Top Banner
April 26 2010 Delft University of Technology System Identification & Parameter Estimation Lecture 9: Physical Modeling, Model and Parameter Accuracy Wb2301: SIPE Erwin de Vlugt, Dept. of Biomechanical Engineering (BMechE), Fac. 3mE
30

System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

Jun 17, 2018

Download

Documents

hacong
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

April 26 2010

DelftUniversity ofTechnology

System Identification &

Parameter Estimation

Lecture 9: Physical Modeling, Model and Parameter Accuracy

Wb2301: SIPE

Erwin de Vlugt, Dept. of Biomechanical Engineering (BMechE), Fac. 3mE

Page 2: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

2SIPE, lecture 10 | xx

Contents• Parameter estimation in time domain

• resume previous lecture(s)

• Overview of an experiment • Basic steps in an ‘ideal’ experiment

• Parameter estimation in frequency domain:• Non-parametric models: frequency response function (FRF)

• Can be derived from ‘non-parametric’ time-domain models• Models with physical parameters

• Transfer function of model (as function of Laplace operator s)

• Model structure & model parameters: linear models

• Optimization algorithms: adapt model parameters for best fit in frequency

domain

Page 3: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

3SIPE, lecture 10 | xx

Parameter estimation in time-domain

• ‘Non-parametric’ models:• ARMA, OE, Box-Jenkins, etc.

• Models with physical parameters• Input-output data, simulation of model (time domain) • Model structure & model parameters:

• linear and non-linear models

• Optimization algorithm:• adapt model parameters for best fit to simulation

• Note that ARX is a special case!• ARX is ‘linear in the parameters’: no simulation/optimization required!

Page 4: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

4SIPE, lecture 10 | xx

System identification & parameter estimation

u(t), y(t)

‘non-parametric’model

parametricmodel

U(ω),Y(ω)

non-parametricmodel

parametricmodel

ARXARMAEtc.

FrequencyResponseFunction(FRF)

Page 5: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

5SIPE, lecture 10 | xx

System identification & parameter estimation

Unknownsystem

Inputsignal

Outputsignal

System identification

Unknownsystem

Inputsignal

Outputsignal

ModelPredicted

output+

-

Parameter estimation

Page 6: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

6SIPE, lecture 10 | xx

Quantification of validity• Variance-Accounted-For (VAF) values: How much of the variance

in the data can be explained by the model?

=

=

−−= N

ii

N

iii

ty

tytyVAF

1

2

1

2

)(

))(ˆ)((1

data recorded:)u(t ),y(t);,()(ˆ

ii

tufty i θ=

Page 7: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

7SIPE, lecture 10 | xx

Coherence and VAF• High coherence, low VAF:

• Linear system, good SNR, wrong model!

• High coherence, high VAF:• Linear system, good SNR, good model

• Low coherence, high VAF:• Non-linear system, good SNR, good non-linear model

• Low coherence, low VAF:• Non-linear system or poor SNR, poor model

Page 8: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

8SIPE, lecture 10 | xx

Parameter estimation of static and dynamic systems

• Measured data• input signal x(k)• output signal y(k)

• Model (linear or non-linear)• Predicted output: y(k)=f(θ,u(k))• θ: parameter vector• => simulation of the model, depends on θ and u(k)

• error function• e(k) = y(k) - f(θ,u(k))

• criterion function (least squares)• J(x(k),y(k),θ)= Σe(k)2

• find θ which minimizes J• iterative search requires many simulations!

^

Page 9: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

9SIPE, lecture 10 | xx

Accuracy of parameter fit

• Single parameter:• SEM: ‘Standard Error of the Mean’

• Multiple parameters:• Covariance matrix• Estimated from Jacobian and residual error

Page 10: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

10SIPE, lecture 10 | xx

‘Standard error of the mean’(SEM)

• How accurate can the parameters be estimated?• Example:

• Normal distribution of data xN: μx, σx

• Standard Error of the Mean:

• the more data samples to more accurate the estimation of the mean

N

Nx

x

x

x

σσ

σσ

μ

μ

=

= 22 1variance of the mean

standard error (deviation) of the mean

Page 11: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

11SIPE, lecture 10 | xx

Co-variance matrix

• Pθ: Parameter co-variance matrix for parameter vector θN• Approximated by PN (limited number of data samples N for

estimation)

• Cov θN: Variance of Pθ

• σθN = √(diag(Cov θN))

11 1

1

ˆ .[ ]

ˆCov

T TN

N

P P e e J JN N

PN

θ

θθ

−≈ =

Page 12: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

12SIPE, lecture 10 | xx

Covariance Matrix PN

• ZN: data vector with input vector u and output vector y

• VN(θ,ZN): criterion value

• θo: True, optimal parameter vector (unknown!)

• Expanding Taylor series (1st order) around θo:

),(minargˆ NNN ZV θθ

θ=

0),(),(' =∂

∂=

θθθ

NNNN

NNZVZV

No

N

NoN

NoN

oN

oN

NoN

NoN

PNN

ZVZV

ZVZV

N.1)ˆ(1

),(.)],([)ˆ(

)ˆ).(,(),(0

22ˆ

'1''

'''

=−=

−=−

−+=−

θθσ

θθθθ

θθθθ

θ

Page 13: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

13SIPE, lecture 10 | xx

Derivation PN

• e is ‘white noise’ at θo, and hence ∂JT/∂θ = ∂2e/∂θ2 ≈ 0

TN

TNNNN VVVVP

−−= ''''1'' ...

2

'

''' .

N

TNN

TTN

N

V e

VV J e

V JV J J e

θ

θ θ

=

∂= =

∂∂ ∂

= = +∂ ∂

Page 14: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

14SIPE, lecture 10 | xx

Derivation PN

• PN becomes

• Where

1

1 1

1 1

1

'' ' ' ''. . .

( ) . . . .( )

.( ) . .( )

.( )

T TN N N N N

NT T T

i ii

T T TN

TN

P V V V V

J J J e e J J J

J J J J J J

J J

λ

λ

− −

− −

− −

=

⎛ ⎞= ⎜ ⎟

⎝ ⎠=

=

. . .N

TN i i

i

e e e eλ = =∑

Page 15: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

15SIPE, lecture 10 | xx

Co-variance matrix

• And σθ1 = √cov θN(1,1), etc.

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

=

2

2

2

21

2212

1211

..

..

..

ˆ Cov

MMM

M

M

N

θθθθθ

θθθθθ

θθθθθ

σσσσσ

σσσσσσσσσσ

θ

L

MOMM

L

L

Page 16: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

16SIPE, lecture 10 | xx

Matlab demo: parameter accuracy

Page 17: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

17SIPE, lecture 10 | xx

Basic ‘steps’ in identification scheme1. Prepare experiment

• Choose sample frequency, observation time, and number of repetitions

• Choose/design input signal

2. Perform experiment• Perform experiments with care and prevent possible noise sources

3. Analyze results• Check linearity! (e.g. coherence)• Open-loop or closed-loop algorithms required? • Do nonparametric analysis (FRF or ARX/OE/ARMAX)• Fit (parametric) model onto data• Check residue (should be small and preferably white)• Check validity (VAF) and parameter uncertainty (e.g. SEM)

Page 18: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

18SIPE, lecture 10 | xx

1. Prepare experiment• Sample frequency

• Should be high enough to ‘see’ all relevant dynamics• High sample frequency will give more data (storage!) but will not

necessarily give more information! • Prevent aliasing

• Observation time• Determines resolution in frequency domain• In general longer is better (as long as system is time-invariant)

• Number of repetitions• Multiple observations => variations between observations

• Choose/design input signal• ‘persistently’ exciting => excite all relevant dynamics• Prevent leakage

Page 19: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

19SIPE, lecture 10 | xx

2. Perform experiment• Perform experiments with care and prevent possible noise

sources• Electromagnetic interference?• Human subjects

• Unpredictable, to prevent anticipation

• clear instruction, no distractions, etc

• Often data can not be ‘fixed’ afterwards!

Page 20: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

20SIPE, lecture 10 | xx

3. Analyze results• Check linearity

• Calculate coherence• Open-loop or closed-loop algorithms required?

• Try to make a block scheme• Do nonparametric analysis (FRF or ARX/OE/ARMAX e.d.)

• Bode diagram can give indication of system under investigation• Fit (parametric) model onto data

• Do a first check by inspecting the Bode diagram of data and model!

• Check residue (should be small and preferably white)• What is not captured with fitted model?

• Check validity of model (VAF) and parameter uncertainty (e.g. SEM)

Page 21: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

21SIPE, lecture 10 | xx

Options in parameter estimationTime-domain:

• direct fit using derivatives (HMC: inverse dynamics)• Noise is amplified by differentiation

• direct fit using simulation (previous lecture)• Requires multiple model simulations:

a lot of CPU power• Can handle non-linear models!

Page 22: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

22SIPE, lecture 10 | xx

Options in parameter estimation• Frequency-domain:

1. FFT, estimation of FRF, estimation of parameters• No prior assumptions are needed!• Can easily cope with systems in closed-loop• Estimates can be biased if (very) much noise is present• E.g. depends on number frequency bands used for averaging

2. OE/ARMAX fit, estimation of parameters• In general reasonable fast and accurate• Order selection is needed (requires a choice!)• Frequency reconstruction desired to estimate the model structure (if

system is unknown)

Page 23: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

23SIPE, lecture 10 | xx

Error function in frequency domain

Simple approach:

• Wrong approach• Can give severely biased results

)()()(

)()(

mod

2

fHfHfe

fefJ

est

f

−=

=∑

Page 24: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

24SIPE, lecture 10 | xx

Model fit in frequency domain

100

101

102

103

10-5

10-4

10-3

10-2

10-1

100

101

102

frequency [Hz]

gain

[-]

Dynamic range:absolute errors vary between 101 vs 10-4

Page 25: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

25SIPE, lecture 10 | xx

Model fit in frequency domain

100 101 102 1030

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cohe

renc

e [-]

frequency [Hz]

Reliability:coherence varieswith frequency

Page 26: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

26SIPE, lecture 10 | xx

Model fit in frequency domain

100

101

102

103

10-5

10-4

10-3

10-2

10-1

100

101

102

frequency [Hz]

gain

[-]

Logarithmic frequency axis:low emphasis on lower frequencies

Page 27: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

27SIPE, lecture 10 | xx

LogN of Transfer function H

)().()(.)()(

ωϕω

ωωωjeA

bjaH=

+=

)(.))(ln()ln())(ln(

)).(ln())(ln()(

)(

ωϕωω

ωωωϕ

ωϕ

jHeA

eAHj

j

+=

+=

=

• Logarithm effects the gain, not the phase!

Page 28: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

28SIPE, lecture 10 | xx

Error function in frequency domain

regionfrequency lowin data fewfor compensate y to1/frequencby weightedsfrequencie reliableon emphasis moreput tocoherenceby weighted

)()(ln).(.1))(ln())(ln().(.1)(

phase)in difference log(gain)in e(differenc*)(*1 ~

))(())((.()(ln())(ln().(.1

))(ln())(ln().(.1)(

)()(

2

mod

22

mod2

modmod

mod

2

∑∑

⎟⎟⎠

⎞⎜⎜⎝

⎛=−=

+

−+−=

−=

=

f

est

fest

estest

est

f

fHfHf

ffHfHf

ffJ

ff

fHfHifHfHff

fHfHff

fe

fefJ

γγ

γ

ϕϕγ

γ

Page 29: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

29SIPE, lecture 10 | xx

Error function in frequency domainExample:measurements on a mass-spring-damper system

KfjBfjMKsBsMfH

fSfS

fH

fHfHf

ffHfHf

ffe

fefJ

uu

uyest

estest

f

++=

++=

=

⎟⎟⎠

⎞⎜⎜⎝

⎛=−=

=∑

.2.).2.(1

..1)(

)()(

)(

)()(ln).(.1))(ln())(ln().(.1)(

)()(

22mod

modmod

2

ππ

γγ

Page 30: System Identification Parameter Estimation - TU Delft OCW · System Identification & Parameter Estimation ... System identification Unknown system Input signal Output signal Model

30SIPE, lecture 10 | xx

Assignment this week• Estimate parameters in time and frequency domain• Compare the results between both approaches

• Goal: Show the (dis-)advantages and peculiarities of estimation in both time domain and frequency domain (and compare the two approaches)