Top Banner
Team Green Team Green John Barker John Barker John Beverly John Beverly Keith Skiles Keith Skiles UTC ENGR329-001 UTC ENGR329-001 2-15-06 2-15-06 Steady State and Step Steady State and Step Response Performance Response Performance Speed Control Speed Control System System
61

Team Green

Jan 09, 2016

Download

Documents

chesna

Speed Control System. Team Green. Steady State and Step Response Performance. John Barker John Beverly Keith Skiles UTC ENGR329-001 2-15-06. Outline. System Background Description, SSOC, Step Response FOPDT Model Model Theory Results Conclusions. Aerator Mixer Speed Control System. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Team Green

Team GreenTeam GreenJohn BarkerJohn BarkerJohn BeverlyJohn BeverlyKeith SkilesKeith Skiles

UTC ENGR329-001UTC ENGR329-0012-15-062-15-06

Steady State and Step Response Steady State and Step Response PerformancePerformance

Speed Control SystemSpeed Control System

Page 2: Team Green

OutlineOutline

System BackgroundSystem Background– Description, SSOC, Step ResponseDescription, SSOC, Step Response

FOPDT ModelFOPDT Model Model TheoryModel Theory ResultsResults ConclusionsConclusions

Page 3: Team Green

Aerator Mixer Speed Control Aerator Mixer Speed Control SystemSystem

Page 4: Team Green

Block Diagram of SystemBlock Diagram of System

Page 5: Team Green

Steady State Operating Curve

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100

Motor Input (%)

Sp

eed

Ou

tpu

t (R

PM

)

Slope = 17.4

Page 6: Team Green

Sample Step Response Curve

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10

Time (s)

Ou

tpu

t (R

PM

)

Page 7: Team Green

Steady State Operating Curve

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100

Motor Input (%)

Sp

eed

Ou

tpu

t (R

PM

)

Low

High

Mid

Page 8: Team Green

Time Response (Gain)Time Response (Gain)

Gain

17

17.1

17.2

17.3

17.4

17.5

Low Up Mid Up High Up Low Down Mid Down High Down

System Gain (RPM/%)

Page 9: Team Green

Time Response (Dead Time)Time Response (Dead Time)Dead Time (s)

0.08

0.09

0.1

0.11

0.12

Low Up Mid Up High Up Low Down Mid Down High Down

Page 10: Team Green

Time Response (Time Constant)Time Response (Time Constant)

Time Constant (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

Low Up Mid Up High Up Low Down Mid Down High Down

Page 11: Team Green

Step Response Values and ErrorsStep Response Values and Errors

K (RPM/%) t0 (s) τ (s)

Average 17.4 0.11 0.25

Std. Dev 0.05 0.006 0.017

Page 12: Team Green

Laplace Domain FOPDT ModelLaplace Domain FOPDT Model

System Transfer FunctionSystem Transfer Function G(s) = G(s) = Ke /Ke /ττs+1s+1

– ParametersParameters

tt00=Dead Time=Dead Time

K = System GainK = System Gain

ττ = Time Constant = Time Constant

-t0s

Page 13: Team Green

FOPDT ModelFOPDT Model

Model Equation in Time DomainModel Equation in Time Domain– C(t) = A*u(t-tC(t) = A*u(t-tdd-t-t00)*K*(1-e ))*K*(1-e )-(t-td-t0)

Page 14: Team Green

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10

Time (s)

Ou

tpu

t (R

PM

)

0

6

12

18

24

30

36

42

48

Inp

ut

(%)

Model Output

Real Output

Model Input

Real Input

ResultsResults

Page 15: Team Green

0

100

200

300

400

500

600

700

800

4.5 5 5.5 6 6.5

Time (s)

Ou

tpu

t (R

PM

)

0

6

12

18

24

30

36

42

48

Inp

ut

(%)

Model Output

Real Output

Model Input

Real Input

Page 16: Team Green

Time Response (Gain)Time Response (Gain)

Gain (RPM/%)

02468

101214161820

Low Mid High

Page 17: Team Green

Time Response (Dead Time)Time Response (Dead Time)

Dead Time (s)

0

0.02

0.04

0.06

0.08

0.1

0.12

Low Mid High

Page 18: Team Green

Time Response (Time Constant)Time Response (Time Constant)

Time Constant (s)

0

0.05

0.1

0.15

0.2

0.25

Low Mid High

Page 19: Team Green

Overall ResultsOverall ResultsExperimental Results:Experimental Results:

Steady State Gain : K= 17.1RPM/% ± 0.10Steady State Gain : K= 17.1RPM/% ± 0.10

Dead Time : tDead Time : t00= 0.06s ± 0.012= 0.06s ± 0.012

Time Constant : Time Constant : τ τ = 0.19s ± 0.034= 0.19s ± 0.034

Model Results:Model Results:

Steady State Gain : K= 17.4RPM/%Steady State Gain : K= 17.4RPM/%

Dead Time : tDead Time : t00= 0.1s= 0.1s

Time Constant : Time Constant : τ τ = 0.23s= 0.23s

Page 20: Team Green

ConclusionsConclusions

Operating Range 150-1700RPMOperating Range 150-1700RPM K = 17.4 RPM/%K = 17.4 RPM/% tt00= 0.1s= 0.1s ττ = 0.23s= 0.23s

Page 21: Team Green

Red Team -Pressure-Steady State Operating And Step Response

Dennis ToCory RichardsonJamison Linden

04/21/23, UTC, ENGR-329

Page 22: Team Green

Contents

Background Description, SSOC, Step Response

FOPDT Model Model Theory Results Conclusions

Page 23: Team Green

Background

System Input Output SSOC Operating Range

Page 24: Team Green

System

                                                                                                                                                         

                       Figure 1. Schematic diagram of the Dunlap Plant Spray-Paint Booths

Page 25: Team Green

Block Diagram

                                                                                                                                                   

Figure 2. Block diagram of paint Booth System

Page 26: Team Green

SSOC

Steady State Operating Curve

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100

m, Input Blower Pressure (%)

c, Output Pressure (cm-H20)

Operating Range for Output

Operating Range for Input

Page 27: Team Green

Operating Range

Input operating range (45%-90%)

Output operating range (0.5-10 cm-H2O)

Page 28: Team Green

Theory

Transfer Function Parameters

Page 29: Team Green

Transfer FunctionTransfer

Function

m(s)

Input

c(s)

Output

1

0

s

Ke st

K=Gain=∆c/∆m=(cm-H2O)/%to=Dead Timeτ=Time Constant (use 0.632∆c)Uncertainties (max-min)*(t/n)

Page 30: Team Green

Parameters

Steady State Operating Curve

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100

m, Input Blower Pressure (%)

c, Output Pressure (cm-H20)

Lower Upper

Middle

Page 31: Team Green

Results

Experimental (Step-up, Step-down) Time Response (Gain) Time Response (Dead Time) Time Response (Time Constant)

Page 32: Team Green

Experimental (Step-up)

Step Response Inputs and Outputs

80

82

84

86

88

90

92

13 15 17 19 21 23

Time (sec)

Inp

ut

m(t

) (%

)

0

2

4

6

8

10

12

Ou

tpu

t c

(t)

(cm

-H2

O)

Input Value(%)

Output(cm-H20)

Page 33: Team Green

Experimental (Step-down)

Step Response Inputs and Outputs

74767880828486889092

13 15 17 19 21 23

Time (sec)

Inp

ut

m(t

) (%

)

0

2

4

6

8

10

12

Ou

tpu

t c

(t)

(cm

-H2

O)

Input Value(%)

Output(cm-H20)

Page 34: Team Green

Time Response (Gain)

Step Response

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Lower-up

Lower-down

Mid-up

Mid-down

Upper-up

Upper-down

Gain (cm-H2O/%)

`

Page 35: Team Green

Time Response (Dead Time)

Step Response

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Lower-up

Lower-down

Mid-up

Mid-down

Upper-up

Upper-down

Dead Time (sec)

Page 36: Team Green

Time Response (Time Constant)

Step Response

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0Tau (sec)

Lower-up

Lower-down

MId-up Mid-down

Upper-up

Upper-down

Page 37: Team Green

FOPDT Model

Model Equation C(t) = A*u(t-td-t0)*K*(1-e-((t-td-t0)/tau))

Parameters td = 15 sec. A = 15 % K = .21 cm-H2O /% t0 = 0.52 sec. tau = 1.8 sec. inbl= 60% outbl=2 cm-H2O

Page 38: Team Green

Step Up Input and Ouput vs. TimeExperimental and Model Results

1

2

3

4

5

6

13 14 15 16 17 18 19 20 21 22 23

Time (s)

Out

put (

cm-H

2O)

55

60

65

70

75

80

Inpu

t (%

)

Output(cm-H20)

Output

Input

Page 39: Team Green

Step Down Input and Ouput vs. TimeExperimental and Model Results

1

2

3

4

5

6

13 14 15 16 17 18 19 20 21 22 23Time (s)

Out

put (

cm-H

2O)

55

60

65

70

75

80

Inpu

t (%

)

Output(cm-H20)

Output

Input

Page 40: Team Green

Model Time Response (Gain)

Model Time Response (Gain)

0.0

0.1

0.2

0.3

0.4

Gain (cm-H2O)

Lower Up

Lower Down

Middle Up

MiddleDown

Upper Up

UpperDown

Page 41: Team Green

Model Time Response (Dead Time)

Step Response

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Lower-up

Lower-down

Mid-up Mid-down

Upper-up Upper-down

Dead Time (min)

Page 42: Team Green

Model Time Response (Time Constant)Step Response

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0Tau (min)

Lower-up

Lower-down

MId-up Mid-up Upper-up

Upper-up

Page 43: Team Green

Results

EXPERIMENTAL PARAMETERS INCREASING

STEADY STATE GAIN K 0.1-0.35 cm-H2O/% DEAD TIME to 0.5 s

TIME CONSTANT t 1.7 s

EXPERIMENTAL PARAMETERS DECREASING

STEADY STATE GAIN K 0.1-0.35 cm-H2O /% DEAD TIME to 0.5 s TIME CONSTANT t 1.7 s

Page 44: Team Green

Conclusions

Input operating range Output operating range (K) goes up as the input % is

increased (0.1-0.35cm-H2O/%) (to) stays constant (0.5sec) ( ) stays constant (1.7sec)

Page 45: Team Green

Flow Rate Control System

“Step Response Modeling”

February 15, 2006U.T.C.

Engineering 329

Page 46: Team Green

Yellow Team

Jimy George Jeff LawrenceTaylor Murphy Jennifer Potter

Page 47: Team Green

Outline

System Background Description, SSOC, Step Response

FOPDT Theory Model Theory Results Conclusions

Page 48: Team Green

Flow System Setup

Page 49: Team Green

Block Diagram

Page 50: Team Green

Steady State Operation

Flow Rate Versus Time @ 80% Input

7576777879808182838485

0 10 20 30 40

Time (s)

Po

wer

Inp

ut

(%)

0

5

10

15

20

25

Flo

w R

ate

(lb

/min

)

Input

Output

Steady Operation

Page 51: Team Green

SSOC

TEAM STEADY STATE OPERATING CURVE

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

m, Input Pump Speed (%)

c, Output Flow Rate (lb/min)

Operating Range for Input

Operating Range for Output

Page 52: Team Green

Step Response: 70%-85%

Page 53: Team Green

FOPDT Model

Transfer Function

1

0

s

Ke st

Page 54: Team Green

FOPDT Model

Model Equation

Excel Parameters td = Time step occurs A = Height of Step inbl = Initial Input outbl = Initial Steady Value

0

1)( 0

ttt

d

d

eKtttuAtC

Page 55: Team Green

Experimental and Model Results

Experimental and Model Results

70

72

74

76

78

80

82

84

86

24 24.5 25 25.5 26 26.5 27 27.5 28

Time (s)

Inp

ut

(%)

14

15

16

17

18

19

20

21

22

Ou

tpu

t (l

b/m

in)

Excel Model of FOPDT

Experimental Values

K (lb/min/%) = 0.26

Tau (sec) = 0.46

t0 (sec) = 0.42

Page 56: Team Green

Experimental and Model Results…cont

Experimental and Model Results

70

72

74

76

78

80

82

84

86

24 24.5 25 25.5 26 26.5 27 27.5 28

Time (s)

Inp

ut

(%)

14

15

16

17

18

19

20

21

22

Ou

tpu

t (l

b/m

in)

Excel Model of FOPDT

Experimental Data K (lb/min/%) = 0.27

Tau (sec) = 0.47

t0 (sec) = 0.47

Page 57: Team Green

Results

Week 3 Values of K

Step down

Step Up Step Up

Step Down

Step UpStep Down

Step Up

Step Down

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8

Trial

K (lb

/min

/%)

45%-55% 55%-70% 70%-85% 85%-100%

Week 3 Values of K

Step down

Step Up Step Up

Step Down

Step UpStep Down

Step Up

Step Down

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8

Trial

K (lb

/min

/%)

45%-55% 55%-70% 70%-85% 85%-100%

Week 6 Values of K

Step down

Step Up Step Up

Step Down

Step Up

Step Down

Step Up

Step Down

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8

Trial

K (lb

/min/

%)

45%-55% 55%-70% 70%-85% 85%-100%

Week 6 Values of K

Step down

Step Up Step Up

Step Down

Step Up

Step Down

Step Up

Step Down

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8

Trial

K (lb

/min/

%)

45%-55% 55%-70% 70%-85% 85%-100%

Page 58: Team Green

Results … cont

Week 3 Values of Tau

Step down

Step Up Step Up

Step Down

Step Up

Step Down

Step Up

Step Down0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8

Trial

Tau

(sec)

45%-55% 55%-70% 70%-85% 85%-100%

Week 3 Values of Tau

Step down

Step Up Step Up

Step Down

Step Up

Step Down

Step Up

Step Down0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8

Trial

Tau

(sec)

45%-55% 55%-70% 70%-85% 85%-100%

Week 6 Values of Tau

Step down

Step Up Step Up

Step Down

Step Up

Step Down

Step Up

Step Down0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8

Trial

Tau (

sec)

45%-55% 55%-70% 70%-85% 85%-100%

Week 6 Values of Tau

Step down

Step Up Step Up

Step Down

Step Up

Step Down

Step Up

Step Down0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8

Trial

Tau (

sec)

45%-55% 55%-70% 70%-85% 85%-100%

Week 6 Values of Tau

Step down

Step Up Step Up

Step Down

Step Up

Step Down

Step Up

Step Down0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8

Trial

Tau (

sec)

45%-55% 55%-70% 70%-85% 85%-100%

Page 59: Team Green

Results… cont

Week 3 Values of t0

Step down

Step Up Step Up

Step Down

Step Up

Step Down

Step Up

Step Down0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8

Trial

t 0 (s

ec)

45%-55% 55%-70% 70%-85% 85%-100%

Week 3 Values of t0

Step down

Step Up Step Up

Step Down

Step Up

Step Down

Step Up

Step Down0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8

Trial

t 0 (s

ec)

45%-55% 55%-70% 70%-85% 85%-100%

Week 6 Values of t0

Step down

Step Up Step Up

Step Down

Step Up

Step Down

Step Up

Step Down

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8

Trial

t 0 (s

ec)

45%-55% 55%-70% 70%-85% 85%-100%

Week 6 Values of t0

Step down

Step Up Step Up

Step Down

Step Up

Step Down

Step Up

Step Down

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8

Trial

t 0 (s

ec)

45%-55% 55%-70% 70%-85% 85%-100%

Week 6 Values of t0

Step down

Step Up Step Up

Step Down

Step Up

Step Down

Step Up

Step Down

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8

Trial

t 0 (s

ec)

45%-55% 55%-70% 70%-85% 85%-100%

Page 60: Team Green

MODEL PARAMETERSDECREASING

STEADY STATE GAIN K 2.5 V/%

DEAD TIME to 0 s

TIME CONSTANT 0.6 s / 1.2 s / 2.4 s

EXPERIMENTAL PARAMETERSDECREASING

STEADY STATE GAIN K 2.5 V/%

DEAD TIME to 0 s

TIME CONSTANT 0.2 s

OVERALL RESULTS

MODEL PARAMETERS

STEADY STATE GAIN,K = 0.25 lb/min/%

DEAD TIME, to = 0.45 s

TIME CONSTANT, 0.48 s

EXPERIMENTAL PARAMETERS

STEADY STATE GAIN,K = 0.25 lb/min/%

DEAD TIME, to = 0.39 s

TIME CONSTANT, 0.51 s

OVERALL RESULTS

Page 61: Team Green

bOVERALL RESULTS

Experimental ErrorStandard Deviations

STEADY STATE GAIN,K = ± 0.01(lb/min/%)

DEAD TIME, to = ± 0.08 (sec)

TIME CONSTANT, ± 0.03 (sec)MODEL ErrorStandard Deviation

STEADY STATE GAIN,K = ± 0.01 (lb/min/%)

DEAD TIME, to = ± 0.02 (sec)

TIME CONSTANT, ± 0.04 (sec)