Top Banner

of 48

Tak Warrick.12 2011 Vib Princ Final

Jul 07, 2018

Download

Documents

cociclo
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    1/48

    B ioMolecu lar Vibrat ional Spectroscopy :

    Part 1: Princ iples o f In frared , Raman

    Spectra and Techn iques  

    Lectu res for Warwick CD Workshop, Dec. 2011

    Tim Keider l ing  

    University of I l l inoisat Chicago  

    [email protected]  

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    2/48

    Tentative Schedule — can vary with interests

    Part I:

    • Optical Spectroscopy (general)—low resolution, fast response• Vibrational Theory

     – Biologically relevant Vibrational Modes

     – IR and Raman spectra - structure (qualitative)

    • IR Instrumentation; FTIR principles

    • Raman Instumentation

    • Practical Demonstrations (lab? Break? ) – background material

    Peptide methods —solut ion, sol id

    • Protein Sampling Techniqu es (aqueous), ATR

    Part II: 

    • Application Examples

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    3/48

    Structural Biology

    • often need to know just the conformation 

    • structural determination of fold family may suffice,generally not after atomic structure

    • In BioTech processes one must monitor effect of

    mutation and environmental changes

    need to get this information rapidly and

    in a cost effective manner

    Measure all phases/types of samples

    Look at fast time-scale events

    Optical Spectroscopy is limited for determining

    structure –  lacks site specificitybut often fits important QUESTIONS

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    4/48

     Near-IR

    Electro-Magnetic Spectrum

    SpectralRegions

    Wavenumber (cm-1)

    ElectronExcitation

    ElectronTransition

    MolecularVibration

    MolecularRotation

    106 105 103 102104107 10  1 

    X-ray Ultraviolet Infrared Microwave

    14,285  4,000  400  100 

    Mid-IR Far-IR

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    5/48

    Vibrational Spectroscopy - Biological Applications

    There are many purposes for adapting IR or Raman

    vibrational spectroscopies to the biochemical,biophysical and bioanalytical laboratory

    • Prime role has been for determination of structure. We will

    focus on secondary structure of peptides and proteins, but

    there are more – especially DNA and lipids• Also used for following processes, such as enzyme-substrate

    interactions, protein folding, DNA unwinding

    • More recently for quality control, in pharma and biotech

    • New applications in imaging now developing, here sensitivity

    and discrimination among all tissue/cell components are vital

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    6/48

    Optical Spectroscopy - Processes Monitored

    UV/ Fluorescence/ IR/ Raman/ Circular Dichroism

    IR   –  move nuclei

    low freq. & inten.

    Raman  – nuclei,inelastic scatter

    very low intensity

    CD –  circ. polarizedabsorption, UV or IR

    Raman:  DE = hn0-hns

    Infrared: DE = hnvib 

    = hnvib

    Fluorescence

    hn = Eex - Egrd 

    0

    Abs

    orption

    hn = Egrd - Eex 

    ExcitedState

    (distorted

    geometry)

    Ground

    State (equil.

    geom.)

    Q

    n0 nS

    molec. coord.

    UV-vis absorp. 

    & Fluorescence. move e- (change

    electronic state)

    high freq., intense

    Analytical Methods

    Diatomic Model

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    7/48T 

    Essentially a probe technique sensing changes in the local environment of fluorophores 

    Optical Spectroscopy Electronic

    Example Absorption and Fluorescence

    Intrinsic fluorophores

    eg. Trp, Tyr

    Change with tertiary

    structure, compactness     (   M  -   1  c  m  -   1   )

    What do you see?

    (typical protein)

    Amide absorption broad,

    Intense, featureless, far UV

    ~200 nm and below

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    8/48T 

    Optical Spectroscopy - IR Spectroscopy

    Protein and polypeptide secondary structural obtained from

    vibrational modes of amide (peptide bond) groups

    Amide I

    (1700-1600 cm-1

    Amide II

    (1580-1480 cm-1) 

    Amide III

    (1300-1230 cm-1) 

    Aside: Raman is similar, but different

    amide I, little amide II, intense amide III 

    What do you see? –  LOTS!

          D         x

       1   0   5

    -4

    -2

    0

    2

    2000 1800 1600 1400 1200 1000

    Wavenumbers (cm-1)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

       A   b   s   o   r   b   a   n   c   e I

    II

    III

    9.0 x 108

    a) human serum albumin

       I   R    +

       I   L

     

    0

    935

    1640

    16651300

    1340

    4.3 x 105

    ROA

     0

     

       I   R   -

       I   L

     

    800 1000 1200 1400 1600

     

    wavenumber / cm-1

     

    Goal — try to give this meaning

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    9/48T 

    Spectroscopic Process (covered)

    • Molecules contain distribution of charges (electrons and

    nuclei, charges from protons) which is dynamicallychanged when molecule is exposed to light

    • In a spectroscopic experiment, light is used to probe a

    sample. What we seek to understand is:

     –  the RATE at which the molecule responds to this perturbation(this is response or spectral intensity – probability of transition)

     – why only certain wavelengths cause changes (this is spectrum,

    the wavelength dependence of the response – energy levels)

     –

    the process by which the molecule alters the radiation thatemerges from the sample (absorption, scattering, fluorescence,

    photochemistry, etc.) so we can detect it

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    10/48

    Spectroscopic Process (covered)

    • Molecules contain distribution of charges (electrons and

    nuclei, charges from protons) which is dynamicallychanged when molecule is exposed to light

    • In a spectroscopic experiment, light is used to probe a

    sample. What we seek to understand is:

     –  the RATE at which the molecule responds to this perturbation(this is response or spectral intensity – probability of transition)

     – why only certain wavelengths cause changes (this is spectrum,

    the wavelength dependence of the response – energy levels)

     –

    the process by which the molecule alters the radiation thatemerges from the sample (absorption, scattering, fluorescence,

    photochemistry, etc.) so we can detect it

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    11/48

    Quantum mechanical picture

    Full Hamiltonian describes electron and nuclear motion

    H = -S

    ab

     [

     

    2 /2Ma

    a

    2 - 2 /2me

    i2 - Zae2 /r ia + e2 /r ij + ZaZbe2 /Rab ] 

    i.e. n-KE e-KE n-e attr. e-e repul. n-n repul

    • Born-Oppenheimer approx. separate electron-nuclear w/f

    y

     (r,R) =c

    u (R)f

    el (r,R) -- product fct. solves sum H  

    • Electronic Schröding er Equation  – issue for CD (do ne prev.)  

    H el fel (r,R) = Uel (R) fe (r,R) – electron sol’n  – nucl. pot.

    Vn(R) =S

    ab [Uel(R) + ZaZbe2 /Rab] – nuclear potential energy

    • Nuc lear Sch rödin ger Equation  

    H n cu(R) = -[Sa (ħ2 /2M

    a

    ) a

    2 + Vn (R)] cu(R) = Eu cu(R)

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    12/48

    Solving Vibrational QM

    • Nuclear Hamiltonian is 3N dim.  –  N atom, move x,y,z

     – Simplify   Remove (a) Translation (b) Rotation

     – Result: (3N – 6) internal coordinates vibration

    • Harmonic Approximation – Taylor s eries expansio n:  

    V(R) = V(Re) +S

    ab

     

    V/

    Ra

    Re(Ra-Re) +

    ½ Sab 2V/Ra

    Rb

    Re(Ra  – Re)(Rb  – Re) + … 

     – 3rd term –non-zero / non-const. - harmonic  –  ½ kx2 

     –   Ra, Rb  mixed

     Solution

     “Normal coordinates” 

    Qi = S jcij q j H  = -Si [ 2 /2 2 /Qi

    2+½ kQiQi2] = Si h i  (Qi)

    hi ci(Qi) = Ei ci(Qi) E j = (u j + ½) hn j  solve as if independent  

    Diatomic:n

     = (1/2p

    ) √k/m

      k – force const.m

     = MAMB /(MA + MB)

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    13/48

    Harmonic Oscillator 

    Model for vibrational spectroscopy

    r e 

    r q

    v = 1

    v = 2

    v = 3

    v = 4

    v = 0hn 1 

    2hn

    2

    hn

    2hn

    2hn

    2hn

    E

    r e 

    Ev = (v+½)hnDv =  1

    DE = hn

    n = (1/2p)(k /m)

    ½

    (virtual

    state)

    Raman

    IR

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    14/48

    Spectral Regions and Transitions

    • Infrared radiation induces stretching of

    bonds, and deformation of bond angles – • Couples like motions into molecular mode

    • (ignore rotations for biomolecules in solution)

    symmetrical

    stretch

    H-O-H

    asymmetrical

    stretch

    H-O-H

    symmetrical

    deformation

    (H-O-H bend)

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    15/48

    Characteristic vibrations and structure

    • heavier molecules  bigger m - lower frequency

    • H2 ~4000 cm-1 C –H ~2900 cm-1 C –D ~2100 cm-1 

    • HF ~4141 cm-1 HCl ~2988 cm-1 

    • F2  892 cm-1  Cl2  564 cm

    -1 I –I ~214 cm-1 

    • stronger bonds – higher k - higher frequency

    •  CC ~2200 cm-1 C=C ~1600 cm-1 C –C ~1000 cm-1 

    • O=O 1555 cm-1  N O 1876 cm-1  N

    N 2358 cm-1 

    • frequency depends mass + bond strength

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    16/48

    Frequency structure, small and large molec.

    Same for vibrational modes of amide (peptide bond) groups

    Amide I

    (1700-1600 cm-1) 

    Amide II(1580-1480 cm-1) 

    Amide III

    (1300-1230 cm-1) I II

    a

    b

    rc

    For polymer -- repeated structural elements have overlap/coupled spectra

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    17/48

    Vibrational Transition Selection Rules

    Harmonic oscillator : only one quantum can change

    D

     vi = ± 1,  D v j = 0; i   j . 

    These are fundamenta l  vibrations

    Anharmonicity permits overtones and combinations

    Normally transitions will be seen from only vi = 0, since most excited

    states have little population.

    Population, ni

    , is determined by thermal equilibrium, from the Boltzman 

    relationship:

    ni = n0 exp[-(Ei-E0)/kT], 

    where T is the temperature (ºK) – (note: kT at room temp ~200 cm-1)

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    18/48

    T ( r - r e )/r e 

    E/De 

    DE01 = hnanh--fundamental

    D0 — dissociation energy

    Anharmonic Transitions

    Real molecules are anharmonic to some degree so other transitions dooccur but are weak. These are termed overtones (D vi = ± 2,± 3, . .) or

    combination bands (D vi = ± 1, D v j = ± 1, . .). [Diatomic model] 

    DE02 = 2hnanhrm - overtone

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    19/48

    Vibrational Selection Rules• Interaction of light with matter can be described as the

    induction of dipoles , mind , by the light electric field, E:

    mind = a .  E  where a is the polarizability

    • IR absorption strength is proportional to

    ~ ||

    2

    transition moment betweenY

    i Y

    f  

    • To be observed in the IR, the molecule must change its electricdipole moment, µ , in the transition—leads to selection rules

    dµ / dQi  0 relatively easy, ex. C=O str. intense

    • Raman intensity is related to the polarizability,

    I ~ 2

    , where da / dQi  0 for Raman trans.

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    20/48

    Complementarity: IR and Raman

    If molecule is centrosymmetric, no overlap of IR and Raman 

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    21/48

    Peak Heights

    • Beer-Lambert Law:

    •A =

    lc – A = Absorbance

     –  = Absorptivity

     – l = Pathlength

     – c = Concentration

    An overlay of 5 spectra of Isopropanol (IPA) in water. IPA Conc.

    varies from 70% to 9%. Note how the absorbance changes with

    concentration. 

    • The size (intensity) of absorbance bands depend upon molecular

    concentration and sample thickness (pathlength)

    • The Absorptivity () is a measure of a molecule’s absorbance at a givenwavenumber normalized to correct for concentration and pathlength – but asshown can be concentration dependent if molecules interact 

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    22/48

    Peak Widths

    • Peak Width is Molecule Dependent

    • Strong Molecular Interactions = Broad Bands

    • Weak Molecular Interactions = Narrow Bands

    WaterWater

    Benzene

    At i l ti

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    23/48

    Level of structure

    determination neededdepends on the

    problem

    Atomic resolution Ca chain

    Secondary structure Segment fold (tertiary)23

    Structural

    Biology

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    24/48

    Chain conformation depends on f, y angles

    Far UV absorbance broad, l i ttle f luorescence  — 

    coupling impact small

    Detection requires method sensitive to amide coupling

    If (f,y

    repeat, they determine secondary structure  

    Polymer analysisStudy the repeat units

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    25/48

    Physical method of detection must sense

    secondary structure —  e.g. couple amides

    IR/Raman —  coupl ing comparable to band width , intensitymaximum is characteristic of structure –  frequency basis

    Circular dichroism --dipole and through-bond chiral coupling oflocal modes (excitations) circularly polarized transitions,

    DA = AL-AR   - Develops characteristic band shapes (intensity)

    Theoretically try to understand spectra/structure relationIR ~ D=

    m

    .

    m~|dm/d

    Q|

    2

     

    (Raman ~ |da/dQ|2)

    ECD, VCD ~ R = Im(m.m)

    Computable with ab initio QM techniques, ECD needs excited states

    IR & VCD relatively easy, Raman more basis set sensitive

    Major activity,for analysis!}

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    26/48

    Characteristic Amide Vibrations

    I - Most useful;

    IR intense, less interference(by solvent, other modes,etc)

    Less mix (with other modes)

    II - IR intense

    III - Raman Intense

    A – often obscured

     by solvent

    IV – VII – difficult

    to detect, discriminate

    ~3300 cm-1

    ~1650 cm-1

    1500-50 cm-1

    1300-1250 cm-1

    700 cm-1

    mix

    M d l l tid IR t A id I d II

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    27/48

    Wavenumbers (cm-1

    )

    1450150015501600165017001750

          A      b      s 

         o      r

          b      a      n     c      e 

    0

    1

    2

    3   helix

     -structure

    randomcoil

     Model polypeptide IR spectra -- Amide I and II

    Differentiation of conformations mostly due to coupl ing of amides

    not to H-bonds or other factors, although they contribute

    Helix  — small frequency

    dispersion, central onesmost intense, amide I,

    higher ones for amide II

    Sheet  — large frequency

    dispersion, characteristic

    split amide I, broad amide II

    Coil  — less well-defined

     broad amide I and II

    I II

    Frequency based

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    28/48

    Temperature dependent IR

    spectra of the helical peptide

    Temperature dependence of

    amide I’ frequency 

    IR frequency shift shows a sigmoidal curve and

    spectra have an isobestic point for thermal unfolding

    However, frequency shift is ~1635 ~1645 cm-1  –  solvated helix

    Monitoring structural change - temperature

     folded

    unfolded

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    29/48

    6 b  b sheet

    , 2 )

    Tyr97

    Tyr25

    Tyr92

    H1

    H3H2

    Tyr76

    Tyr115

    Tyr73

    • 124 amino acid residues, 1 domain, MW= 13.7 KDa

    • 3a

    -helices

    • 6b

    -strands in an AP b

    -sheet

    • 6 Tyr residues (no Trp), 4 Pro residues (2 cis, 2 trans)

    Ribonuclease A

    combined

    uv-CD and

    FTIR study

    Simona Stelea,Prot Sci 2001 

    Optical spectra senses dynamic equilibrium - unstructured systems29

    0.06

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    30/48

    Wavelength (nm)

    260 280 300 320

    Ellipticity

    (mdeg)

    -16

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    Near-UV CD

    Wavenumber (cm-1)

    1600162016401660168017001720

    Absorbance

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05FTIR

    Wavelength (nm)190 200 210 220 230 240 250

    Ellipticity(mdeg)

    -15

    -10

    -5

    0

    5

    Far-UV CD

    Temperature 10-70oC

    FTIR  — amide I

    Loss of b-sheet

    Ribonuclease A

    Far-uv CDLoss of a-helix

    Near – uv CDLoss of tertiary struct.

    Spectral Change

    30

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    31/48

             C 

             i         1

    (x10

    2)

    -8.0

    -7.6

    -7.2

    -6.8

    -6.4

    -1.0

    -0.5

    0.0

    0.5

    1.0

    FTIR

             C          i         1

    -17

    -15

    -13

    -11

    -9

    -7

    -5

             C   i         2

    -15

    -10

    -5

    0

    5

    10

    Near-UV CD

     

    0 20 40 60 80 100

    Ci1

    -13

    -12

    -11

    -10

    Ci2

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    Far-UV CD

    Ribonuclease A

    PC/FA loadings

    Temp. variation

    FTIR (a,b)

    Near-uv CD(tertiary)

    Far-uv CD(a-helix)

    Pre-transition  evident in far-uv CD and FTIR, not near-uv CD

    Temp.

    31

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    32/48

    Nucleic acid IR

    Nucleic Acids  – less variation —helicity all about the same 

    a)  – monitor ribose conformation 

    b)  – single / duplex / triplex / quad  – H-bond link bases 

    O h bi l

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    33/48

    Sugars –  little done, spectra broad, some branch appl.

    Lipids –  monitor order –  self assemble –  polarization

    Example is CH2 wag, but

    also stretch and scissor

     bend are characteristic

    Self assemble to lipid

     bilayer –  membrane

    Polarization can tell

    orientation of lipid or

     protein in membrane

    Other biopolymers

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    34/48

    Combining Techniques: Vibrational CD “CD” in the infrared region 

    Vibrational chiralityMany transitions / Spectrally resolved / LocalTechnology in place DA ~10-5 - limits S/N / Difficult < 700 cm-1

    Same transitions as IR  

    same frequencies, same resolutionBand Shape from spatial relationships 

    neighboring amides in peptides/proteins

    Relatively short length dependence 

    AAn

     oligomers VCD have DA/A ~ const with n

    vibrational (Force Field) coupling plus dipole coupling

    Development -- structure-spectra relationships

    Small molecules –  theory / Biomolecules -- empirical,

    Recent —  peptide VCD can be simulated theoretically 

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    35/48

    Wavenumber (cm-1)

    1600165017001750

    Absorbance

    0.0

    0.5

    1.0

          DA

    x105

    -10

    -5

    0

    5

    10

    VCD

    IR

    (a)

    Wavenubmer (cm-1)

    1600165017001750

    Absorbance

    0.0

    0.5

    1.0

          DA

    x105

    -4

    -2

    0

    2

    IR

    VCD

    (b)

    Poly Lysine in D2O –  Amide I’– Secondary structure

    VCD

    High pH –  helix High pH, heating –  sheet  Neutral pH - coil

    Wavenumber (cm-1)

    1600165017001750

    Absorbance

    0.0

    0.5

    1.0

          DA

    x105

    -15

    -10

    -5

    0

    5

    IR

    VCD

    (c)

    VCD of DNA vary A T to G C ratio

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    36/48

    -1

    VCD of DNA, vary A-T to G-C ratio

     base deformations sym PO2- stretches

     big variation little effect

    All B-DNA forms

    DNA VCD f PO d i B t Z f t iti

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    37/48

     A B

    DNA VCD of PO2- modes in B- to Z-form transition

    Experimental Theoretical

    Z

    B B, A

    Z

    Protein RAMAN & ROA spectra

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    38/48

    800 1000 1200 1400 1600

    0

    1683ROA

    1240

    1426

    1462

    15541299 1342

    1641

    1665

    2.6 x 105

    IR-IL

    c) hen lysozyme

    6.3 x 108

     

    IR+IL

    0

    1220

    13451241

    1658

    16771295 1316

    4.7 x 105

    ROA

    IR-IL

    2.5 x 109

     b) jack bean concanavalin A

    IR+

    IL

    0

    935

    1640

    166513001340

    4.3 x 105

    ROA

    0

    9.0 x 108

    a) human serum albumin

    IR-IL

    IR+IL

    Protein RAMAN & ROA spectra

    hSA 

    Con A

    HEWL

    I II 

    ROA sign patterns

    stable but

    frequencies

    shift. Chirality

    selects out

    amide modes

     but  Raman

     spectra

    dominated by

    aromatics

    Barron data

    IR & R I t t ti O tli

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    39/48

    IR & Raman Instrumentation - Outline

    • Principles of infrared spectroscopy

    • FT advantages

    • Elements of FTIR spectrometer

    • Acquisition of a spectrum

    Useful Terminology

    • Mid-IR sampling techniques

     – Transmission

     – Solids

    • Raman instrumentation comparison

    • (Note—more on sampling variations later) 

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    40/48

    Dispersive spectrometers (old) measure transmission as a function

    of frequency (wavelength) - sequentially--same as typical UV-vis

    Interferometric spectrometers measure intensity as a function of

    mirror position, all frequencies simultaneously--Multiplex advantage

    Sample

    radiation

    sourcetransmitted

    radiation

    Techniques of Infrared Spectroscopy

    Infrared spectroscopy deals with absorption of radiation--

    detect attenuation of beam by sample at detector  

    Frequency

    selector

    detector

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    41/48

    T  Nicolet/Thermo drawings

    Comparison of IR Methods –  

    Dispersive & Fourier Transform

    But add to this now many laser-based technologies!

    N i li d i ill di i IR

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    42/48

    New specialized experiments still use dispersive IR

    T/jump IR with

    diode laser

    Dispersive VCD for Bio Apps

    2-D IR setup with 4-wave mixing

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    43/48

    Major Fourier Transform Advantages 

    • Multiplex Advantage 

     – All spectral elements are measured at the same time,

    simultaneous data aquisition. Felgett’s advantage. 

    • Throughput Advantage

     – Circular aperture typically large area compared to dispersive

    spectrometer slit for same resolution, increases throughput.

    Jacquinot advantage

    • Wavenumber Precision

     – The wavenumber scale is locked to the frequency of an internal

    He-Ne reference laser, +/- 0.1 cm-1. Conne’s advantage 

    T i l El t f FT IR

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    44/48

    Typical Elements of FT-IR

    IR Source (with input collimator)

     –

    Mid-IR: Silicon Carbide glowbar element, Tc > 1000

    o

    C; 200 - 5000 cm

    -1

     

     – Near IR: Tungsten Quartz Halogen lamp, Tc > 2400oC; 2500 - 12000 cm-1

    IR Detectors:

     – DTGS: deuterated triglycine sulfate - pyroelectr ic b olom eter (thermal)

    • Slow response, broad wavenumber detection

     – MCT: mercury cadmium telluride - photo conduct ing d iode (quantum)

    • must be cooled to liquid N2 temperatures (77 K)

    • mirror velocity (scan speed) should be high (20Khz)

    Sample Compartment 

     – IR beam focused (< 6 mm), permits measurement of small samples.

     – Enclosed with space in compartment for sampling accessories

    Interference Moving Mirror Encodes Wavenumber

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    45/48

    Interference - Moving Mirror Encodes Wavenumber 

    Source

    Detector

    Paths equal  all

    n

     in phase

    Paths vary 

    interfere vary for

    different n

    Interferograms for different light sources

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    46/48

    Interferograms for different light sources

    Dispersive Raman Single or Multi channel

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    47/48

    Single, double or

    triple monochromator

    Detector:

    PMT or

    CCD for

    multiplexFilter

    Polarizer

    Lens

    Sample

    Laser –  n0

    Dispersive Raman - Single or Multi-channel 

    Eliminate the intense Rayleigh

    scattered & reflected light

    -use filter or double monochromator

     –Typically 108 stronger than the

    Raman light

    •Disperse the light

    onto a detector to

    generate a

    spectrum 

    Scattered Raman - ns 

    Synchrotron Light Sources – the next big thing

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    48/48

    Synchrotron Light Sources    the next big thing

    Broad band, polarized

    well-collimated and

    very intense

    Light beam output

    Where e-beam turns

    Brookhaven National

    Light Source

    (and fixed in space!)