number density of Pb 6 3

atoms is 5 M/m )3

(5) It is often recommended that, for ease of understanding, prefix symbols should be chosen in such a way that numerical values are between 0.1 and 1000

(Examples: 3.3 x 10 Hz, may be written as 33 x 10 Hz = 33 Mhz)7 6

(6) In the expression for the value of a quantity, the unit symbol is placed after the numerical value and a space is left between the numerical value and the unit symbol. The only exceptions to this rule are for the unit symbols for degree, minute, and second for plane angle: , ' , and," respectively, in which case no space is left between the numerical value and the unit symbol.

( 7) Digits should be separated into groups of three, counting from the decimal marker towards the left and right, by the use of a thin, fixed space, not by a comma.

(Examples: 76 483 522, 43 279.168 29 but not 76,483,522, 43,279.168 29)

˚

Page 28: Technical

Supplement (Basic and Technical Data) 28

SI Units

Table 1. SI base units

Table 2. SI supplementary units

Base QuantitySI base units

Name Symbol Definition

Length Meter m The meter is the length of the path traveled by light in vacuumduring a time interval of 1/299 792 458 of a second.

Mass Kilogram kg The kilogram is the unit of mass; it is equal to the mass of theinternational prototype of the kilogram.

Time Second sThe second is the duration of 9 192 631 770 periods of theradiation corresponding to the transition between the two hyperfinelevels of the ground state of the cesium 133 atom.

Electric Current Ampere A

The ampere is that constant current which, if maintained in twostraight parallel conductors of infinite length, of negligible circularcross-section, and placed 1 meter apart in vacuum, would producebetween these conductors a force equal to2 × 107 newton per meter of length.

ThermodynamicTemperature Kelvin K The Kelvin, unit of thermodynamic temperature, is the fraction 1/273.

16 of the thermodynamic temperature of the triple point of water.

Amount ofSubstance Mole mol

1. The mole is the amount of substance of a system whichcontains as many elementary entities as there are atoms in 0.012kilogram of carbon 122. When the mole is used, the elementary entities must bespecified and may be atoms, molecules, ions, electrons, otherparticles, or specified groups of such particles.

Luminous Intensity Candela cd

The candela is the luminous intensity, in a given direction, of asource that emits monochromatic radiation of frequency540 × 1012 hertz and that has a radiant intensity in that direction of1/683 watt per steradian.

QuantitySI supplementary units

Name Symbol Definition

Plane Angle Radian rad The radian is the plane angle between two radii of a circle that cutoff an the circumference an arc equal in the length to the radius

Solid Angle Steradian sr

The steradian is the solid angle that, having its vertex in the centerof a sphere, cuts off an area of the surface of the sphere equal tothat of a square with sides of length equal to the radius of thesphere

Page 29: Technical

Supplement (Basic and Technical Data) 29

SI Units

Table 3. Examples of SI derived units expressed in terms of SI base units

Table 4. SI derived units with special names and symbols

Derived QuantitySI derived units

Name Symbol

Area square meter m2

Volume cubic meter m3

Speed, Velocity meter per second m/s

Acceleration meter per second squared m/s2

Wave Number reciprocal meter m-1

Mass Density kilogram per cubic meter kg/m3

Specific Volume cubic meter per kilogram m3/kg

Electric Current Density ampere per square meter A/m2

Magnetic Field Strength ampere per meter A/m

Molar Mass kilogram per mole kg/mol

Amount-of-substanceconcentration mole per cubic meter mol/m3

Luminance candela per square meter cd/m2

Derived Quantity

SI derived units

Special Name SpecialSymbol

Expression interms of other SI

unitsExpression in terms

of SI base units

Frequency hertz Hz - s-1

Force newton N - m· kg· s-2

Pressure, Stress pascal Pa N/m2 m-1· kg· s-2

Energy, Work, Quantity of Heat joule J N· m m2· kg· s-2

Power, Radiant Flux watt W J/s m2· kg· s-3

Electric Charge, Quantity ofElectricity coulomb C - s· A

Electric Potential Difference,Electromotive Force volt V W/A m2· kg· s-3· A-1

Capacitance farad F C/V m-2· kg-1· s4· A2

Electric Resistance ohm Ω V/A m2· kg· s-3· A-2

Electric Conductance siemens S A/V m-2· kg-1· s3· A2

Magnetic Flux weber Wb V· s m2· kg· s-2· A-1

Magnetic Flux Density tesla T Wb/m2 kg· s-2· A-1

Inductance henry H Wb/A m2· kg· s-2· A-2

Celsius Temperature degree Celsius °C - K

Luminous Flux lumen lm cd· sr m2· m-2· cd = cd

Illuminance lux lx lm/m2 m2· m-4· cd = m-2· cd

Page 30: Technical

Supplement (Basic and Technical Data) 30

SI Units

Table 5. SI derived units expressed with the aid of SI derived units having special names and symbols

Derived QuantitySI derived units

Name Symbol

Dynamic Viscosity pascal second Pa· s

Moment of Force newton meter N· m

Surface Tension newton per meter N/m

Angular Velocity radian per second rad/s

Angular Acceleration radian per second squared rad/s2

Heat Flux Density, Irradiance watt per square meter W/m2

Heat Capacity, Entropy joule per kelvin J/K

Specific Heat Capacity, Specific Entropy joule per kilogram kelvin J/(kg· K)

Specific Energy joule per kilogram J/kg

Thermal Conductivity watt per meter kelvin W/(m· K)

Energy Density joule per cubic meter J/m3

Electric Field Strength volt per meter V/m

Electric Charge Density coulomb per cubic meter C/m3

Electric Flux Density coulomb per square meter C/m2

Permittivity farad per meter F/m

Permeability henry per meter H/m

Molar Energy joule per mole J/mol

Molar Entropy, Molar Feat Capacity joule per mole kelvin J/(mol· K)

Molar Entropy, Molar Heat Capacity coulomb per kilogram C/kg

Absorbed Dose Rate gray per second Gy/s

Radiant Intensity watt per steradian W/sr

Radiance watt per square meter steradian W/(m2· sr)

Page 31: Technical

Table 7. Units accepted for use with SI units

Table 6. SI prefixes

Supplement (Basic and Technical Data) 31

SI Units

FactorSI prefixes

FactorSI prefixes

Name Symbol Name Symbol

1024 = (103)8 yotta Y 10-1 deci d

1021 = (103)7 zetta Z 10-2 centi c

1018 = (103)6 exa E 10-3 = (103)-1 milli m

1015 = (103)5 peta P 10-6 = (103)-2 micro µ

1012 = (103)4 tera T 10-9 = (103)-3 nano n

109 = (103)3 giga G 10-12 = (103)-4 pico p

106 = (103)2 mega M 10-15 = (103)-5 femto f

103 = (103)1 kilo k 10-18 = (103)-6 atto a

102 hecto h 10-21 = (103)-7 zepto z

101 deka da 10-24 = (103)-8 yocto y

Name Symbol Value in SI units

Hour h 1 h = 60 min = 3600 s

Day d 1 d = 24 h = 86 400 s

Degree (Angle) ˚ 1° = (/180) rad

Minute (Angle) ' 1'= (1/60)° = (/10 800) rad

Second (Angle) " 1"= (1/60) = (/648 000) rad

Liter L 1 L = 1 dm3 = 10-3 m3

Metric Ton t 1 t = 103 kg

Electron Volt eV 1 eV = 1.602 18 x 10-19 J, approximately

Unified Atomic Mass Unit u 1 u = 1.660 54 x 10-27 kg, approximately

Page 32: Technical

1Pa s=1N s/m 1cP=1mPa sㆍ ㆍ ㆍ2

Note) 1Pa=1N/m2

Note) 1P=1dyn s/cm =1g/cm sㆍ ㆍ2

Note) 1St = 1cm /S²Note French Horsepower) 1W = 1J/s PS : 1PS = 0.7355kW

Note) 1J = 1W s 1 h = 3600W sㆍ ㆍ ㆍW 1cal = 4.18605J

Table of Conversion Factors to SI Units

Supplement (Basic and Technical Data) 32

Table of Unit Conversion Factors

Pressure

Pa bar kgf/cm² atm mmH2O mmHg or Torr1 1X10- 5 1.019 72X10-5 9.869 23X10-6 1.019 72X10- 1 7.500 62X10-3

1X105 1 1.019 72 9.869 23X10-1 1.019 72X104 7.500 62X102

9.806 65X104 9.806 65X10-1 1 9.678 41X10-1 1.000 0X104 7.355 59X102

1.013 25X105 1.013 25 1.033 23 1 1.033 23X104 7.600 00X102

9.806 65 9.806 65X10-5 1.000 0X10-4 9.678 41X10-5 1 7.355 59X10-2

1.333 22X102 1.333 22X10-3 1.359 51X10-3 1.315 79X10- 3 1.359 51X10 1

Force

N dyn kgf1 1X105 1.019 72X10-1

1X10-5 1 1.019 72X10-6

9.806 65 9.806 65X105 1

Viscosity

Paㆍs cP P1 1X103 1X10

1X10-3 1 1X10-2

1X10-1 1X102 1

Stress

Pa MPa or N/mm² kgf/mm² kgf/cm²1 1 X1 0 -6 1.019 7 2 X 1 0 -7 1.019 7 2 X 1 0 -5

1X 10 6 1 1.019 7 2 X 1 0 -1 1.019 7 2 X 1 0

9.806 6 5X1 0 6 9.806 65 1 1 X10 2

9.806 6 5X1 0 4 9.806 6 5 X 1 0 -2 1 X 1 0 -2 1

Work,Energy,Quantityof Heat

J kWㆍh kgfㆍm kcal1 2.777 78X10-7 1.019 72X10-1 2.388 89X10-4

3.600X10 1 3.670 98X105 8.600 0X102

9.806 65 2.724 07X10-6 1 2.342 70X10-3

4.186 05X10 1.162 79X10-3 4.268 58X102 1

ThermalConductivity

W/ (m ㆍK) kcal */ (m ㆍhㆍ)1 8.600 0X10-1

1.162 79 1

ThermalConductivity

W/(mㆍK) kcal */(mㆍhㆍ)1 8.600 0X10-1

1.162 79 1

²²

KinematicViscosity

m /s cSt St1 1X106 1X104

1X10-6 1 1X10-2

1X10-4 1X102 1

Power,HeatFlowRate

kW kgfㆍm/s PS1 1.019 72X10 -1 1.359 62X10 -3

9.806 65X10 -3 1 1.333 33X10 -2

7.355X10 -1 7.5X10 1

²

Page 33: Technical

Supplement (Basic and Technical Data) 33

Hexagon Socket Head Cap Screw

Dimensions of counter-boring and bolt hole for hexagon socket head cap screws

2) Standard nominal length 2.5, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 30, 35, 40, 45 50, 55, 60, 65, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 180, 200, 220, 240, 260, 280, 300

Nominal Length ( )ℓ

Notes 1) The size shown in ( ) is non-preferred

dd'

1

d'd1

H H

D'D

D'D

H' H

"

N o m i n a lS i z e

N o m i n a lL e n g t h

N o m i n a lS i z e

N o m i n a lL e n g t h

N o m i n a lS i z e

N o m i n a lL e n g t h

N o m i n a lS i z e

N o m i n a lL e n g t h

N o m i n a lS i z e

N o m i n a lL e n g t h

M1.6 2 .5~16 M5 8~50 (M14) 25~140 M24 40~200 (M39) 65~300

M2 3~20 M6 10~60 M16 25~160 (M27) 45~300 M42 65~300

M2.5 4~25 M8 12~80 (M18) 30~180 M30 45~300 (M45) 80~300

M3 5~30 M10 16~100 M20 30~200 (M33) 55~300 M48 80~300

M4 6~40 M12 20~120 (M22) 40~200 M36 55~300 (M52) 90~300

Bolt NominalSize (d) d₁ d' D D' H H' H"

M3 3 3.4 5.5 6 3 2.7 3.3

M4 4 4.5 7 8 4 3.6 4.4

M5 5 5.5 8.5 9.5 5 4.6 5.4

M6 6 6.6 10 11 6 5.5 6.5

M8 8 9 13 14 8 7.4 8.6

M10 10 11 16 17.5 10 9.2 10.8

M12 12 14 18 20 12 11 13

M14 14 16 21 23 14 12.8 15.2

M16 16 18 24 26 16 14.5 17.5

M18 18 20 27 29 18 16.5 19.5

M20 20 22 30 32 20 18.5 21.5

M22 22 24 33 35 22 20.5 23.5

M24 24 26 36 39 24 22.5 25.5

M27 27 30 40 43 27 25 29

M30 30 33 45 48 30 28 32

M33 33 36 50 54 33 31 35

M36 36 39 54 58 36 34 38

M39 39 42 58 62 39 37 41

M42 42 45 63 67 42 39 44

M45 45 48 68 72 45 42 47

M48 48 52 72 76 48 45 50

M52 52 56 78 82 52 49 54

Page 34: Technical

GModulus of rigidity

1. Symbols used in designing springs

τ= κ τ0

τ = 0

Gdδ πN D²α

d = = 8κDPπτ

3 8DP

πτ 0

3

δ= Gd⁴

38N D Pα

τ = 0 π d³8DP

N = αGd⁴δ

8 D ³ P

U = Pδ 2

κ= = P δ

Gd⁴8N D³α

For compression springs and extension springs without initial tension

τ = κ τ0

d = = 8κDPπτ

3 8DP

πτ 0

3

τ = 0 πd ³8DP

8 D ³N = αGd⁴δ

(P-P )ⅰ

δ= Gd⁴

38Na D (P-P )ⅰ

= Gd⁴8N D³α

κ= P-P δ

τ = 0

Gdδ πN D²α

ⅰ+τ

U = (P P )+ δ 2

2. Basic formulas used in designing springs

For extension springs with init ial tension (P>Pi)

Supplement (Basic and Technical Data) 34

Symbol Meaning Unit Symbol Meaning Unitd Diameter of wire mm P Load acting on spring N(kgf)D₁ Inside diameter of coil mm δ Deflection of spring mm

D₂ Outside diameter of coil mm κ Spring constant N/mm(kgf/mm)

D Mean diameter of coil: mmo Tensional Stress N/mm2(kgf/mm2)τ Corrected torsional stress N/mm2(kgf/mm2)

Nt Total number of turns - iTorsional stress due to initialtension N/mm2(kgf/mm2)

Na Number of active turns - χ Stress correction factor -Nf Number of inactive turns - ∫ Natural frequency Hz

Hs Solid Height mm u Energy stored in spring Nㆍmm(kgfㆍmm)

P Pitch mm r Weight per unit volume of wire N/mm3(kgf/mm3)Pi Initial Tension N (kgf) W Weight of Spring (Active Coils) N(kgf)

Spring Index -g* Gravitational acceleration mm/s2

* Gravitational acceleration is round off as 9800mm/s2 indesigning springs though prescribed as 9.80665 m/s2 inthe regulation of measure.G Modulus of elasticity in torsion N/mm2

(kgf/mm2)

τ

τ

C= dD

2D1+D2

MaterialG

N/mm (kgf/mm )Material

GN/mm (kgf/mm )

MaterialG

N/mm (kgf/mm )

Spring Steel 78X10 (8X10 )

StainlessSteel Wire

SUS 302

69X10 (7X10 )

Spring BrassWire 39X10 (4X10 )

Hard DrawnSteel Wire 78X10 (8X10 ) SUS 304

PhosphorBronze Wire

42X10 (4.3X10 )

Music Wire 78X10 (8X10 ) SUS 316 Beryllium-Copper Wire 44X10 (4.5X10 )

Oil-TemperedWire 78X10 (8X10 ) SUS 631 J 1 74X10 (7.5X10 )

2 2 2 2 2 2

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

Page 35: Technical

Supplement (Basic and Technical Data) 35

D d

1.6

1.5

1.4

1.3

1.2

1.1

1.03 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Effect of Spring SurgeTo avoid surging, natural frequency of the spring should be selected not to resonate to the frequency of applied force.

Solid HeightThe solid height of compression spring can be estimated by following formula.

Range of PitchIn general, it is recommended to have the pitch of 0.5D or less.

Initial Tension of Extension SpringThe initial tension P is generated in the solid-wound, cold-formed extension spring. In this case, the torsional stress due to the initial tension shall be within the shaded range shown in figure above.

i

H = (N - 1)d+χtS

³ P = πd

τ 8D

ⅰⅰ

G ω = ∫ =

κg W

α α D ²

70d πN α

= α For both ends are free or fixedⅰ2

ⅰ= 1, 2, 3 = α For one end is fixed and the other end is free 4 2ⅰ - 1

P i = = = τⅰ

8D ³πd τ ⅰ Gd⁴

255D²

G 100c ,

= ∫ 3.56 × 10 5 d NαD²

Number of Active Turns

Range of Number of Active TurnsIn general, it is recommended to have the number of active turns of 4 or more.

The number of active turns in designing springs should be chosen as equal to the number of free coils. For compression springs, N=N ( + ), and indicate each number of coils of both ends. When only t 1 2 1 2 x x x xthe tip of the coil touches the next free coil , = =1. therefore, N =N 2x x1 2 a t When only the tip of the coil does not touch the next free coil and the length of end turn part is 3/4 length, x x1 2= =0.75.

therefore, N =N - 1.5a t

For extension springs, N =Na t

In general, it is recommended to have the slenderness ratio (the ratio of free height against average diameter of coil) within the range of 0.8 and 4.

Stress correction factor ( )χ

Range of Spring IndexIn general, it is recommended to have the spring index within the range of 4 and 22.

Range of Slenderness Ratio

Stress correction factor which corrects for both curvature and direct shear is given by following formula or graph at the right

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

220

200

180

160

140

120

100

80

60

40

20

0

(20)

(18)

(16)

(14)

(12)

(10)

(8)

(6)

(4)

(2)

(0)

τ1

N/mm²

Str

ess

corr

ectio

n fa

ctor

()χ

χ= (4c-1)/(4c-4) + 0.615/c Wahl's factor

Note: : Sum of the thickness of both ends of the coilx

(Note) Following empirical formula can be applied to get P and i I

Natural frequency of spring is

spring index C=

D dspring index C=

Example) Steel's

For both ends are free or fixed, primary natural frequency isf

G=78 10 N/mm (8 10 kgf/mm ) = 76.93 10 N/mm (7.85 10 kgf/mm )

× ³ ²× ³ ²ω × ³ × ³

- 6- 6

Page 36: Technical

Supplement (Basic and Technical Data) 36

Linear Thermal Expansion Coefficients of Various Substances a (Linear Mean Coefficients for the Temperature Range 0~100 C)

Linear Thermal Expansion Coefficients of Various Metals a (Linear Mean Coefficients for the Temperature Range 0~100 C)˚

˚

Metal X10 Metal X10

Zinc 0.263 ~ 0.582 Copper 0.167

Lead 0.276 Gold 0.139

Aluminum, Cast 0.222 Nickel 0.128

Tin 0.214 Soft Steel 0.119

Aluminum, Sheet 0.207 Antimony 0.110

Brass, Rod 0.193 Steel 0.105 ~ 0.110

Type Metal 0.190 Iron, Cast 0.102

Silver 0.188 Platinum 0.089

Substance X10 Substance X10

Rubber 0.77 Wood 0.08 ~ 0.05

Ebonite 0.64 ~ 0.77 Brick 0.055

Concrete 0.10 ~ 0.14 Masonry, Brick 0.04 ~ 0.07

Slate 0.104 Marble 0.035 ~ 0.044

Glass 0.088Ceramic 0.036

Granite 0.083

Material

Material Specific Gravity RemarkSteel 7.85

Iron, Cast 7.25

Lead 11.4

Copper 8.9

Zinc 6.9

Aluminum 2.7

Brass, Bronze 8.6

- 4 - 4

- 4 - 4

Average Specific Gravity