Top Banner
Presenter: Bjarne W. Olesen | 2017-2018 ASHRAE President Rune Andersen Ph.D. Shaping Tomorrow’s Built Environment Today The influence of occupant behaviour on indoor environment and energy use in buildings October 12, 2017 Development towards Near Zero Energy Buildings Not possible to reach goals through ‘traditional’ technologies Envelope insulation Building airtightness Ventilation heat recovery Other measures are needed Demand controlled ventilation Solar shading to control overheating and daylight Lighting control Window opening Robust technologies No user interactions Works with and without people in the building Sensitive technologies User interactions required Difficult to understand consequences The adaptive principle Adjust to the environment • clothing • activity level • posture • hot/cold drinks • etc. Adjust the environment • thermostat adjustments • window openings • electrical lights • solar shading • etc. The choice can affect energy use by up to 300% If a change occurs such as to produce discomfort, people react in ways which tend to restore their comfort To restore comfort occupants can
8

t to t • g • l • c. · 2017. 12. 12. · 21 rk • r – g – t- t • t – e – ty – CO 2 n • r – e – d – n – ty 2013 22 rk 0 2 4 6 8,1 2 4 300 800 1300 1800

Oct 12, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: t to t • g • l • c. · 2017. 12. 12. · 21 rk • r – g – t- t • t – e – ty – CO 2 n • r – e – d – n – ty 2013 22 rk 0 2 4 6 8,1 2 4 300 800 1300 1800

Presenter: Bjarne W. Olesen | 2017-2018 ASHRAE PresidentRune Andersen Ph.D.

ShapingTomorrow’sBuiltEnvironmentToday

Theinfluence ofoccupant behaviour onindoor environment andenergy use inbuildingsOctober 12, 2017

DevelopmenttowardsNearZeroEnergyBuildings

• Notpossibletoreachgoalsthrough‘traditional’technologies– Envelopeinsulation– Buildingairtightness– Ventilationheatrecovery

• Othermeasuresareneeded– Demandcontrolled ventilation– Solarshading tocontrol

overheatinganddaylight– Lighting control– Window opening

Robusttechnologies• Nouserinteractions• Workswithandwithout

peopleinthebuilding

Sensitivetechnologies• Userinteractions

required• Difficulttounderstand

consequences

Theadaptiveprinciple

Adjustto theenvironment

• clothing• activitylevel• posture• hot/colddrinks• etc.

Adjusttheenvironment

• thermostatadjustments

• windowopenings• electricallights• solarshading• etc.

Thechoicecanaffectenergyusebyupto300%

Ifachangeoccurssuchastoproducediscomfort,peoplereactinwayswhichtendtorestoretheircomfort

Torestorecomfortoccupantscan

Page 2: t to t • g • l • c. · 2017. 12. 12. · 21 rk • r – g – t- t • t – e – ty – CO 2 n • r – e – d – n – ty 2013 22 rk 0 2 4 6 8,1 2 4 300 800 1300 1800

Typesofbehaviourwithimpactonindoorenvironmentand/orenergyuse

Adjustto theenvironment

• clothing• activitylevel• posture• hot/colddrinks• etc.

Adjusttheenvironment

• thermostatadjustments

• windowopenings• electricallights• solarshading• etc.

Activitieswithotheraimsthanadjusting(to)theenvironment

• cooking• electricalloads• Showering• etc.

Investigationofheatingusedin290identicalhouses*

• Correctionfordifferencesinouterwallarea– Endhousesvs.Middlehouses

• Highestusedupto20timeshigherthanlowest

• Stableusedistributionovertime

• Nomeasurementsofindoorenvironment 0

5

10

15

20

25

30

35

0 50 100 150 200n

um

ber

of

hou

ses

Heating used [kWh/(m² · year)]

1993

1994

1998

1999

Background

• OBhassignificantinfluenceonbuildingenergyuse

0123456789101112131415

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25����

������(kWh/m2 )

��� 2.3 kWh/m2 Average 2.3kWh/m2

Ener

gy C

onsu

mpt

ion

of C

oolin

g Sy

stem

(kW

h/m

2)

Apartment No.

0123456789101112131415

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25����

������(kWh/m2 )

��� 2.3 kWh/m2 Average 2.3kWh/m2

Ener

gy C

onsu

mpt

ion

of C

oolin

g Sy

stem

(kW

h/m

2)

Apartment No.

Elec

trici

ty C

onsu

mpt

ion

of C

oolin

g Sy

stem

0123456789101112131415

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25����

������(kWh/m2 )

��� 2.3 kWh/m2 Average 2.3kWh/m2

Ener

gy C

onsu

mpt

ion

of C

oolin

g Sy

stem

(kW

h/m

2)

Apartment No.

0123456789101112131415

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25����

������(kWh/m2 )

��� 2.3 kWh/m2 Average 2.3kWh/m2

Ener

gy C

onsu

mpt

ion

of C

oolin

g Sy

stem

(kW

h/m

2)

Apartment No.

Elec

trici

ty C

onsu

mpt

ion

of C

oolin

g Sy

stem

ThecoolingenergyconsumptiondataindifferentapartmentsofoneresidentialbuildinginBeijing,2006

Significant differences between different apartment units

Calculatedandmeasuredenergyusein135.311houses*

*Datafrom:SBI 2016:09,Forskellenmellemmåltogberegnetenergiforbrugtilopvarmningafparcelhuse

0

100

200

300

400

500

A B C D E F G

Energyuseinsinglefa

milyhou

ses[kW

h/m²]

Energycertificate

calculatedconsumption

measuredconsumption

NB:Nocorrection foruse ofwood burning stoves andfireplaces!

Page 3: t to t • g • l • c. · 2017. 12. 12. · 21 rk • r – g – t- t • t – e – ty – CO 2 n • r – e – d – n – ty 2013 22 rk 0 2 4 6 8,1 2 4 300 800 1300 1800

Sensitivitytochangesinoccupants’behaviour(robustness)*

• Simulationsofofficebuilding• Stochasticmodellingofoccupants’

– Windowopening– Solarshading

• Variationsto– windowarea– Thermalmass– Solarshading– Geographicallocation(climate)

RESULTS• Sensitive

– Lowthermalmass– largeglazingarea

• Robust– highmass– lowglazingarea

0%

5%

10%

15%

20%

25%

30%

35%

Relat

ive St

anda

rd De

viatio

n [%]

All zones ENERGY PERFORMANCE

ZONE 2 - WESTZONE 3a - SOUTHZONE 3b - S/WZONE 3c - S/EZONE 5 - EAST

shadings' variation in light envelope and more glazed models

shadings' variation in light envelope and less glazed models

shadings' variation in massive envelope and less glazed models

shadings' variation in massive envelope and more glazed models

*T.Busoetal.Occupantbehaviourandrobustnessofbuildingdesign.BuildingandEnvironment94(2015)694-703

Occupant Behaviour

• ECBAnnex 66DefinitionandSimulationofOccupantBehaviour inBuildings

• ASHRAEhasestablishedaMTG(MultipleTaskGroup)onOccupantBehaviour

• ObamaissuesanExecutiveOrder(EO)– BehavioralScienceInsightsPolicyDirective

Sharedorindividualheatingcost*

Collectivebilling Individualbilling

Measurementsin39apartments

Measurementsin17apartments

*S.Andersenetal./BuildingandEnvironment101(2016)1-8

12 DTU Civil Engineering, Technical University of Denmark

Heating season 2013-2014*

Interviews:• Individual billing

– focus on heat savings – Accepted uncomfortable

conditions to save money• Collective billing

– Focus on health, comfort and avoiding moisture problems

• Feedback created increased awareness of indoor environment

– 5 residents found feedback useful

– Daily routines changed in 2 apartments as result of feedback

0

25

50

75

100

400 600 800 1000 1200 1400

Prop

ortio

n of

mea

suring

pe

riod

[%

]

CO₂ cncentration [ppm]

Individual

Collective

Average

0

25

50

75

100

15 16 17 18 19 20 21 22 23 24 25 26 27Prop

ortio

n of

mea

suring

pe

riod

[%

]

Temperature [�C]

individualcollectiveaverage

*S. Andersen et al. Influence of heat cost allocation on occupants’ control of indoor environment in 56 apartments: studied with measurements, interviews and questionnaires .Building and Environment 101 (2016) 1-8

Page 4: t to t • g • l • c. · 2017. 12. 12. · 21 rk • r – g – t- t • t – e – ty – CO 2 n • r – e – d – n – ty 2013 22 rk 0 2 4 6 8,1 2 4 300 800 1300 1800

Howmanyofyouhavecheckedyour…

• emailwithinthelasthour?• Facebook/twitteraccounttoday?• bankaccountthisweek?• energymeterthismonth?• energymeterthisyear?

– Doyourememberhowmuchyoupay?

Feedback

• Letterseachweekto14apartmentsincluding– Overallevaluationofindoorenvironment

– Personaltips– Focusoftheweek– Comparisonwithaverage

• 3apartmentsactedasreference

CO2 Concentrationbeforeandduringfeedback

Beforefeedback:7.Septembertil8.November2015Feedback:9.Novemberto28.November2015

Behaviour– randomorpatterns?

• Largedifferencesbetweenapartments

– Noneoftheapartmentscovertheentiretemperaturerange

• Energyconsumptionfollowsresidents,whentheymove

• Patternscanbemodelled– andsimulated

0

20

40

60

80

100

15 16 17 18 19 20 21 22 23 24 25 26 27

Percen

tageoftim

e[%

]

Temperature[°C]

Measurements typicalset-pointinsimulations

C tv C TH B tv B th A tv A th

561 45 32 57 40 55

439 35 30 13 27 52

376 70 19 48 36 15

278 63 34 65 25 40

145 43 5 28 6 88

Page 5: t to t • g • l • c. · 2017. 12. 12. · 21 rk • r – g – t- t • t – e – ty – CO 2 n • r – e – d – n – ty 2013 22 rk 0 2 4 6 8,1 2 4 300 800 1300 1800

Ventilationinschoolswithorwithoutfeedback

Winter-heatingseason,windowsopeningandCO2

Wargockietal.,2014

Preeminent drivers

View outsideSky condition

Visual access

Visual exposureWorkstation position

Glare

LuminancecontrastIncident angle of

the sun

Light control position

Preference in natural light

Outdoor TemperatureIndoor Temperature

Dwelling typeWind speed

User’s age

User’s indoor temperature preferences

Solar radiation

Room type

User’s presence

Wind direction

Rain direction

Vapour production

Time of dayOrientation ofthe window

HouseholdsactivitiesPreviouswindow state

Season

Temperature control type

Ownership

ThermalbackgroundBehaviouralbackground

User’s gender

Annualincome

IAQ

Noise

A complex issue – Drivers reported in literature*

*from Fabi et al. ClimaMed 2011

Modelsofoccupants’windowopeningbehaviour

• Manymodels• Most,onlyrelyonthermalenvironment– Isthatenough?– WhichoneshouldIuse?

• Lackofvalidation• Lackofvalidationmethods

0

0,2

0,4

0,6

0,8

1

-10 -5 0 5 10 15 20 25 30 35

Pro

bab

ility

of

win

dow

op

en

Outdoor Temperature [�C]Andersen et al. 2009Andersen et al. 2012Haldi and Robinson 2008Nicol and Humphreys 2004 - EuropeNicol and Humphreys 2004 - PakistanRijal et al. 2007 - UK LongitudinalRijal et al. 2007 - UK Transverse

Page 6: t to t • g • l • c. · 2017. 12. 12. · 21 rk • r – g – t- t • t – e – ty – CO 2 n • r – e – d – n – ty 2013 22 rk 0 2 4 6 8,1 2 4 300 800 1300 1800

21 DTU Civil Engineering, Technical University of Denmark

Measurements in 16 dwellings*•Behaviour

–Window opening–Heating set-point

•Indoor environment–Temperature–Relative humidity–CO2 concentration

•Weather–Temperature–Wind speed–Solar radiation–Relative humidity

*R. Andersen et al. Building and Environment 2013

22 DTU Civil Engineering, Technical University of Denmark

Models of occupant behaviour*

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

300 800 1300 1800 2300

Pro

bab

ility

of

open

ing

[-]

CO₂ concentration [ppm]

Night Morning Day

Afternoon Evening

*R. Andersen et al. Building and Environment 2013

S. D’oca et al. HAVC&R 2013

0

0,02

0,04

0,06

0,08

0,1

-10 0 10 20 30

Pro

bab

ility

of

incr

easi

ng

set

-poi

nt

[-]

Outdoor temperature [�C]

Night Morning Day

Afternoon Evening

23 DTU Civil Engineering, Technical University of Denmark

How is behaviour modelled?

Thermal comfort

•Temperature > 25 �C →Window open

•Temperature < 21 �C →Window closed

•Heating set-point = 20 �C

Air quality

•Constant ventilation rate

Fixed schedule

•Windows open from 8.00 to 8.15 every day

Examples from praxis•Often based on designers own observations

–representative? –Comparable?

Tendency to view occupants as rational controllers of IEQ

and energy

Fromdeterministictostochasticmodelling

Deterministicmodelofphysicalaspects

Windowopening

Heatingset-points

Coolingset-points

lighting

Stochasticmodels

Probabilitydistributionofperformanceindicators

0

0,1

0,2

0,3

0,4

0,5

0 5 10 15

0%

50%

100%

-1000 1000 3000 5000

pro

bab

ility

of

op

enin

g

CO2 concentration

Page 7: t to t • g • l • c. · 2017. 12. 12. · 21 rk • r – g – t- t • t – e – ty – CO 2 n • r – e – d – n – ty 2013 22 rk 0 2 4 6 8,1 2 4 300 800 1300 1800

Measurements in 16 dwellings*•Behaviour

–Window opening–Heating set-point

•Indoor environment–Temperature–Relative humidity–CO2 concentration

•Weather–Temperature–Wind speed–Solar radiation–Relative humidity

*R. Andersen et al. Building and Environment 2013

Verificationofbehaviourmodels• Measurementsinfive

apartments– temperature– CO2concentration– Relativehumidity

• Simulationsbasedonquestionnaireandobservations

• Stochasticmodels– Windowopening– Thermostatadjustments– Inferredfromdetailed

measurementsinapartments

Measurementsvs.simulation-overall*

*R.Andersenetal.EnergyandBuildings2016

• Stochasticsimulations– temperaturerangesratherthanfixedfigures

• Simulatedtemperaturesinthesamerangeasmeasurements

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

14 16 18 20 22 24 26 28 30 32

Percen

tageoftim

e

Indoortemperatureinbedroom[°C]

Greyarea:simulationresults

Black curves: measurements

Measurementsvs.simulation– ineachtimestep*

y=0,60x+7,57R²=0,21

y=x

10

15

20

25

30

35

15 17 19 21 23 25 27 29

Simulated

indo

orte

mpe

rature[°C]

Measuredindoortemperature[°C]

*R.Andersenetal.EnergyandBuildings2016

Page 8: t to t • g • l • c. · 2017. 12. 12. · 21 rk • r – g – t- t • t – e – ty – CO 2 n • r – e – d – n – ty 2013 22 rk 0 2 4 6 8,1 2 4 300 800 1300 1800

29 DTU Civil Engineering, Technical University of Denmark

Effect of occupants’ behaviour on energy consumption

•Differences in occupants’ behaviour leads to–large differences in some buildings

–smaller differences in other buildings

•Why?

05

101520253035

0 100 200nu

mb

er o

f h

ouse

s

Heating consumption [kWh/(m² · year)]

1993

1994

1998

1999

Figure from: Andersen R, Proceedings of Healthy Buildings 2012, Brisbane, Australia

0

0,01

0,02

0,03

0,04

0,05

0 50 100 150 200

pro

bab

ility

energy consumption

sensitiverobust

30 DTU Civil Engineering, Technical University of Denmark

Sensitivity to changes in occupants’ behaviour (robustness)*

• Simulations of office building• Stochastic modelling of occupants’

– Window opening– Solar shading

• Variations to – window area– Thermal mass– Solar shading– Geographical location (climate)

RESULTS• Sensitive

– Low thermal mass – large glazing area

• Robust– high mass – low glazing area 0%

5%

10%

15%

20%

25%

30%

35%

Relat

ive St

anda

rd De

viatio

n [%]

All zones ENERGY PERFORMANCE

ZONE 2 - WESTZONE 3a - SOUTHZONE 3b - S/WZONE 3c - S/EZONE 5 - EAST

shadings' variation in light envelope and more glazed models

shadings' variation in light envelope and less glazed models

shadings' variation in massive envelope and less glazed models

shadings' variation in massive envelope and more glazed models

* T. Buso et al. Occupant behaviour and robustness of building design. Building and Environment 94 (2015) 694-703

Summary

•In simulations, behaviour is just as important as weather and physical properties of the building

•Models of occupants’ behaviour implemented in existing simulation software

•We need more qualitative studies to investigate drivers of behaviour

•We need large datasets including all major driving variables

•We need good validation methods

–And data to validate models

•This work is performed in IEA-EBC annex 66