Top Banner
Concluding Colloquium of DFG-Priority-Program, Stuttgart, 13-15 March 2002, H.Claus and W. Schiehlen->1/20 Concluding Colloquium of DFG–Priority–Program, Stuttgart, 13–15 March 2002 System Dynamics of Radial– and Lateralelastic Railway Wheels H. Claus , W . Schiehlen Contents: ` Motivation ` Vertical Motion ` Lateral Motion and Stability Analysis ` Parameter Studies ` Conclusion Institute B of Mechanics Prof. Dr.-Ing. Schiehlen University of Stuttgart
20

System Dynamics of Radial and Lateralelastic Railway Wheels

Dec 30, 2015

Download

Documents

lateral
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: System Dynamics of Radial and Lateralelastic Railway Wheels

��������� ��������� �� ������������������� ��������� ����� ����� ����� � ����! ��� " ����#��#��$�%��

Concluding Colloquium of DFG–Priority–Program, Stuttgart, 13–15 March 2002

System Dynamics of Radial– andLateralelastic Railway Wheels

H. Claus, W. Schiehlen

Contents: � Motivation

� Vertical Motion

� Lateral Motion and Stability Analysis

� Parameter Studies

� Conclusion

&�!�����# ' �� �#������!���� � �&� ����#��#�

(��)#�!��� �� ��������

Page 2: System Dynamics of Radial and Lateralelastic Railway Wheels

��������� ��������� �� ������������������� ��������� ����� ����� ����� � ����! ��� " ����#��#��$�%��

����������

� Rigid wheelsets result at high speeds in droning noiseand polygonalization by inhomogeneous wear.

� Radialelastic wheelsets reduce the generation andtransmission of noise as well as the dynamic loads towheelrim and rail.

� First design for German ICE train was not reliable.

� However, the fundametal principle is still valid.

Radialelastic versus Rigid Wheelsets for High–Speed Trains

Page 3: System Dynamics of Radial and Lateralelastic Railway Wheels

��������� ��������� �� ������������������� ��������� ����� ����� ����� � ����! ��� " ����#��#��$�%��

����������

Design Variation for Radialelastic Wheels

Rubber suspendedsteel ring on wheel disc

Elastically suspended reinforcedsteel ring on double wheel disc

Page 4: System Dynamics of Radial and Lateralelastic Railway Wheels

��������� ��������� �� ������������������� ��������� ����� ����� ����� � ����! ��� " ����#��#��$*%��

����������

estimated mass and inertia

�++ � �,� �-.mass of wheel rim:

�// � �0 �*-.��inertia of wheel rim:��� � �� ��-.��

mass and inertia of the wheelset inreference configuration correspond

with the rigid wheelset

How to choose stiffness and damping???

Proposed Design Features of Radial and Lateral Elasticity

�++��

�++��

�++��

�++��

�++��

�+1��

�+1��

�+1�2

�+1�2

radial– andlateralelastic

wheel

Page 5: System Dynamics of Radial and Lateralelastic Railway Wheels

��������� ��������� �� ������������������� ��������� ����� ����� ����� � ����! ��� " ����#��#��$�%��

������ ������

carbody

bogie frame

trackexcitations

vertical eigenmodes starting with

3�-�2� 4�-�2� 4*-�2�- ���

flexible bogie frame

FE Modeling

Modal Reduction

Multibody Formalism

radialelastic wheelset

Model of a quarter passenger coach witha half bogie frame and one wheelset

Modeling

joint ofbogie pin

Page 6: System Dynamics of Radial and Lateralelastic Railway Wheels

��������� ��������� �� ������������������� ��������� ����� ����� ����� � ����! ��� " ����#��#��$0%��

������ ������

Soundpowerlevel

Evaluation of Droning Noise and Wheel/Rail Forces

�� � � �

Noisetransmission

��� � �

����2

,��2

�� 5�6-��

mean square value,restricted in frequency range

mean square valueof wheel/rail forces

carbody

bogie frame

track ���+�

��

�-��5�6 ��-��-��

Page 7: System Dynamics of Radial and Lateralelastic Railway Wheels

��������� ��������� �� ������������������� ��������� ����� ����� ����� � ����! ��� " ����#��#��$,%��

������ ������

Spectral Density of Vertical Acceleration

10–12

10–8

10–4

10 0

Spe

ctra

l den

sity

2/s

3]

�[m

10 10020 30 40 60 80 200

Model shows the positive effect of radialelastic wheels for droning noise reduction

Acceleration amplitudes decrease considerably between 70 and 100 Hz

1/��������7 8� ����. ���#�������#! ����

���� 9�##�!

������#��!��� 9�##�!

��#�#��� :�2;

���-���<���!�� 7- �� �-���� � � ��*�-��!�-�- ��

�-#��!��� � � ���*-��!�

Reference: Claus, On Dynamics of Radialelastic Railway Wheelsets, VSDIA’2000

Page 8: System Dynamics of Radial and Lateralelastic Railway Wheels

��������� ��������� �� ������������������� ��������� ����� ����� ����� � ����! ��� " ����#��#��$3%��

���� ����� �� ������ ������

Design variables

Applied algorithms

Design vektor

Limits for design variables

— Evolutionary strategy

— MCDM (NEWOPT/AIMS, PVM)

— NEWSIM (Simulation)

� ���+1�2-�+1�2-��+�2-��+�2-����2

=

������ #��!������ +1�<������ !�!< �+�!#������� !�!< ��

Static deflection 5mm :

other parameters may vary between0.1 and 10 of the initial value of rubbersuspended wheel

carbody

bogie frame

track

��+�2

��+�2

�+1�2

�+1�2

����2����2

�=>�2

�=>�2

�+1�2 � � ? ��,@��

Page 9: System Dynamics of Radial and Lateralelastic Railway Wheels

��������� ��������� �� ������������������� ��������� ����� ����� ����� � ����! ��� " ����#��#��$4%��

���� ����� �� ������ ������

Optimization of carbody accelerationand wheel/rail force

��+-:���;

�+1-:����;

��+-:����;

���-:����;

����� ��<����������

4 ,#�

� �#*

� �#*

* ,#�

� �#*

� �#*

� �#�

4 ,#�

� ,#*

� �#*

� �#*

<����#�#�

�� 0� ,� 3� 4������ ���

�� ���

�� �4

�� �,

����

�<����2#��#!��

�� :��

�!�;

���8��� ���#�#������

� � � � * � � � � � *� � � � * ��

��

���

�+1 :.@;

9�##�%���� ����#

��������#!��

���� �<����2#��������

Reduction of droning noise and wheel/rail force

by optimization of the radial elasticity of the wheels

�+1-:���; � �#,� �#3

��#�#��� :�2;

���# :!;

Page 10: System Dynamics of Radial and Lateralelastic Railway Wheels

��������� ��������� �� ������������������� ��������� ����� ����� ����� � ����! ��� " ����#��#��$��%��

����� ������

Wheelset suspension of ICE

��+�/ � � � ? ��,-@����+�� � , � ? ��0-@��

��+�2 � � � ? ��0-@��

��+�2 � � � ? ��*-@!��

3D–Modeling

carbody

bogie frame

��+�2��+�2 ��+�2��+�2

��+�/ ��+�/

Track parameterTrack stiffness (for contact force)

��� � � ? ��4-@��

������

��

Primary stiffness coefficients:

Primary damping coefficients:

Page 11: System Dynamics of Radial and Lateralelastic Railway Wheels

��������� ��������� �� ������������������� ��������� ����� ����� ����� � ����! ��� " ����#��#��$��%��

����� ������

Modeling of Suspension and Damping

��

5�6 � �5�6-�5�6--9���--�5�6 � �5�� 6��

5�6 � ���5�6--9���--� � �5�6

Springs/Dampers fixed atcoordinate systems:

–> not rotating–> general damping

Springs/Dampers fixedat material points:

–> rotating–> specific damping

9�##� ���

9�##� ��!.

9�##� ���

9�##���!.

Page 12: System Dynamics of Radial and Lateralelastic Railway Wheels

��������� ��������� �� ������������������� ��������� ����� ����� ����� � ����! ��� " ����#��#��$��%��

��������� ��������

Bogie frame with 2 rolling rigid wheelsets,i=1,2

��

��

��

10 root locus plots over velocity

Re(�i)

��

–400 –300 –200 –100 0

���

���

Degrees of freedom

Bogie frame: 2

Wheelset: 2x4

Im(�i)

0200400600800

10001200carbody

bogie frame

Im(�i)

Re(�i)

vgLin � 360 km�h

–30 –20 –10 00

20

40

60

Eigenvaluesof the

hunting motion

Page 13: System Dynamics of Radial and Lateralelastic Railway Wheels

��������� ��������� �� ������������������� ��������� ����� ����� ����� � ����! ��� " ����#��#��$��%��

��������� ��������

Re(�i)–400 –300 –200 –100 0

Im(�i)

Re(�i)

vgLin � 360 km�h

–30 –20 –10 00

20

40

60

Im(�i)

0200400600800

10001200

Root locus plot over velocity

Bogie frame with 2 rolling elastic wheelsets i=1,2

����

��

��

���

���

Degrees of freedomBogie frame: 2 Wheelset: 2x4

carbody

bogie frame

Wheel rim: 4x5

Stiffness and damping coefficents

�+1�� � �+1�2 � � � ? ����-@��

�+1�� � �+1�2 � � � ? ����-@!��

Verification of model

Results correspond to the rigid model–> rigid and elastic model are consistent

����

��

��

��

������

���

���

���

Page 14: System Dynamics of Radial and Lateralelastic Railway Wheels

��������� ��������� �� ������������������� ��������� ����� ����� ����� � ����! ��� " ����#��#��$�*%��

���� ������ �� ����� ���������

�+1�2 � � � ? ��,-@��

�+1�2 � � � ? ��*-@!��

Parameter of radial suspension:

Large stiffness required to guarantee stability.

105

106

107

108

109

103

104

105

106

1070

100

200

300

400

]m/N[ y,ERc tiekgifietS

Kritische Geschwindigkeit

]m/sN[ y,ERd gnuf

v krit [

km/s

]

pmaD

linear critical speed

damping coeff. dRE,y [Ns�m] stiffness coeff. cRE,y [N�m]

vIgLin � 285, 5 km�h

Springs/Dampers fixedat coordinate systems:

Variation of Lateral Stiffness and Damping (cRE,y, dRE,y)

/h]

[km

vIIgLin � 284, 8 km�h

according to optimizationresults of vertical dynamics

9�##� ���

9�##� ��!.

��

5�6 � ���5�6--9���--� � �5�6

��+1�2��+1�2

Page 15: System Dynamics of Radial and Lateralelastic Railway Wheels

��������� ��������� �� ������������������� ��������� ����� ����� ����� � ����! ��� " ����#��#��$��%��

���� ������ �� ����� ���������

�+1�� � � � ? ��3-@��

�+1�� � � � ? ���-@!��

Parameter of lateral, yaw androll suspension:

Optimal parameters of radial stiffness result in robust behavior

105

106

107

108

109

103

104

105

106

1070

100

200

300

400

]m/N[ z,ERc tiekgifietS

Kritische Geschwindigkeit

]m/sN[ z,ERd gnuf

v krit [

km/s

]

pmaD

linear critical speed

damping coeff. dRE,z [Ns�m] stiffness coeff. cRE,z [N�m]

�&&A��

� �3*� 3-.���

/h]

[km

Variation of Radial Stiffness and Damping (cRE,z, dRE,z)

�+1���+1��

Springs/Dampers fixedat coordinate systems:

��

5�6 � ���5�6--9���--� � �5�6

Page 16: System Dynamics of Radial and Lateralelastic Railway Wheels

��������� ��������� �� ������������������� ��������� ����� ����� ����� � ����! ��� " ����#��#��$�0%��

��������� �������� ���� �����������

Linear systems with periodic coefficients

��

5�6 � �5�6�5�6-9���-�5�6 � �5�� 6

Floquet’s Theory:

�5�� ��6 � �5�6��:� ��;-9���-�5�6 � �5�� 6

���-� � �5�6-�

�5��� ��6 � � � �5��6

���-� � 5�� � 6-����!

�56 � �5�� � � ��6 � �-��

B#�5�566B � �

Transition matrix �(T) through integration of

��

5�� ��6 � �5�6-�5�� ��6

Computation time for �(T)

Hill’s eqn.: � � ��

� :�� � �� ��!5��6;� � �

Floquet (Multiplication,Friedman 1977)

Floquet (Integration)

Time integration of eqn.of motion (5 Maxima)

0.06 s

0.14 s

2.00 s

Wheelset (8 dof, no primary suspension):

Floquet (Multiplication)

Time integration (withsuitable initial conditions)

3 days

15 min

Stability tests by time integration–> better computation efficiency

System is asymptotically stabil for

Page 17: System Dynamics of Radial and Lateralelastic Railway Wheels

��������� ��������� �� ������������������� ��������� ����� ����� ����� � ����! ��� " ����#��#��$�,%��

���� ������ �� ����� ���������

Comparison with general damping:At lower stiffness values increased critical speed

Variation of Lateral Stiffness and Damping (cRE,y, dRE,y)Springs/Dampers fixedat material points:

�+1�2 � � � ? ��,-@��

�+1�2 � � � ? ��*-@!��

Parameter of radial suspension:

according to optimizationresults of vertical dynamics

9�##� ���

9�##���!.

�+1�2

�+1�2

106

107

108

103

104

105

106

1070

100

200

300

400

linear critical speed

damping coeff. dLE,y [Ns/m] stiffness coeff. cLE,y [N/m]

vcr

it [

km/h

]

��

5�6 � �5�6�5�6--9���--�5�6 � �5�� 6

Page 18: System Dynamics of Radial and Lateralelastic Railway Wheels

��������� ��������� �� ������������������� ��������� ����� ����� ����� � ����! ��� " ����#��#��$�3%��

���� ������ �� ����� ���������

High critical speed even for low damping coefficients,instability for low stiffness coefficients

Variation of Radial Stiffness and Damping (cRE,z, dRE,z)Springs/Dampers fixedat material points:

–> rotating

�+1���+1��

�+1�� � � � ? ��3-@��

�+1�� � � � ? ���-@!��

Parameter of lateral, yaw androll suspension:

106

107

108

103

104

105

106

1070

100

200

300

400

linear critical speed

damping coeff. dRE,z [Ns/m] stiffness coeff. cRE,z [N/m]

vcr

it [

km/h

]

Page 19: System Dynamics of Radial and Lateralelastic Railway Wheels

��������� ��������� �� ������������������� ��������� ����� ����� ����� � ����! ��� " ����#��#��$�4%��

���� ������ �� ����� ���������

Comments on Design Parameter for Elastic Wheels

Damping coefficients turn out to be less critical

Stability behavior very robust for�+1�� � � ? ��,-@��

For comparison, stiffness in vertical direction

�+1�2 � � � ? ��,-@��

The lateral stiffness has to be considerably higherthan the radial stiffness

Page 20: System Dynamics of Radial and Lateralelastic Railway Wheels

��������� ��������� �� ������������������� ��������� ����� ����� ����� � ����! ��� " ����#��#��$��%��

���������

Variation of lateral and radialsuspension coefficients ofthe wheels (general andspecific damping)

Outlook: Nonlinear criticalspeed for radial– und laterale-lastic wheels

Reduction of droning noiseand wheel/rail force

Damping coefficients less critical

Verification of the results ofthe linear model

Optimization of the verticalmodel (with radialelasticwheels)

Korr–Opt.MCDS

Optimal parameters of radialstiffness –> robust behavior

Small stiffness coefficients notsuitable