Top Banner
VPWS CPIPE / CES TDM Transport over NOKIA Metro-e A. Achyar Nur – Advanced Technical Department 1
120

TDM Transport over mpls v 1.1

Feb 15, 2017

Download

Internet

A. Achyar Nur
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: TDM Transport over mpls v 1.1

VPWSCPIPE / CES

TDM Transport over NOKIA Metro-eA. Achyar Nur – Advanced Technical Department

1

Page 2: TDM Transport over mpls v 1.1

Agenda (1)• PCM (Pulse Code Modulation) Communication System

• E1 vs T1

• SDH and Why SDH?• SDH Layer Model

• Path Section

• SONET

2/20/2016 2

Page 3: TDM Transport over mpls v 1.1

Agenda (2)• Clocking/Network Synchronization

• Terminology

• SDH Clock

• Clocking Status

• Time Provisioning

• Packet Based Clock Synchronization

2/20/2016 3

Page 4: TDM Transport over mpls v 1.1

Agenda (3)• TDM in NOKIA

• Hardware Requirement

• Port Configuration

• TDM over MPLS NOKIA Service

• NOKIA Synchronization System

2/20/2016 4

Page 5: TDM Transport over mpls v 1.1

Agenda (4)• Troubleshooting

• Kind of Alarm

• BER Test Configuration

• Use Case

• FAQ

2/20/2016 5

Page 6: TDM Transport over mpls v 1.1

VPWSCPIPE / CES

PCM (Pulse Code Modulation) Communication System

2/20/2016 6

Page 7: TDM Transport over mpls v 1.1

E1 vs T1 (1)

• E1 and T1 is kind of Plesiochronous Data Hierarchy (PDH)

2/20/2016 7

Page 8: TDM Transport over mpls v 1.1

E1 vs T1 (2)

2/20/2016 8

Page 9: TDM Transport over mpls v 1.1

E1 vs T1 (3)

2/20/2016 9

Page 10: TDM Transport over mpls v 1.1

E1 vs T1 (4)P

DH

Hie

rarc

hy

2/20/2016 10

Page 11: TDM Transport over mpls v 1.1

E1 vs T1 (5)P

DH

Hie

rarc

hy

2/20/2016 11

Page 12: TDM Transport over mpls v 1.1

Synchronous Data Hierarchy (SDH) (1)

• SDH is PCM communication system that using synchronous clock to deliver traffic

• SDH (Synchronous Data Hierarchy) and Why SDH?• High transmission rates

• Disadvantages inherent in PDH

• Simplified drop and insert function

• High availability and capacity matching

• Reliability

• Future-proof platform for new services

• Interconnection

2/20/2016 12

Page 13: TDM Transport over mpls v 1.1

Synchronous Data Hierarchy (SDH) (2)

• Network Components

2/20/2016 13

Page 14: TDM Transport over mpls v 1.1

Synchronous Data Hierarchy (SDH) (3)

• SDH Layer Model

2/20/2016 14

Page 15: TDM Transport over mpls v 1.1

Synchronous Data Hierarchy (SDH) (4)

• Mapping and Muxing in SDH

2/20/2016 15

Page 16: TDM Transport over mpls v 1.1

Synchronous Data Hierarchy (SDH) (5)

• Mapping and Muxing in SDH (2)

2/20/2016 16

Page 17: TDM Transport over mpls v 1.1

Synchronous Data Hierarchy (SDH) (6)

• SDH – SONET Equivalention

2/20/2016 17

Page 18: TDM Transport over mpls v 1.1

Synchronous Data Hierarchy (SDH) (7)

• Automatic Protection Switching (APS)

Linear Protection Uni-directional Ring Bi-directional Ring

2/20/2016 18

Page 19: TDM Transport over mpls v 1.1

Synchronous Data Hierarchy (SDH) (8)

• Network Synchronization

2/20/2016 19

Page 20: TDM Transport over mpls v 1.1

Synchronous Optical Networking (SONET) (1)

• Network Components

2/20/2016 20

Page 21: TDM Transport over mpls v 1.1

Synchronous Optical Networking (SONET) (2)

• SONET Layer

2/20/2016 21

Page 22: TDM Transport over mpls v 1.1

Synchronous Optical Networking (SONET) (3)

• Mapping and Muxing in SONET

2/20/2016 22

Page 23: TDM Transport over mpls v 1.1

Synchronous Optical Networking (SONET) (4)

• Automatic Protection Switching (APS) (1)

1+1 Protection Scheme 1:1 Protection Scheme 1:N Protection Scheme

2/20/2016 23

Page 24: TDM Transport over mpls v 1.1

Synchronous Optical Networking (SONET) (5)

• Automatic Protection Switching (APS) (2)

Uni-directional Ring Bi-directional Ring

2/20/2016 24

Page 25: TDM Transport over mpls v 1.1

Synchronous Data Hierarchy (SDH) (6)

• Network Synchronization

2/20/2016 25

Page 26: TDM Transport over mpls v 1.1

VPWSCPIPE / CES

Network Synchronization

2/20/2016 26

Page 27: TDM Transport over mpls v 1.1

Clocking Terminology

• Synchronization is required in order to meet network performance and availability requirements.

• Poor network synchronization will lead to large amounts of Jitter and Wander.

• This Jitter and Wander can lead to transmission errors and buffer under/overflow.

2/20/2016 27

Page 28: TDM Transport over mpls v 1.1

SDH Clock

• SDH Network Synchronization Clock Architecture

2/20/2016 28

Page 29: TDM Transport over mpls v 1.1

SDH Clock (2)

• Element of Synchronization (ETSI EG 201 793)

2/20/2016 29

Page 30: TDM Transport over mpls v 1.1

SDH Clock (3)

• Methods to Synchronize Telecommunication Networks

Centralized master clock network synchronization

Fully distributed master clocks network synchronization

Partially distributed master clocks network synchronization

2/20/2016 30

Page 31: TDM Transport over mpls v 1.1

Clocking Status

• Clock Operation Mode• free running mode

• holdover mode

• ideal operation

• locked mode

• stressed operation

2/20/2016 31

Page 32: TDM Transport over mpls v 1.1

Time Provisioning

• Time Provisioning

External Timing Line Timing Looped Timing Through Timing

Internal Timing

2/20/2016 32

Page 33: TDM Transport over mpls v 1.1

Packet Based Clock Synchronization

• Ethernet is inherently an asynchronous networking system.

• Differences in timing at nodes within a network cause the receiving node to either drop or reread information sent to it.

• Achieve the required synchronization of the TDM nodes across the asynchronous Ethernet network, a clock recovery mechanism must be employed at the receiver side of a CESoETH connection.

2/20/2016 33

Page 34: TDM Transport over mpls v 1.1

Packet Based Clock Synchronization (2)

• There are three categories of Clock solutions:• External source – GPS or TDM network. This is outside the scope of the Carrier Ethernet

domain.

• Synchronization of packet network – elaborated in the following sections.

• Synchronization over physical Ethernet – Synchronous Ethernet or SyncE

2/20/2016 34

Page 35: TDM Transport over mpls v 1.1

Packet Based Clock Synchronization (3)

• Technique for Sync:

1. Adaptive Clock Recovery (ACR)2. Network Time Protocol (NTP)3. IEEE-1588 v2 (PTP)4. Synchronous Ethernet (Sync-E)

2/20/2016 35

Page 36: TDM Transport over mpls v 1.1

Packet Based Clock Synchronization (4)

• Adaptive Clock Recovery (ACR)• Adaptive Clock Recovery (ACR) is

used in conjunction with circuit emulation services.

• adaptive methods adjust a local frequency reference to ensure that the rate of data being transmitted by the packet to TDM IWF matches the rate of data reception at the TDM to packet IWF.

2/20/2016 36

Page 37: TDM Transport over mpls v 1.1

Packet Based Clock Synchronization (5)

• Adaptive Clock Recovery (ACR)(2)

2/20/2016 37

Page 38: TDM Transport over mpls v 1.1

Packet Based Clock Synchronization (6)

• Network Time Protocol (NTP)• The main issue with NTP is that its accuracy can degrade substantially during periods of

network congestion

• defined in RFC 1305, including a recovery algorithm

• protocol uses four timestamps

• It was not designed for highly accurate frequency distribution, as is now being considered for telecommunication applications, nor for the highly accurate phase requirements of the TDD mobile technologies.

2/20/2016 38

Page 39: TDM Transport over mpls v 1.1

Packet Based Clock Synchronization (7)

• Network Time Protocol (NTP) (2)

2/20/2016 39

Page 40: TDM Transport over mpls v 1.1

Packet Based Clock Synchronization (8)

• The Precision Time Protocol (PTP)• IEEE1588v2 and its Precision Time Protocol (PTP) message exchange is another

mechanism that can be used to synchronize time and timing within a network

• Providing the highest level of accurate frequency, phase, and time of day to wireless backhaul networks.

• Similar with NTP but enhance some hardware-based time-stamping

2/20/2016 40

Page 41: TDM Transport over mpls v 1.1

Packet Based Clock Synchronization (9)

• The Precision Time Protocol (PTP)(2)• PTP Component

2/20/2016 41

Page 42: TDM Transport over mpls v 1.1

Packet Based Clock Synchronization (10)

• The Precision Time Protocol (PTP)(3)• Transparent Clock Type

End to End Peer to Peer

2/20/2016 42

Page 43: TDM Transport over mpls v 1.1

Packet Based Clock Synchronization (11)

• Synchronous Ethernet• The Synchronous Ethernet (SyncE) approach provides a mechanism to deliver a

network traceable physical layer clock over IEEE 802.3 PHYs with Ethernet Equipment Clock (EEC) as specified in ITU-T G.8262.

• The architectural aspects of Synchronous Ethernet are defined in ITU-T G.8261. SyncEprovides the capability to provide an Ethernet clock that is traceable to a primary reference clock (PRC) as defined in ITU-T G.811

• It should be noted that SyncE requires all network elements in the network to be upgraded to support SyncE. Therefore SyncE might only be practical for use in small network domains, while a hybrid solution complemented by a packet-based synchronization method would be required to extend its reach.

2/20/2016 43

Page 44: TDM Transport over mpls v 1.1

Packet Based Clock Synchronization (12)

• Synchronous Ethernet (2)• Synchronous Status Message (SSM)

• Determine the quality level of the clock sourcing a given synchronization trail

• Allow a network element to select the best of multiple input synchronization trails

• Avoid the creation of timing loops.

• SSM of Synchronous Ethernet uses an Ethernet OAM PDU that uses the slow protocol subtype (ITU-T G.8264)

• SSM of Synchronous Ethernet uses an Ethernet OAM PDU that uses the slow protocol subtype.

2/20/2016 44

Page 45: TDM Transport over mpls v 1.1

Packet Based Clock Synchronization (13)

• Synchronous Ethernet (3)• Synchronous Ethernet (Sync-E)

• Ethernet Port can derive the physical layer transmitter clock

• Not influenced by impairments introduced by the higher levels of the networking technology (packet loss, packet delay variation).

2/20/2016 45

Page 46: TDM Transport over mpls v 1.1

Packet Based Clock Synchronization (14)

• Synchronous Ethernet (4)

2/20/2016 46

Page 47: TDM Transport over mpls v 1.1

Packet Based Clock Synchronization (15)

• Synchronous Ethernet (5)

2/20/2016 47

Page 48: TDM Transport over mpls v 1.1

VPWSCPIPE / CES

TDM in NOKIA

2/20/2016 48

Page 49: TDM Transport over mpls v 1.1

Hardware Requirement• 7x50 Product Family Hardware Support for TDM

• OC-3• OC-3 ASAP• OC-12/3• OC-48• OC-192• OC-768• OC-12 ASAP• Channelized OC3• Channelized OC12• ATM OC-12/3• ATM OC-12• Channelized ASAP OC3• Channelized ASAP OC12

2/20/2016 49

Page 50: TDM Transport over mpls v 1.1

Hardware Requirement (2)

• 7x50 Product Family Hardware Support for TDM (2)• Mapping port Hierarchy

2/20/2016 50

Page 51: TDM Transport over mpls v 1.1

Hardware Requirement (3)• 7x50 Product Family Hardware Support for TDM (3)

• Mapping Port for OC12

2/20/2016 51

Page 52: TDM Transport over mpls v 1.1

Hardware Requirement (4)• 7x50 Product Family Hardware Support for TDM (4)

• Mapping Port for DS3

2/20/2016 52

Page 53: TDM Transport over mpls v 1.1

Hardware Requirement (5)• 7705 Product Family Hardware Support for TDM

• 16-port T1/E1 ASAP Adapter card • 32-port T1/E1 ASAP Adapter card• 12-port Serial Data Interface card• 6-port E&M Adapter card• 2-port OC3/STM1 Channelized Adapter card• 4-port OC3/STM1 Channelized Adapter card• 4-port DS3/E3 Adapter card • 8-port Voice & Teleprotection card• 4-port T1/E1 and RS-232 Combination module • 8-port FXO Adapter card • 6-port FXS Adapter card

2/20/2016 53

Page 54: TDM Transport over mpls v 1.1

Hardware Requirement (6)• 7705 Product Family Hardware Support for TDM (2)

68-pin AMP to 68-pin AMP Cable 68-pin AMP to Ended-Wire

2/20/2016 54

Page 55: TDM Transport over mpls v 1.1

Hardware Requirement (6)• Digital Distribution Frame (DDF)

DDF LSA Type

DDF K52 Type

2/20/2016 55

Page 56: TDM Transport over mpls v 1.1

Mapping Port to LSA • SAR-8 Use-case

2/20/2016 56

Page 57: TDM Transport over mpls v 1.1

Mapping Port to LSA (2)• SAR-8 Use-case

• Rule:• One LSA Block serve 5 E1 Channel/Port

• Each Port has TX and RX

• Each Sub-bundle cable contains 4 cable.• Each Sub-bundle cable contains 2 port

• Each TX and RX using 2 cable from E1/T1 cable, for mapping you may see the table above

• TX and RX must be cross pair, it means, If the RX cable using white-blue, so the TX cable using Turquoise-Violet (Please see the table to help you understand)

• On The LSA, mapping the RX cable first ( MAP-1) then continue with the TX cable (MAP-2)

2/21/2016 57

Page 58: TDM Transport over mpls v 1.1

Mapping Port to LSA (3)• SAR-8 Use-case

• Mapping Cable for Each Port in One Block LSA Based on Table mapping and Rule

2/21/2016 58

Page 59: TDM Transport over mpls v 1.1

Port Configuration• Port Configuration as Network Port

OC-X Port = STM-1 Payload

port x/y/xdescription “STM-1 Carrier Network"sonet-sdh

framing sdhpath

mode networkencap-type ppp-autono shutdown

exitexitno shutdown

exit

Mapping to Interface

interface “STM-1 Carrier"address 192.168.19.193/30description “STM-1 Carrier"port x/y/zdhcp

shutdownexit

exit

2/20/2016 59

Page 60: TDM Transport over mpls v 1.1

Port Configuration(2)• Port Configuration as Network Port(2)

E-1/T-1/DS-1 Port

port x/y/xdescription “E1 Carrier Trans"tdm

e1 channel-group 1

mode networkencap-type ppp-autono shutdown

exitno shutdown

exitexitno shutdown

exit

N x E-1 Carrier for Transmission

port bundle-ppp-x/y.adescription “N * E-1 Carrier"multilink-bundle

member x/y/1.amember x/y/2.amember x/y/3.amember x/y/4.amrru 2048

exitno shutdown

exit

2/20/2016 60

Page 61: TDM Transport over mpls v 1.1

Port Configuration(3)• Port Configuration as Network Port(3)

Mapping to Interface

interface “N* E-1 Carrier Transmission"shutdownaddress 192.168.0.5/30port bundle-ppp-x/y.adhcp

shutdownexit

exit

2/20/2016 61

Page 62: TDM Transport over mpls v 1.1

Port Configuration(4)• Port Configuration as Access Port

OC-X Port Configuration

port x/y/xdescription “OC-X Access Port"sonet-sdh

framing sdhclock-source node-timed

exitno shutdown

exit

APS Configuration Using uni-directional Sw-Mode

Note: see clock source reference, in NOKIA: there 3 clock source reference:- node-timed- Looped- timed- adaptive

2/20/2016 62

Page 63: TDM Transport over mpls v 1.1

Port Configuration(5)• Port Configuration as Access Port (2)

Mapping To Service

cpipe abcdefgh customer opq vc-type satop-e1 createdescription “Access Service E1"service-name “Acess Service E-1"sap aps-2.3.2.1.2.1 createexitspoke-sdp opqrs:abcdefgh create

no shutdownexitno shutdown

exit

2/20/2016 63

Page 64: TDM Transport over mpls v 1.1

Port Configuration(6)• Port Configuration as Access Port (3)

DS-3 Port Configuration Un-Channelized

port x/y/zdescription “Un-Channelized Access"tdm

ds3 encap-type cemclock-source loop-timedframing ds3-unframedno shutdown

exitexitno shutdown

exit

APS Configuration Using uni-directional Sw-Mode

Note: see clock source reference, in NOKIA: there 3 clock source reference:- node-timed- Looped- timed- adaptive

2/20/2016 64

Page 65: TDM Transport over mpls v 1.1

Port Configuration(7)• Port Configuration as Access Port (4)

Mapping To Service DS3-Un-Channelized

cpipe abcdfgh customer opq vc-type satop-t3 createdescription “DS3 Un-channelized"sap x/y/z createexitspoke-sdp opqrs:abcdfgh createexitno shutdown

exit

2/20/2016 65

Page 66: TDM Transport over mpls v 1.1

Port Configuration(8)• Port Configuration as Access Port (5)

Mapping To Service DS3-Channelized

cpipe abcdfgh customer opq vc-type satop-t3 createdescription “DS3 Un-channelized"sap x/y/z.a createexitspoke-sdp opqrs:abcdfgh createexitno shutdown

exit

2/20/2016 66

Page 67: TDM Transport over mpls v 1.1

Port Configuration(9)• Port Configuration as Access Port (6)

E-1 Port Configuration non Bundling

port x/y/zdescription “E-1 Non Bundling"tdm

e1 framing e1-unframedchannel-group 1

encap-type cemno shutdown

exitno shutdown

exitexitno shutdown

exit

Mapping Port to Service

cpipe abcd customer hij vc-type satop-e1 createdescription “E1- non bundling Service"sap x/y/z.a createexitspoke-sdp ab:wxyz createexitno shutdown

exit

2/20/2016 67

Page 68: TDM Transport over mpls v 1.1

Port Configuration(10)• Port Configuration as Access Port (7)

E-1 Port Configuration Bundling

port x/y/zdescription “E-1 Access Bundling"tdm

e1 channel-group 1

encap-type atmno shutdown

exitno shutdown

exitexitno shutdown

exit

N x E-1 Carrier for Access

port bundle-ima-x/y.adescription “Bundling Access"multilink-bundle

imaatmexit

exitmember x/y/1.amember x/y/2.amember x/y/3.amember z/y/4.a

exitno shutdown

exit

2/20/2016 68

Page 69: TDM Transport over mpls v 1.1

Port Configuration(11)• Port Configuration as Access Port (8)

Mapping To N*E-1 Service Channel

apipe abcdef customer jklmn vc-type atm-vpc createdescription “ATM IP Using TDM"sap bundle-ima-x/y.a:b createexitspoke-sdp rst:abcdef createexitno shutdown

exit

2/20/2016 69

Page 70: TDM Transport over mpls v 1.1

TDM over MPLS NOKIA Service

• NOKIA TDM Service Terminology

• TDM PW based on IETF PWE3 called Cpipe

• Circuit Mode:• Unstructured Mode (SAToP)

• Structured Mode (CESoPSN)

• MEF8 Allow both of them (CESoETH)

2/20/2016 70

Page 71: TDM Transport over mpls v 1.1

TDM over MPLS NOKIA Service (2)

• Unstructured Frames (SAToP)• Structure-agnostic TDM over Packet

• used for the transport of unstructured TDM or structured TDM (where the structure is ignored).

• SAToP service does not align to any framing

2/20/2016 71

Page 72: TDM Transport over mpls v 1.1

TDM over MPLS NOKIA Service (3)

• Structured Frames (CESoPSN)• Selecting only the necessary n × 64 kb/s timeslots to transport

• Framing bits (DS1) or FAS (E1) are terminated at the near end and reproduced at the far end

• To mapping payload using CAS (Channel Associate Sygnaling)

2/20/2016 72

Page 73: TDM Transport over mpls v 1.1

TDM over MPLS NOKIA Service (4)

• Structured Frames (CESoPSN) (2)• Structured Frames for E-1 Multiframe

2/20/2016 73

Page 74: TDM Transport over mpls v 1.1

TDM over MPLS NOKIA Service (5)• TDM PW Encapsulation

SAToP MPLS Encapsulation CESoPSN MPLS Encapsulation

2/20/2016 74

Page 75: TDM Transport over mpls v 1.1

TDM over MPLS NOKIA Service (6)• TDM PW Encapsulation (2)

CESoPSN MPLS with CAS CESoPSN MPLS without CAS

2/20/2016 75

Page 76: TDM Transport over mpls v 1.1

TDM over MPLS NOKIA Service (7)

• Circuit Emulation Parameters and Options• Unstructured

• Unstructured CES is configured by choosing satop-t1, satop-e1, satop-t3, or satop-e3 as the vc-type when creating a Cpipe service.

• framing parameter of the port must be set to ds1-unframed and e1-unframed

• Unstructured Payload Defaults

2/20/2016 76

Page 77: TDM Transport over mpls v 1.1

TDM over MPLS NOKIA Service (8)• Circuit Emulation Parameters and Options(2)

• Structured Without CAS• Structured CES without CAS is configured by choosing cesopsn as the vc-type when creating a

Cpipe service• For n × 64 kb/s structured circuit emulation operation, the framing parameter of the port must be

set to a framed setting• Calculation Packet Size (S):

S = N x FN = Number of timeslots/octetF = Number of Frames received

• Calculation Packet Delay Size:the received frame arrival period is 125 μs.packetization delay (D) can be calculated as follows:D = 125 μs/frame × Number of frames

2/20/2016 77

Page 78: TDM Transport over mpls v 1.1

TDM over MPLS NOKIA Service (9)

• Circuit Emulation Parameters and Options(3)• Structured With CAS

• service is configured by choosing cesopsn-cas as the vc-type

• the port associated with the Cpipe SAP should be configured to support CAS (via the signal-mode {cas})

• timeslot 16 (channel 17) cannot be included in the channel group on E1 carriers

• Payload size = TS × MF × F.TS = time slotMF = Frame per multiframeF = number of multiframe

• Additional octet for CAS signaling (important to define MTU Service)

2/20/2016 78

Page 79: TDM Transport over mpls v 1.1

TDM over MPLS NOKIA Service (10)

• Circuit Emulation Parameters and Options(4)• Jitter Buffer

• Use for ensure packet received tolerant to PDV

• For each circuit, the maximum receive jitter buffer is configurable.

• Must be set at least 3 times the packetziation and no greater than 32 times paketization delay

• The following values are the default jitter buffer times for structured circuits without CAS,where N is the number of timeslots:• for N = 1, the default is 32 ms• for 2 ≤ N ≤ 4, the default is 16 ms• for 5 ≤ N ≤ 15, the default is 8 ms• for N ≥ 16, the default is 5 ms

• For CESoPSN with CAS, the default jitter buffer is 12 ms for T1 and 8 ms for E1.

2/20/2016 79

Page 80: TDM Transport over mpls v 1.1

NOKIA Synchronization System

• Network Synchronization In SROS• SDH/SONET Clocking

• Synchronous Ethernet

• Adaptive Clock Recovery (ACR)

• Precision Time Protocol (PTP)

• Clock always receives timing from a clock of equal or higher stratum or quality level

• Simple ordered list of inputs: {bits, ref1, ref2, ptp, external}

2/20/2016 80

Page 81: TDM Transport over mpls v 1.1

NOKIA Synchronization System (2)

• The recovered clock will be able to derive its timing from any of the following:• OC3/STM1, OC12/STM4, OC48/STM16, OC192/STM64 ports

• T1/E1 CES channel (adaptive clocking)

• Synchronous Ethernet ports

• T1/E1 port

• BITS port on a Channelized OC3/STM1 CES CMA (7750 SR-c12)

• BITS port on the CPM or CFM module

• 10GE ports in WAN PHY mode

• IEEE 1588v2 slave port (PTP)

2/20/2016 81

Page 82: TDM Transport over mpls v 1.1

NOKIA Synchronization System(3)

• Simple Clocking Configuration • To edit mode use begin, then to end edit mode and save use commit or use abort to

cancel configuration was made.

Start Edit Mode

A:PE-02-SAR-8# configure system sync-if-timing A:PE-02-SAR-8>config>system>sync-if-timing# begin

End Edit Mode

*A:PE-02-SAR-8>config>system>sync-if-timing# commit*A:PE-02-SAR-8>config>system>sync-if-timing#

Abort Configuration

*A:PE-02-SAR-8>config>system>sync-if-timing# abort*A:PE-02-SAR-8>config>system>sync-if-timing#

2/20/2016 82

Page 83: TDM Transport over mpls v 1.1

NOKIA Synchronization System(4)

• Simple Clocking Configuration (2)Simple Clocking Syntax based on 7750

ALU-Node-A>config>system>sync-if-timing# info----------------------------------------------

ref-order ref2 ref1 bitsref1

source-port x/y/zno shutdown

exitref2

source-port a/b/cno shutdown

exitbits

interface-type ds1 esfno shutdown

exit----------------------------------------------ALU-Node-A>config>system>sync-if-timing#

Simple Clocking Syntax based on 7705 (Ext)

ALU-1>config>system>sync-if-timing# info----------------------------------------------

ref-order external ref1 ref2ql-selectionexternal

input-interfaceno shutdownimpedance 50-Ohmtype 2048Khz-G703

exit----------------------------------------------*ALU-1>>config>system>sync-if-timing#

2/20/2016 83

Page 84: TDM Transport over mpls v 1.1

NOKIA Synchronization System (5)

• Clocking from External• Source clock

• Grand Master Clock (PRC) device

• SDH/SONET device (come from E1/T1 DDF termination)

2/20/2016 84

Page 85: TDM Transport over mpls v 1.1

NOKIA Synchronization System (6)

• Clocking from External (2)• Topology

PRC

Alcatel-Lucent 7750 SR

Alcatel-Lucent 7705 SAR

Alcatel-Lucent 7750 SR

Alcatel-Lucent 7705 SAR

SDH Cloud

2/20/2016 85

Page 86: TDM Transport over mpls v 1.1

NOKIA Synchronization System (7)

• Clocking from External (3)7705 Syntax

systemsync-if-timing

beginexternal

input-interfaceimpedance 50-Ohmtype 2048Khz-G703no shutdown

exitoutput-interface

type 2048Khz-G703exit

exitrevertcommit

exitexit

7750 Syntax

systemsync-if-timing

beginbits

interface-type e1 pcm31crcinput

no shutdownexit

exitrevertcommit

exitexit

2/20/2016 86

Page 87: TDM Transport over mpls v 1.1

NOKIA Synchronization System(8)

• Synchronous Ethernet (Sync-E)• Mapping port in 7750 for Sync-E requirement

• On 7705 SAR-8 must be a8-ethv2 or higher

• Number oof node in chain: 15-20 nodes

2/20/2016 87

Page 88: TDM Transport over mpls v 1.1

NOKIA Synchronization System(9)

• Synchronous Ethernet (Sync-E) (2)• Topology

PRC

Sync-e

SDH Network

IP-Network Sync-e

Master Clock / SSU

Ethernet slave clock (ECE)

Sync-eEthernet slave

clock (ECE)

Master Clock / SSU

2/20/2016 88

Page 89: TDM Transport over mpls v 1.1

NOKIA Synchronization System(10)

• Synchronous Ethernet (Sync-E) (3)• Configuration

• Define Sync-E capability on Hardware

Configuration Under MDA

configure card 1card-type iom3-xpmda x

mda-type m2-10gb-xp-xfpsync-e

exitexit all

Configuration Under Port (enable SSM)

configure port x/x/xethernet

ssmno shutdown

exitexit

2/20/2016 89

Page 90: TDM Transport over mpls v 1.1

NOKIA Synchronization System(11)

• Synchronous Ethernet (Sync-E) (4)• Configuration

• Configuration on system sync-if-timing

Clocking Configuration

ALU-Node-A>config>system>sync-if-timing# info----------------------------------------------

ref-order ref2 ref1 bitsref1

source-port x/y/zno shutdown

exitref2

source-port a/b/cno shutdown

exit----------------------------------------------ALU-Node-A>config>system>sync-if-timing#

2/20/2016 90

Page 91: TDM Transport over mpls v 1.1

NOKIA Synchronization System(12)

• Adaptive Clock recovery • Mapping port on Master Node, port can be:

• E1 port with physical loop or logical loop

• Channelized OC3, DS3

MPLS Cloud

PRC

SAPSAP

SDP CpipeCpipe

2/20/2016 91

Page 92: TDM Transport over mpls v 1.1

NOKIA Synchronization System(13)

• Adaptive Clock recovery (2)• Configuration at Master Node

Master Node Configuration (Port Configuration)

configure port <port-id>tdm

e1 channel-group <channel-group-id>

description “ACR Source Clock”encap-type cemtimeslots <timeslots>no shutdownexit

no shutdownexit

exitno shutdown

exit

2/20/2016 92

Page 93: TDM Transport over mpls v 1.1

NOKIA Synchronization System(14)

• Adaptive Clock recovery (3)• Configuration at Master Node (2)

Master Node Configuration (QoS Configuration)

configure qossap-ingress <id> create

description "ACR policy"queue 1 createexitqueue 2 expedite create

rate max cir maxmbs 18cbs 3

exitfc "nc" create

queue 2exitdefault-fc "nc"default-priority high

exitexit2/20/2016 93

Page 94: TDM Transport over mpls v 1.1

NOKIA Synchronization System(15)

• Adaptive Clock recovery (4)• Configuration at Master Node (3)

Master Node Configuration (Service Configiuration)

2/20/2016 94

Page 95: TDM Transport over mpls v 1.1

NOKIA Synchronization System(16)

• Adaptive Clock recovery (5)• Configuration at Slave Node

Slave Node Configuration (Port Configuration)

configure port <port-id>tdm

e1 clock-source adaptivechannel-group < channel-group-id >

description “description port channel”encap-type cemtimeslots <timeslots>no shutdown

exitno shutdown

exitexitno shutdown

exit all

2/20/2016 95

Page 96: TDM Transport over mpls v 1.1

NOKIA Synchronization System(17)

• Adaptive Clock recovery (6)• Configuration at Slave Node (2)

Slave Node Configuration (Service Configiuration)

2/20/2016 96

Page 97: TDM Transport over mpls v 1.1

NOKIA Synchronization System(18)

• Adaptive Clock recovery (7)• Configuration at Slave Node (3)

Slave Node Configuration (Clocking Configiuration)

configure system sync-if-timing begin

ref1source-port <port-id> adaptiveno shutdown

exit commitexit all

2/20/2016 97

Page 98: TDM Transport over mpls v 1.1

NOKIA Synchronization System(18)

• Adaptive Clock recovery (8)• Verify

ACR Result View

/show port x/y/z.e1 acr/show port x/y/z.e1 acr detail

2/20/2016 98

Page 99: TDM Transport over mpls v 1.1

NOKIA Synchronization System(19)

• Precision Time Protocol (1588v2) • mda on 7705 SAR-8 must be an a8-

ethv2 or higher

• Clock-mda is mda slot where the ptpmessages incoming to SAR

PRC

Master Clock

Boundary Clock

Slave Clock

Slave Clock Slave Clock

Boundary Clock

Transparent Clock

2/20/2016 99

Page 100: TDM Transport over mpls v 1.1

NOKIA Synchronization System(19)

• Precision Time Protocol (1588v2) (2)• Act as Master and slave Clock 7750 SR

PRC

Master Clock

Boundary Clock

Slave Clock

Slave Clock Slave Clock

Boundary Clock

Transparent Clock

Configuration

configure systemptp

profile ieee1588-2008clock-type ordinary masterno shutdown

exit all

Configuration

configure systemptp

profile ieee1588-2008clock-type boundarypeer <ip-system> createexitno shutdown

2/20/2016 100

Page 101: TDM Transport over mpls v 1.1

NOKIA Synchronization System(19)

• Precision Time Protocol (1588v2) (3)• Act as Master and slave Clock 7750 SR (2)

PRC

Master Clock

Boundary Clock

Slave Clock

Slave Clock Slave Clock

Boundary Clock

Transparent Clock

Configuration

configure systemptp

profile ieee1588-2008clock-type ordinary slavepeer <ip-system> createexitno shutdown

/configure system sync-if-timingbegin

ptp no shutdowncommit

exit all

2/20/2016 101

Page 102: TDM Transport over mpls v 1.1

NOKIA Synchronization System(19)

• Precision Time Protocol (1588v2) (4)• Act as Master and slave Clock 7705

PRC

Master Clock

Boundary Clock

Slave Clock

Slave Clock Slave Clock

Boundary Clock

Transparent Clock

Configuration

Configuration

2/20/2016 102

Page 103: TDM Transport over mpls v 1.1

NOKIA Synchronization System(19)

• Precision Time Protocol (1588v2) (4)• Act as Master and slave Clock 7705

PRC

Master Clock

Boundary Clock

Slave Clock

Slave Clock Slave Clock

Boundary Clock

Transparent Clock

Configuration

2/20/2016 103

Page 104: TDM Transport over mpls v 1.1

NOKIA Synchronization System(20)

• Enhance Configuration • Revert Mode

Allow clock changes if the existing is unstable

Revert Syntax

A:PE-02-SAR-8# configure system sync-if-timing A:PE-02-SAR-8>config>system>sync-if-timing# begin *A:PE-02-SAR-8>config>system>sync-if-timing# revert*A:PE-02-SAR-8>config>system>sync-if-timing# commit *A:PE-02-SAR-8>config>system>sync-if-timing#

2/20/2016 104

Page 105: TDM Transport over mpls v 1.1

NOKIA Synchronization System(21)

• Enhance Configuration (2) • Forcing Specific Reference

• Force reference clock to use

• Back to normal application with command no force-reference

End Edit Mode

debug>sync-if-timing force-reference {ref1 | ref2 | bits}

2/20/2016 105

Page 106: TDM Transport over mpls v 1.1

NOKIA Synchronization System (22)

• Support selection of the node reference using Quality Level (QL) indications

2/20/2016 106

Page 107: TDM Transport over mpls v 1.1

NOKIA Synchronization System (23)

• Switching Mode Operations

2/20/2016 107

Page 108: TDM Transport over mpls v 1.1

VPWSCPIPE / CES

Troubleshooting

2/20/2016 108

Page 109: TDM Transport over mpls v 1.1

Kind Of Alarm• Global Alarm defined

• Anomaly

• Defect

• Failure

2/20/2016 109

Page 110: TDM Transport over mpls v 1.1

Kind Of Alarm (2)• Alarm defined

• Loss of Signal (LOS)• Out Of Frame (OOF)• Loss Of the Frame (LOF)• Loss Of Pointer (LOP)• Alarm Indication Signal (AIS)• Remote Error Indication (REI)• Remote Defect Indication (RDI)• Remote Failure Indication (RFI)• B-x Error (B1, B2, B3)• BIP-2 Error• Loss of Sequence Synchronization (LSS)

2/20/2016 110

Page 111: TDM Transport over mpls v 1.1

Kind Of Alarm (2)• Alarm defined

• Loss of Signal (LOS)• Out Of Frame (OOF)• Loss Of the Frame (LOF)• Loss Of Pointer (LOP)• Alarm Indication Signal (AIS)• Remote Error Indication (REI)• Remote Defect Indication (RDI)• Remote Failure Indication (RFI)• B-x Error (B1, B2, B3)• BIP-2 Error• Loss of Sequence Synchronization (LSS)

2/20/2016 111

Page 112: TDM Transport over mpls v 1.1

BER Test Configuration • Sunlite E1 SS265 Front

and UP View

2/20/2016 112

Page 113: TDM Transport over mpls v 1.1

BER Test Configuration (2) • Sunlite E1 SS265 LED Panel

Green = receiving pulseRed = Not Receiving pulse

Green = Synch on received test patternRed = Synch is not achieved

2/20/2016 113

Page 114: TDM Transport over mpls v 1.1

BER Test Configuration (3) • Sunlite E1 SS265 Probe Panel

2/20/2016 114

Page 115: TDM Transport over mpls v 1.1

BER Test Configuration (4) • Step To Setting Parameter and Testing

Choice mode:N x 64 = Time selectionE1 = Full 2048 Mbps

Use Selected Time Slot

Unused TS

TS Selection1 1b

2

2

PCM-30PCM-30-CPCM-31PCM-31CUNFRAMED

TERMHI-ZMONITOR

3

2/20/2016 115

Page 116: TDM Transport over mpls v 1.1

BER Test Configuration (5) • Step To Setting Parameter and Testing (2)

INTERNALIN+/-XXXXXEXTERNALRECEIVED

3b

2e15, 2e9, 2e11, 2e23, 1111, 0000,1010, RICAR 3, User 1, User 2, User 3, LIVE,LOOP

45

2/20/2016 116

Page 117: TDM Transport over mpls v 1.1

BER Test Configuration (6) • Summary Result

1 2 3 3

4 4 5 6

2/20/2016 117

Page 118: TDM Transport over mpls v 1.1

Use Case• Topology

Node-ANode-B

MPLS Cloud

Modem

SDH Equipment(OMS/OMUX/DXC)

SDH Equipment(OMS/OMUX)

DDF

2/20/2016 118

Page 119: TDM Transport over mpls v 1.1

VPWSCPIPE / CES

QA

2/20/2016 119

Page 120: TDM Transport over mpls v 1.1

THANK YOU@achyarnurandihttp://achyarnurandi.net

2/20/2016 120