Top Banner
TCA Gly G1P G6P F6P F1-6BP PEP Pyr Gly3p 13BPG 3PG 2PG ATP NADH Oxa Cit ACA
35

TCA

Jan 04, 2016

Download

Documents

jael-mccarty

Gly. G1P. G6P. F6P. F1-6BP. Gly3p. ATP. 13BPG. 3PG. TCA. Oxa. ACA. 2PG. PEP. Pyr. NADH. Cit. F6P. F1-6BP. Gly3p. ATP. 13BPG. 3PG. Gly. G1P. G6P. F6P. F1-6BP. Gly3p. ATP. 13BPG. 3PG. TCA. Oxa. ACA. 2PG. PEP. Pyr. NADH. Cit. Autocatalytic. x. Control. y. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: TCA

TCA

Gly

G1P

G6P

F6P

F1-6BP

PEP Pyr

Gly3p

13BPG

3PG

2PG

ATP

NADH

Oxa

Cit

ACA

Page 2: TCA

TCA

Gly

G1P

G6P

F6P

F1-6BP

PEP Pyr

Gly3p

13BPG

3PG

2PG

ATP

NADH

Oxa

Cit

ACA

F6P

F1-6BP

Gly3p

13BPG

3PG

ATP

Page 3: TCA

F6P

F1-6BP

Gly3p

13BPG

3PG

ATP

1 1

q

h

q Vx

x

1

1 y

qk y

1

0 xk x

y

x

Control

Autocatalytic

Page 4: TCA

F6P

F1-6BPGly3p

13BPG

3PG

ATP

1 1

q

h

q Vx

x

1

1 y

qk y

1

0 xk x

y

x

Control

Autocatalytic

Page 5: TCA

1 1

q

h

q Vx

x

1

1 y

qk y

1

0 xk x

y

x

Control

Autocatalytic

Minimal metabolism model• x = ultimate product (ATP)• y = intermediate metabolite • Two feedbacks of x:

– Autocatalytic– Control

Page 6: TCA

RHP z and pHard limits

2 20

1ln ln

z z pS j d

z z p

01

1 2 1

1 2 1

22.41

2 2

hk q

z p

z p

nd

NominalVariable Process

Value?

autocatalysis 1

inhibition 1

2 enzyme 1

q

k

Page 7: TCA

1(1 )

0

1 1

q

h

q Vx

x

1

1 y

qk y

y

xAutocatalytic

Control

Page 8: TCA

produced

consumed

yk yy

x

( )yk y

y

Page 9: TCA

1( )k x y

xAutocatalytic

Control

consumed

produced

1( )k x

x

Page 10: TCA

1 1(1 )

1 1 0x

x q qk x ky

y

consumed

1(1 )

0

x

Page 11: TCA

1(1 )

0

1 1

q

h

q Vx

x

1

1 y

qk y

y

xAutocatalytic

( )yk y

y

Page 12: TCA

1(1 )

0

1 1

q

h

q Vx

x

1

1 y

qk y

y

xAutocatalytic

1( )k x

( )yk y

Control

Page 13: TCA

Enzyme complexity,Strong inhibition

Oscillations

Low autocatalysis Inefficiency,High reaction rates metabolic load

Robust Yet Fragile

1(1 )

0

1 1

q

h

q Vx

x

1

1 y

qk y

y

xAutocatalytic

Control

Page 14: TCA

0 5 10 15 200.8

0.85

0.9

0.95

1

1.05

Time (minutes)

[AT

P]

h >>1

h = 1

Time response)

Fourier

Transform

of error

h hS x = F(

0 2 4 6 8 10-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Frequency

Lo

g(|

Sn

/S0|

)

h >>1

h = 1

Spectrum

1log loghS S

Ideal

Page 15: TCA

0 5 10 15 200.8

0.85

0.9

0.95

1

1.05

Time (minutes)

[AT

P]

h >> 1

h = 1

0 2 4 6 8 10-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Frequency

Lo

g(S

n/S

0)

h >>1

h = 1

Spectrum

Time response

Robust

Yet fragile

0ln lnhS j S j

Page 16: TCA

0 2 4 6 8 10-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Frequency

Lo

g(S

n/S

0)

h = 3

h = 0 Robust

Yet fragile

0

ln 0S j d

Page 17: TCA

0 2 4 6 8 10-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Frequency

Lo

g(S

n/S

0)

h = 0 Robust

Yet fragile

0 0

ln ln 0S j d S j d

Page 18: TCA

log )nx d constant F(

log|S |

Tighter regulation

Transients, Oscillations

Biological complexity is dominated by the evolution of

mechanisms to more finely tune this robustness/fragility tradeoff.

This tradeoff is a law.

Page 19: TCA

lnz p

z p

Re p

2 20

1ln

zS j d

z

0

1ln S j d

0

2 20

11

zd

z

0RHP z

Hard limits

Benefits must be “paid for” within bandwidth z

RHP p

Page 20: TCA

11

0

1

1

qky

y

x

“Optimal” controller

“Optimal” enzyme

Necessity, not accident

2 20

1ln ln

z z pS j d

z z p

Page 21: TCA

0 10

ˆ 1.25h

ˆ 1.5h

q=α=1

ˆ 2h

ˆ 1.5h

0 10

ˆ .5h

ˆ 10h

q=α=0

Necessity, not accident

Page 22: TCA

Synthesis challenges

ˆlarge Enzyme complexity,

small Oscillations

large Inefficiency,small metabolic load

Robust Yet Fragile

h

k

q

• Necessity or accident?• Alternative designs

• Other rates and uncertainty

• Computational complexity– Higher order

dynamics– Global, nonlinear– Comparisons with

data• Robustness is key

Page 23: TCA

Hard limits and tradeoffs

On systems and their components• Thermodynamics (Carnot)• Communications (Shannon)• Control (Bode) • Computation (Turing/Gödel)

• Include dynamics and feedback• Extend to networks• New unifications are encouraging

Robust/fragile

is unifyingconcept

Page 24: TCA

log S d

log S d

benefits costs

log S d

log S d

• benefits = attenuation of disturbance• goal: make this as negative as possible

cost = amplificationgoal: make this small

Constraint:

Page 25: TCA

a

-e=d-u

Control

uPlant

d

delay

u

log S d

Bode

a

ES

D

log S d

benefits costs stabilize

Page 26: TCA

a

-e=d-u

Control

uPlant

d

delay

u

log S d

Bode

a

ES

D

log S d

benefits costs stabilize

Negative is good

Page 27: TCA

Disturbance-e=d-u

ControlSensor

ChannelEncode

PlantRemoteSensor

dd

r

ControlChannel SC

u

CC

log S d

log S d

SC

CClog( )a

http://www.glue.umd.edu/~nmartins/

Nuno C Martins and Munther A Dahleh, Feedback Control in the Presence of Noisy Channels: “Bode-Like” Fundamental Limitations of Performance.Nuno C. Martins, Munther A. Dahleh and John C. Doyle Fundamental Limitations of Disturbance Attenuation in the Presence of Side Information(Both in IEEE Transactions on Automatic Control)

Page 28: TCA

Variety of producers

Electric powernetwork

Variety ofconsumers

• Good designs transform/manipulate energy• Subject (and close) to hard limits

Page 29: TCA

Variety ofconsumers

Variety of producers

Energy carriers

• 110 V, 60 Hz AC• (230V, 50 Hz AC)• Gasoline• ATP, glucose, etc• Proton motive force

Standard interface

Constraint that deconstrains

Page 30: TCA

Disturbance-e=d-u

ControlSensor

ChannelEncode

PlantRemoteSensor

dd

r

ControlChannel

log S d

log S d

benefits

feedback

SC

CCstabilizeremotesensing

remote control

log( )a

costs

Robust

log( )a

Fragile

• Robust designs transform/manipulate robustness• Subject (and close) to hard limits• Fragile designs are far away from hard limits and

waste robustness.

Page 31: TCA

Hard limits and tradeoffs

On systems and their components• Thermodynamics (Carnot)• Communications (Shannon)• Control (Bode) • Computation (Turing/Gödel)

• Include dynamics and feedback• Extend to networks• New unifications are encouraging

Robust/fragile

is unifyingconcept

Page 32: TCA

[a system] can have[a property] robust for [a set of perturbations]

Yet be fragile for

Or [a different perturbation]

[a different property]Robust

Fragile

Page 33: TCA

[a system] can have[a property] robust for [a set of perturbations]

Robust

Fragile

• But if robustness/fragility are conserved, what does it mean for a system to be robust or fragile?

• Some fragilities are inevitable in robust complex systems.

Page 34: TCA

• But if robustness/fragility are conserved, what does it mean for a system to be robust or fragile?

Robust

Fragile

• Robust systems systematically manage this tradeoff.• Fragile systems waste robustness.

• Some fragilities are inevitable in robust complex systems.

Emergent

Page 35: TCA

Cat

abol

ism

Genes

Co-factorsFatty acidsSugars

Nucleotides

Amino Acids Proteins

Pre

curs

ors

DNA replication

Trans*

Carriers

Components and materials:Energy, moieties

Systems requirements: functional, efficient,

robust, evolvable

Hard constraints:Thermo (Carnot)Info (Shannon)Control (Bode)Compute (Turing)

Protocols

Constraints

Diverse

Diverse

UniversalControl