Top Banner
TAM 251 E QUATION S HEET Main Equations Stress σ avg = F A τ avg = V A Strain eng = δ L 0 true = ln L f L 0 γ = δ x L y + δ y L x Constitutive Relations σ = E τ = Material Properties (Isotropic) ν = - lat long G = E 2(1 + ν ) Thermal Expansion th = α ΔT δ th = αL 0 ΔT Axial Loading δ = FL 0 EA σ = F A Torsion φ = TL 0 GJ τ = J γ = φρ L 0 Stiffness and Flexibility k axial = EA L 0 = 1 f axial k torsion = GJ L 0 = 1 f torsion Bending σ = Mc I Thin-Walled Pressure Vessels σ h = pr t σ a = pr 2 t Transverse Shear τ = VQ It q = VQ I Miscellaneous Distributed Loads, Shear, & Bending Moments dV dx = -w dM dx = V Inclined Plane: Normal Stress σ n = σ x cos 2 θ +2 τ xy sin θ cos θ + σ y sin 2 θ Inclined Plane: Shear Stress τ n,s =(σ y - σ x ) sin θ cos θ + τ xy ( cos 2 θ - sin 2 θ ) Tresca Criterion |σ 1 | = σ yield , |σ 2 | = σ yield when σ 1 2 have the same sign |σ 1 - σ 2 | = σ yield when σ 1 2 have the opposite sign Von-Mises Criterion σ 2 1 - σ 1 σ 2 + σ 2 2 = σ 2 yield TAM 251 Equation Sheet Page 1 Apr. 2019 TAM 251 Equation Sheet Page 1 Apr. 2019 TAM 251 Equation Sheet Page 1 Apr. 2019
3

TAM 251 EQUATION SHEETmechref.engr.illinois.edu/sol/FormulaSheet.pdfTAM 251 Equation Sheet Page 2 Apr. 2019. Beam Deflection Diagram Max. Deflection Slope at End Elastic Curve ymax

Jan 22, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: TAM 251 EQUATION SHEETmechref.engr.illinois.edu/sol/FormulaSheet.pdfTAM 251 Equation Sheet Page 2 Apr. 2019. Beam Deflection Diagram Max. Deflection Slope at End Elastic Curve ymax

TAM 251 EQUATION SHEET

Main Equations

Stress σavg =F

Aτavg =

V

A

Strain εeng =δ

L0εtrue = ln

Lf

L0γ =

δxLy

+δyLx

Constitutive Relations σ = Eε τ = Gγ

Material Properties (Isotropic) ν = − εlatεlong

G =E

2(1 + ν)

Thermal Expansion εth = α∆T δth = αL0∆T

Axial Loading δ =F L0

EAσ =

F

A

Torsion φ =T L0

GJτ =

T ρ

Jγ =

φρ

L0

Stiffness and Flexibility kaxial =EA

L0=

1

faxialktorsion =

GJ

L0=

1

ftorsion

Bending σ =Mc

I

Thin-Walled Pressure Vessels σh =pr

tσa =

pr

2t

Transverse Shear τ =V Q

I tq =

V Q

I

Miscellaneous

Distributed Loads, Shear,& Bending Moments

dV

dx= −w dM

dx= V

Inclined Plane: Normal Stress σn = σx cos2 θ + 2τxy sin θ cos θ + σy sin2 θ

Inclined Plane: Shear Stress τn,s = (σy − σx) sin θ cos θ + τxy(cos2 θ − sin2 θ

)

Tresca Criterion

|σ1| = σyield, |σ2| = σyieldwhen σ1, σ2 have thesame sign

|σ1 − σ2| = σyieldwhen σ1, σ2 have theopposite sign

Von-Mises Criterion σ21 − σ1σ2 + σ2

2 = σ2yield

TAM 251 Equation Sheet Page 1 Apr. 2019TAM 251 Equation Sheet Page 1 Apr. 2019TAM 251 Equation Sheet Page 1 Apr. 2019

Page 2: TAM 251 EQUATION SHEETmechref.engr.illinois.edu/sol/FormulaSheet.pdfTAM 251 Equation Sheet Page 2 Apr. 2019. Beam Deflection Diagram Max. Deflection Slope at End Elastic Curve ymax

Stress Transformations

Plane Stress

σx′ =σx + σy

2+σx − σy

2cos(2θ) + τxy sin(2θ)

σy′ =σx + σy

2− σx − σy

2cos(2θ) − τxy sin(2θ)

τx′y′ = −σx − σy2

sin(2θ) + τxy cos(2θ)

Mohr’s Circle σavg =σx + σy

2R =

√(σx − σy

2

)2

+ τ 2xy

Principal Stresses σ1 = σavg + R σ2 = σavg − R τmax = R

Plane Orientations tan 2θp =2τxy

σx − σytan 2θs = −σx − σy

2τxy

Moments and Geometric Centroids

Q = yA Ix =

∫A

y2 dA Jo =

∫A

ρ2dA y =1

A

∫A

ydA

Rectangle x

y

b

h Ix =1

12bh3

Circle

ry

x Ix =π

4r4 Jz =

π

2r4

Semicircle x

y

x`

ryIx =

π

8r4 Ix′ =

8− 8

)r4 y =

4r

Parallel Axis Theorem Ic = Ic′ + Ad2cc′

Buckling

Critical Load Pcr =π2EI

(Le)2

pinned-pinned Le = L

pinned-fixed Le = 0.7L

fixed-fixed Le = 0.5L

fixed-free Le = 2L

TAM 251 Equation Sheet Page 2 Apr. 2019TAM 251 Equation Sheet Page 2 Apr. 2019TAM 251 Equation Sheet Page 2 Apr. 2019

Page 3: TAM 251 EQUATION SHEETmechref.engr.illinois.edu/sol/FormulaSheet.pdfTAM 251 Equation Sheet Page 2 Apr. 2019. Beam Deflection Diagram Max. Deflection Slope at End Elastic Curve ymax

Beam Deflection

DiagramMax. Deflection Slope at End Elastic Curve

ymax θ y(x)

y P

xymax

L

−P L3

3EI−P L

2

2EIy(x) =

P

6EI

(x3 − 3Lx2

)

y

x

w

ymaxL

−wL4

8EI−wL

3

6EIy(x) = − w

24EI

(x4 − 4Lx3 + 6L2x2

)

y

ymax

x

L

M

−ML2

2EI−ML

EIy(x) = − M

2EIx2

yw

ymax

x

L

− 5wL4

384EI± wL3

24EIy(x) = − w

24EI

(x4 − 2Lx3 + L3x

)

yL2

PL2

ymax

x − P L3

48EI± P L2

16EI

For 0 ≤ x ≤ L2

y(x) =P

48EI

(4x3 − 3L2x

)

by

x

P

ymax

a

A B

Lxm

For a > b

−P b(L2 − b2

)3/29√

3EIL

at xm =

√L2 − b2

3

θA = −P b(L2 − b2

)6EIL

θB = +P a

(L2 − a2

)6EIL

For x < a :

y(x) =P b

6EIL

[x3 − x

(L2 − b2

)]For x = a :

y = −P a2 b2

3EIL

yM

ymax

A B

Lxm

x

− ML2

9√

3EI

at xm =L√3

θA = −ML

6EI

θB = +ML

3EI

y(x) =M

6EIL

(x3 − L2x

)

TAM 251 Equation Sheet Page 3 Apr. 2019TAM 251 Equation Sheet Page 3 Apr. 2019TAM 251 Equation Sheet Page 3 Apr. 2019