Top Banner
S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute of Acrylic Acid Vandna Thakur, a,b,† Sandeep Kumar, a,b,† and Pralay Das* a,b a Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, (H. P.), India b Academy of Scientific & Innovative Research, New Delhi, India equal contribution CONTENTS General Information …..……………………………………………………………….......S2 Preparation of Pd@PS catalyst............................…………………………………….........S2 Mechanistic investigation………………………………………………………………......S3-S6 Typical experimental procedures for synthesis of cinnamic acid derivatives and Characterization data............................................................………………………………S7-S14 Recyclability Experiment......................................................................................................S14 TEM analysis of recycled Pd@PS catalyst………………………………………………...S15 ICP-AES analysis of the reaction mixture............................................................................S16 Mercury Test.........................................................................................................................S16 1 H, 13 C NMR spectra for the synthesized cinnamic acid derivatives……...........................S17-S36 References.............................................................................................................................S37 Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017
37

Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

Nov 18, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S1

Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid

Synthesis using Maleic Anhydride as Substitute of Acrylic Acid

Vandna Thakur,a,b,† Sandeep Kumar,a,b,† and Pralay Das*a,b

aNatural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan

Bioresource Technology, Palampur-176061, (H. P.), India

bAcademy of Scientific & Innovative Research, New Delhi, India†equal contribution

CONTENTS

General Information …..……………………………………………………………….......S2

Preparation of Pd@PS catalyst............................…………………………………….........S2

Mechanistic investigation………………………………………………………………......S3-S6

Typical experimental procedures for synthesis of cinnamic acid derivatives and

Characterization data............................................................………………………………S7-S14

Recyclability Experiment......................................................................................................S14

TEM analysis of recycled Pd@PS catalyst………………………………………………...S15

ICP-AES analysis of the reaction mixture............................................................................S16

Mercury Test.........................................................................................................................S161H, 13C NMR spectra for the synthesized cinnamic acid derivatives……...........................S17-S36

References.............................................................................................................................S37

Electronic Supplementary Material (ESI) for Catalysis Science & Technology.This journal is © The Royal Society of Chemistry 2017

Page 2: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S2

1. General Information

High quality reagents and analytical grade solvents were purchased from Sigma Aldrich, TCI

Chemicals, Merck and Sd Fine Chem. Ltd. Amberlite® IRA 900 Cl− resin (PS) was procured

from Acros Organics. Reactions were monitored using TLC which was performed on pre coated

silica gel plates 60 F254 (purchased from Merck) in UV light detector. Silica gel (60-120 mesh

size) for column chromatography purchased from Merck was used for the purification of

compounds. 1H and 13C NMR spectra were recorded using a Bruker Avance 600 spectrometer

operating at 300/600 MHz (1H) and 75/150 MHz (13C) NMR spectra were recorded at 25 °C in

CD3OD [residual CH3OH (δH 3.33 and 4.86 ppm) and CH3OH (δc 49.00 ppm)], DMSO-d6

[residual DMSO (δH 2.50 and 3.42 ppm) and DMSO (δC 39.54 ppm)] with TMS as internal

standard. Chemical shifts were recorded in δ (ppm) relative to the TMS and NMR solvent signal,

coupling constants (J) are given in Hz and multiplicities of signals are reported as follows: s,

singlet; d, doublet; t, triplet; m, multiplet; br, broad singlet. Melting points were determined by

using MR-VIS+ melting point apparatus and are uncorrected.

2. Preparation of polystyrene supported Palladium (0) (Pd@PS) nanoparticles as catalyst

The solution of 30 mg NaBH4 in 10 mL distilled water was added to 1g of Amberlite® IRA 900

Cl− resin (PS) in 50 mL round bottom flask. The resulting mixture was stirred for 4 h at room

temperature. Then the partially borohydride exchanged resin was washed with water till the pH

became neutral and later with acetone to remove excess of water from polymer surface. This

exchanged polystyrene resin (PS-BH4‾ ) was dried under reduced pressure.

The PS-BH4- (1g) was added to the hot suspension of palladium acetate (10 mg) in DMF (10

mL) and the mixture was stirred for 1 h or till the brown colour solution changed to colourless

and PS-BH4‾ simultaneously turned black giving Pd@PS catalyst. After cooling, the Pd@PS

catalyst was filtered through cotton bed, washed with water and acetone and dried under reduced

pressure.

Page 3: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S3

3. Mechanistic investigationNMR investigation for intermediate and byproduct analysis

The reaction was performed under standard conditions using 1a (500 mg, 2.29 mmol), maleic

anhydride (673 mg, 6.87 mmol), K2CO3 (316 mg, 2.29 mmol) and Pd@PS (1028 mg, 2 mol% of

Pd) for 6h. The reaction residue after isolation of desired product was analysed by NMR studies

that clearly indicated the presence of maleic acid, fumaric acid and p-tolylmaleic acid.1H and 13C NMR spectra:

Page 4: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S4

200 180 160 140 120 100 80 60 40 20 0 ppm

21.02

39.12

39.26

39.40

39.54

39.67

39.81

39.95

115.69

126.77

129.85

130.38

130.67

134.16

140.51

148.82

166.18

166.23

166.93

169.14

Mechanistic investigation through FT-IR analysis:

We conducted the set of control experiments to establish the role of polymer support in the

reaction. We treated the polymer support (PS) with maleic anhydride and K2CO3 (same

equivalents as of standard reaction) under the optimized reaction conditions for 1 h. The PS was

filtered, washed with distilled water and acetone respectively and then dried under vacuum.

Further, PS was grinded into the fine powder and analyzed using FT-IR (Figure S1, ‘b’). Similar

experiment was performed using Pd@PS catalyst (Figure S1, ‘d’). All the recorded FT-IR

spectras including maleic acid (hydrolysed product of maleic anhydride) are summarized in

Figure S1 and S2.

The initial FT-IR spectra of PS and Pd@PS were found to be similar (Figure S1, ‘b’ and ‘d’).

The IR spectrum of PS after treatment with maleic anhydride under reaction conditions showed

the presence of new intense peaks in 1600-1200 cm-1 region (Figure S1, ‘c’). While, the

spectrum of Pd@PS (e) after treatment with maleic anhydride was also found similar to ‘c’

(Figure S1, ‘c’ and ‘e’).

Page 5: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S5

Figure S1. (a) FTIR spectra of Maleic acid; (b) FTIR spectra of polymer support (PS); (c) FTIR

spectra of PS after exchange with maleic anhydride for 1 h; (d) FTIR spectra of Pd@PS (e) FTIR

spectra of Pd@PS after exchange with maleic anhydride for 1 h.

Page 6: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S6

In another experiment, the Pd@PS-exchanged with maleic anhydride (as described above), was

subjected to the reaction with 4-iodotoluene under optimized conditions. The formation of

desired product 3a was observed. The Pd@PS recovered after the reaction was also subjected to

FT-IR analysis and the recorded IR spectra did not show the presence of intense peaks at 1581,

1356 and 1192 (Figure S2). This observation further proved the partial exchange of maleic acid

with polymer support hence facilitating the reaction at the polymer surface.

O

O

O

Pd@PS +K2CO3

125 oC,1 hPEG-400:Dioxane (1:1)

1). Pd@PS separated2). Washed3). Dried under vaccum

K2CO3

PEG-400:Dioxane125 oC

COOH

3a

1a

Figure S2. The FT-IR spectrum of Pd@PS after the reaction with 1a.

Page 7: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S7

4. Typical experimental procedures for synthesis of cinnamic acid derivatives from aryl

halides and characterization data:

(E)-3-p-tolylacrylic acid (3a)

4-iodotoluene 1a (100 mg, 0.459 mmol), maleic anhydride 2 (135 mg,

COOH

1.376 mmol), K2CO3 (63 mg, 0.459 mmol), and Pd@PS (309 mg, 3 mol % of Pd) were taken in

an oven dried screw capped reaction tube in 2 mL solvent mixture of PEG-400:Dioxane (1:1).

The resultant reaction mixture was stirred at 125 oC for 12 h. The progress of reaction was

monitored using TLC. The reaction mixture was cooled to ambient temperature and quenched

with water and then extracted using ethyl acetate (4 X 5 mL). The resulting organic layer was

treated with anhy. Na2SO4 and dried under reduced pressure. The corresponding (E)-3-p-

tolylacrylic acid 3a was obtained in 60 mg, 80% yield as white solid after purification by column

chromatography on silica gel (60-120 mesh) using Hexane:EtOAc (70:30) as elute; on the other

hand, 4-bromotoluene (100 mg, 0.585 mmol), maleic anhydride 2 (172 mg, 1.76 mmol), K2CO3

(161 mg, 1.169 mmol), and Pd@PS (394 mg, 3 mol% of Pd) under same reaction conditions at

130 oC, after column chromatography with Hexane:EtOAc (70:30), gave 3a as white solid (61

mg, 64%); mp 198-199 oC ( lit.1 mp 199-200 oC); 1H NMR (300 MHz, DMSO-d6) δ 2.31 (s,

3H), 6.45 (d, J = 15.99 Hz, 1H), 7.21 (d, J = 7.92 Hz, 2H), 7.51-7.57 (m, 3H); 13C NMR (75

MHz, DMSO-d6 ) δ 21.1, 118.1, 128.3, 129.6, 131.5, 140.3, 144.1, 167.8; IR (KBr) 2924, 2853,

1682, 1624, 1513, 1424 cm-1.

(E)-3-m-tolylacrylic acid (3b)

Prepared as described for 3a; 3-iodotoluene 1b (100 mg, 0.459 mmol) gave

COOH

3b, after purification with silica gel column chromatography (Hexane:EtOAc = 75:25) as white

solid (58 mg, 78%); mp 117-118 oC ( lit.2 mp 116-118 oC); 1H NMR (300 MHz, DMSO-d6) δ

2.31 (s, 3H), 6.50 (d, J = 15.9 Hz, 1H), 7.20-7.32 (m, 2H), 7.45- 7.57 (m, 3H); 13C NMR (75

MHz, DMSO-d6) δ 20.8, 119.0, 125.4, 128.6, 128.8, 130.9, 134.2, 138.2, 144.1, 167.6; IR (KBr)

2922, 2853, 1686, 1630, 1430 cm-1.

Page 8: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S8

(E)-3-o-tolylacrylic acid (3c)

Prepared as described for 3a; 2-iodotoluene 1c (100 mg, 0.459 mmol) gave

COOH

3c, after purification with silica gel column chromatography (Hexane:EtOAc = 70:30) as white

solid (53 mg, 71%); mp 174-176 oC ( lit.1 mp 175-176 oC); 1H NMR (300 MHz, DMSO-d6) δ

2.37 (s, 3H), 6.41 (d, J = 15.9 Hz, 1H), 7.20-7.32 (m, 3H), 7.69 (d, J = 7.2 Hz, 1H), 7.81 (d, J =

15.9 Hz, 1H); 13C NMR (75 MHz, DMSO-d6) δ 19.2, 128.2, 126.4, 126.5, 129.9, 130.7, 132.9,

137.1, 141.2, 167.5. IR (KBr) 2947, 2847, 1686, 1622, 1488, 1424 cm-1.

(E)-3-(4-methoxyphenyl)acrylic acid (3d)

Prepared as described for 3a; 4-iodoanisole 1d (100 mg, 0.427 mmol) H3CO

COOH

gave 3d, after purification with silica gel column chromatography (Hexane:EtOAc = 70:30) as

white solid (58 mg, 77%); mp 174-176 oC ( lit.1 mp 175-176 oC); 1H NMR (600 MHz, DMSO-

d6) δ 3.78 (s, 3H), 6.37 (d, J = 15.96 Hz, 1H), 6.96 (d, J = 8.28 Hz, 2H), 7.54 (d, J = 15.96 Hz,

1H), 7.62 (d, J = 8.28 Hz, 2H); 13C NMR (150 MHz, DMSO-d6) δ 55.3, 114.4, 116.5, 126.9,

129.9, 143.8, 161.0, 167.9; IR (KBr) 2972, 2938, 2843, 1684, 1623, 1513, 1432 cm-1.

(E)-3-(3-methoxyphenyl)acrylic acid (3e)

Prepared as described for 3a; 3-iodoanisole 1e (100 mg, 0.427 mmol) gave OCH3

COOH

3e, after purification with silica gel column chromatography (Hexane:EtOAc = 70:30) as white

solid (56 mg, 74%); mp 116-117 oC ( lit.2 mp 117-119 oC); 1H NMR (600 MHz, DMSO-d6) δ

3.78 (s, 3H), 6.54 (d, J = 15.96 Hz, 1H), 6.97-6.98 (dd, J1 = 8.15, J2 = 2.2 Hz, 1H), 7.23-7.25 (m,

2H), 7.32 (t, J = 7.8 Hz, 1H), 7.55 (d, J = 16.02 Hz, 1H); 13C NMR (150 MHz, DMSO-d6) δ

55.3, 112.9, 116.3, 119.6, 120.8, 129.9, 135.7, 143.9, 159.6, 167.6; IR (KBr) 2923, 2854, 1694,

1631, 1582, 1491, 1454, 1434 cm-1.

Page 9: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S9

(E)-3-(2-methoxyphenyl)acrylic acid (3f)

Prepared as described for 3a; 2-iodoanisole 1f (100 mg, 0.427 mmol) gave

COOH

OCH3

3f, after purification with silica gel column chromatography (Hexane:EtOAc = 70:30) as white

solid (53 mg, 70%); mp 182-183 oC ( lit.2 mp 182-184 oC); 1H NMR (600 MHz, DMSO-d6) δ

3.86 (s, 3H), 6.51 (d, J = 16.14 Hz, 1H), 6.98 (t, J = 7.5 Hz, 1H), 7.08 (d, J = 8.3 Hz, 1H), 7.39-

7.42 (m, 1H), 7.66-7.67 (dd, J1 = 7.68, J2 = 1.44 Hz, 1H), 7.84 (d, J = 16.2 Hz, 1H); 13C NMR

(150 MHz, DMSO-d6) δ 55.6, 111.7, 119.3, 120.8, 122.5, 128.4, 131.8, 138.8, 157.8, 167.9; IR

(KBr) 2974, 2946, 2842, 1683, 1620, 1490, 1463, 1427 cm-1.

Cinnamic acid (3g)

Prepared as described for 3a; iodobenzene 1g (100 mg, 0.49 mmol) gave 3g,

COOH

after purification with silica gel column chromatography (Hexane:EtOAc = 70:30) as white solid

(60 mg, 82%); also bromobenzene (100 mg, 0.637 mmol), maleic anhydride 2 (187 mg, 1.91

mmol), K2CO3 (176 mg, 1.27 mmol), and Pd@PS (429 mg, 3 mol% of Pd) under same reaction

conditions gave 3g, after purification with silica gel column chromatography (Hexane:EtOAc =

70:30) as white solid (58 mg, 61%); mp 132-134 oC ( lit.1 mp 133-134 oC); 1H NMR (600 MHz,

DMSO-d6) δ 6.531 (d, J = 15.6 Hz, 1H), 7.404-7.41 (m, 3H), 7.59 (d, J = 16.02 Hz, 1H), 7.67-

7.68 (m, 2H); 13C NMR (150 MHz, DMSO-d6) δ 119.2, 128.2, 128.9, 130.3, 134.3, 144.0, 167.6;

IR (KBr) 3024, 2924, 2854, 1691, 1631, 1453 cm-1.

(E)-3-(naphthalen-3-yl)acrylic acid (3h)

Prepared as described for 3a; 1-iodonaphthalene 1h (100 mg, 0.395 mmol)

COOH

gave 3h, after purification with silica gel column chromatography (Hexane:EtOAc = 75:25) as

white solid (62 mg, 79%); mp 212-213 oC ( lit.1 mp 213-214 oC); 1H NMR (600 MHz, DMSO-

d6) δ 6.60 (d, J = 15.72 Hz, 1H), 7.54-7.63 (m, 3H), 7.94 (d, J = 7.2 Hz, 1H), 7.97-8.01 (m, 2H),

8.19 (d, J = 8.4 Hz, 1H), 8.40 (d, J = 15.72 Hz, 1H); 13C NMR (150 MHz, DMSO-d6) δ 121.9,

Page 10: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S10

122.1, 125.2, 126.3, 127.2, 128.7, 130.4, 130.8, 131.0, 133.3, 140.2, 167.5; IR (KBr) 3048, 2971,

2836, 1682, 1619, 1511, 1424 cm-1.

(E)-3-(4-chlorophenyl)acrylic acid (3i)

Prepared as described for 3a; 1-chloro-4-iodobenzene 1i (100 mg, 0.419 Cl

COOH

mmol) gave 3i, after purification with silica gel column chromatography (Hexane:EtOAc =

65:35) as white solid (65 mg, 85%); also 1-bromo-4-chlorobenzene (100 mg, 0.523 mmol),

maleic anhydride 2 (154 mg, 1.57 mmol), K2CO3 (176 mg, 1.27 mmol), and Pd@PS (352 mg, 3

mol% of Pd) under same reaction conditions at 130 oC gave 3i, after purification with silica gel

column chromatography (Hexane:EtOAc = 65:35) as white solid (70 mg, 74%); mp 247-248 oC

( lit.2 mp 247-249 oC); 1H NMR (300 MHz, DMSO-d6) δ 6.54 (d, J = 16.05 Hz, 1H), 7.45 (d, J =

8.4 Hz, 2H), 7.57 (d, J = 16.02 Hz, 1H), 7.70 (d, J = 8.4 Hz, 2H); 13C NMR (75 MHz, DMSO-

d6) δ 120.1, 128.9, 129.9, 133.2, 134.7, 142.5, 167.4; IR (KBr) 2977, 2830, 1691, 1628, 1490,

1426 cm-1.

(E)-3-(3-chlorophenyl)acrylic acid (3j)

1-bromo-3-chlorobenzene 1j (100 mg, 0.523 mmol), maleic anhydride 2 (154

COOH

Cl

mg, 1.57 mmol), K2CO3 (176 mg, 1.27 mmol), and Pd@PS (352 mg, 3 mol% of Pd) under

aforementioned reaction conditions at 130 oC gave 3j, after purification with silica gel column

chromatography (Hexane:EtOAc = 75:25) as white solid (68 mg, 72%); mp 173-175 oC ( lit.3 mp

175-176 oC); 1H NMR (600 MHz, DMSO-d6) δ 6.60 (d, J = 16.02 Hz, 1H), 7.41-7.46 (m, 2H),

7.56 (d, J = 16.02 Hz, 1H), 7.65 (d, J = 7.32 Hz, 1H), 7.79 (s, 1H); 13C NMR (75 MHz, DMSO-

d6) δ 120.9, 126.7, 127.7, 129.7, 130.6, 133.7, 136.5, 142.2, 167.2; IR (KBr) 2992, 1696, 1630,

1570, 1480, 1430 cm-1.

Page 11: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S11

(E)-3-(4-bromophenyl)acrylic acid (3k)

Prepared as described for 3a; 1-bromo-4-iodobenzene 1k (100 mg, 0.35

COOH

Br

mmol) gave 3k, after purification with silica gel column chromatography (Hexane:EtOAc =

65:35) as white solid (65 mg, 82%); mp 251-253 oC ( lit.4 mp 253 oC); 1H NMR (600 MHz,

DMSO-d6) δ 6.56 (d, J = 16.02 Hz, 1H), 7.56 (d, J = 16.02 Hz, 1H), 7.60 (d, J = 8.52 Hz, 2H),

7.64 (d, J = 8.52 Hz, 2H); 13C NMR (150 MHz, DMSO-d6) δ 120.2, 123.6, 130.2, 131.9, 133.6,

142.7, 167.5; IR (KBr) 2978, 2835, 1689, 1626, 1485, 1425 cm-1.

(E)-3-(4-fluorophenyl)acrylic acid (3l)

Prepared as described for 3a; 1-fluoro-4-iodobenzene 1l (100 mg, 0.45

COOH

F

mmol) gave 3l, after purification with silica gel column chromatography (Hexane:EtOAc =

65:35) as white solid (64 mg, 86%); also 1-fluoro-4-bromobenzene (100 mg, 0.571 mmol),

maleic anhydride 2 (168 mg, 1.71 mmol), K2CO3 (158 mg, 1.14 mmol), and Pd@PS (385 mg, 3

mol% of Pd) under same reaction conditions gave 3l, after purification with silica gel column

chromatography (Hexane:EtOAc = 65:35) as white solid (67 mg, 71%); mp 209-210 oC ( lit.5 mp

209-211 oC); 1H NMR (600 MHz, DMSO-d6) δ 6.49 (d, J = 16.02 Hz, 1H), 7.23 (t, J = 8.7 Hz,

2H), 7.59 (d, J = 16.02 Hz, 1H), 7.74-7.76 (m, 2H); 13C NMR (150 MHz, DMSO-d6) δ 115.9 (d,

J = 21.69 Hz), 119.2, 130.5 (d, J = 8.60 Hz), 130.9 (d, J = 3.03 Hz), 142.7, 163.2 (d, J = 246.62

Hz), 167.6; IR (KBr) 2929, 2847, 1686, 1628, 1599, 1508, 1427 cm-1.

(E)-3-(4-bromo-2-fluorophenyl)acrylic acid (3m)

Prepared as described for 3a; 4-bromo-2-fluoro-1-iodobenzene 1m (100

COOH

FBr

mg, 0.332 mmol) gave 3m, after purification with silica gel column chromatography

(Hexane:EtOAc = 60:40) as white solid (63 mg, 78%); mp 218-219 oC; 1H NMR (600 MHz,

DMSO-d6) δ 6.60 (d, J = 16.14 Hz, 1H), 7.44-7.45 (dd, J1 = 8.4, J2 = 1.8 Hz, 1H), 7.57 (d, J =

16.2 Hz, 1H), 7.60 -7.62 (dd, J1 = 10.32 , J2 = 1.86 Hz, 1H), 7.77 ( t, J = 8.28 Hz, 1H); 13C NMR

(150 MHz, DMSO-d6) δ 119.5 (d, J = 25.15 Hz), 121.4 (d, J = 11.31 Hz), 122.6 (d, J = 5.38Hz),

123.8 (d, J = 9.95Hz), 128.3 (d, J = 3.21 Hz), 130.6 (d, J = 2.94 Hz), 134.7 (d, J = 2.83 Hz),

Page 12: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S12

160.2 (d, 254.38 Hz), 167.2; IR (KBr) 3069, 2926, 2852, 1692, 1625, 1599, 1565, 1482, 1415

cm-1.

(E)-3-(4-acetylphenyl)acrylic acid (3n)

Prepared as described for 3a; 4-iodoacetophenone 1n (100 mg, 0.40 H3COC

COOH

mmol) gave 3n, after purification with silica gel column chromatography (Hexane:EtOAc =

60:40) as white solid (48 mg, 63%); mp 223-225 oC ( lit.1 mp 224-226 oC); 1H NMR (600 MHz,

DMSO-d6) δ 2.59 (s, 3H), 6.67 (d, J = 16.2 Hz, 1H), 7.64 (d, J = 16.20 Hz, 1H), 7.83 (d, J = 8.4

Hz, 2H), 7.97 (d, J = 8.4 Hz, 2H); 13C NMR (150 MHz, DMSO-d6) δ 26.9, 121.8, 128.4, 128.7,

137.6, 138.6, 142.6, 167.3, 197.5; IR (KBr) 3343, 2960, 2922, 2852, 1682, 1630, 1603, 1563,

1424 cm-1.

(E)-3-(4-(methoxycarbonyl)phenyl)acrylic acid (3o)

Prepared as described for 3a; methyl 4-iodobenzoate 1o (100 mg,

COOH

H3COOC

0.382 mmol) gave 3o, after purification with silica gel column chromatography (Hexane:EtOAc

= 60:40) as white solid (57 mg, 73%); mp 245-246 oC ( lit.2 mp 245-247 oC); 1H NMR (600

MHz, DMSO-d6) δ 3.86 (s, 3H), 6.65 (d, J = 16.02 Hz, 1H), 7.63 (d, J = 16.02 Hz, 1H), 7.82 (d,

J = 8.4 Hz, 2H), 7.96 (d, J = 8.4 Hz, 1H); 13C NMR (150 MHz, DMSO-d6) δ 52.2, 121.9, 128.4,

129.6, 130.6, 138.8, 142.4, 165.7, 167.2; IR(KBr) 3414, 2955, 2846, 1712, 1686, 1631, 1567,

1429 cm-1.

(E)-3-(4-(trifluoromethyl)phenyl)acrylic acid (3p)

Prepared as described for 3a; methyl 1-(trifluoromethyl)-4-iodobenzene

COOH

F3C

1p (100 mg, 0.368 mmol) gave 3p, after purification with silica gel column chromatography

(Hexane:EtOAc = 60:40) as white solid (59 mg, 74%); mp 231-232 oC (lit.5 mp 231-233 oC); 1H

NMR (600 MHz, DMSO-d6) δ 6.67 (d, J = 16.02 Hz, 1H), 7.65 (d, J = 16.02 Hz, 1H), 7.75 (d, J

= 8.29 Hz, 2H), 7.91 (d, J = 8.16 Hz, 2H), 13C NMR (150/75 MHz, DMSO-d6) δ 122.2, 125.6 (q,

Page 13: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S13

J = 3.77 Hz), 128.7, 129.4, 129.8 (q, J = 31.70 Hz), 138.2, 141.9, 167.1; IR (KBr) 2990, 2841,

1696, 1632, 1581, 1427 cm-1.

(E)-3-(4-cyanophenyl)acrylic acid (3q)

Prepared as described for 3a; 4-iodobenzonitrile 1q (100 mg, 0.437 NC

COOH

mmol) gave 3q, after purification with silica gel column chromatography (Hexane:EtOAc =

60:40) as white solid (54 mg, 71%); also 4-bromobenzonitrile (100 mg, 0.549 mmol), ), maleic

anhydride 2 (161 mg, 1.65 mmol), K2CO3 (152 mg, 1.1 mmol), and Pd@PS (370 mg, 3 mol% of

Pd) under same reaction conditions at 130 oC gave 3q, after purification with silica gel column

chromatography (Hexane:EtOAc = 60:40) as white solid (65 mg, 68%) mp 253-255 oC ( lit.3 mp

254-255 oC); 1H NMR (300 MHz, DMSO-d6) δ 6.71 (d, J = 16.05Hz, 1H), 7.63 (d, J = 16.05 Hz,

1H), 7.85-7.91 (m, 4H); 13C NMR (75 MHz, DMSO-d6) δ 112.1, 118.5, 122.8, 128.8, 132.7,

138.8, 141.8, 167.1; IR (KBr) 2967, 2837, 2226, 1691, 1626, 1562, 1509, 1424 cm-1.

(E)-3-(4-formylphenyl)acrylic acid (3r)

Prepared as described for 3a; 4-iodobenzaldehyde (100 mg, 0.43

COOH

OHC

mmol) gave 3r, after purification with silica gel column chromatography (Hexane:EtOAc =

55:45) as white solid (54 mg, 72%); also 4-bromobenzaldehyde (100 mg, 0.540 mmol), ), maleic

anhydride 2 (159 mg, 1.62 mmol), K2CO3 (149 mg, 1.08 mmol), and Pd@PS (370 mg, 3 mol%

of Pd) under same reaction conditions at 130 oC gave 3r, after purification with silica gel column

chromatography (Hexane:EtOAc = 55:45) as white solid (60 mg, 63%); mp 250-252 oC; 1H

NMR (600 MHz, DMSO-d6) δ 6.70 (d, J = 16.08 Hz, 1H), 7.65 (d, J = 16.02 Hz, 1H), 7.90-7.94

(m, 4H), 10.02 (s, 1H); 13C NMR (150 MHz, DMSO-d6) δ 122.4, 128.8, 129.9, 136.8, 139.9,

142.4, 167.2, 192.7; IR (KBr) 2983, 2842, 1692, 1630, 1605, 1569, 1419 cm-1.

(E)-3-(4-(4-methylbenzenesulfonoyl)phenyl)acrylic acid (3s)

Prepared as described for 3a; 4-iodophenyl 4-methylbenzenesulfonate

COOH

TsO

1s (100 mg, 0.267 mmol) gave 3s, after purification with silica gel column chromatography

Page 14: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S14

(Hexane:EtOAc = 65:35) as white solid (65 mg, 76%); mp 202-203 oC ( lit.6 mp 201-202 oC); 1H

NMR (600 MHz, CD3OD) δ 2.44 (s, 3H), 6.43 (d, J = 15.96 Hz, 1H), 7.01 (d, J = 8.58 Hz, 2H),

7.41 (d, J = 8.1 Hz, 2H), 7.55 (d, J = 8.58 Hz, 2H), 7.60 (d, J = 16.02 Hz, 1H), 7.69 (d, J = 8.16

Hz, 2H); 13C NMR (150 MHz, CD3OD) δ 20.6, 119.7, 122.9, 128.6, 129.5, 130.1, 132.5, 134.0,

143.4, 146.4, 151.2, 168.9; IR (KBr) 2978, 1688, 1631, 1596, 1504, 1428 cm-1.

(E)-3-(4-(benzyloxy)phenyl)acrylic acid (3t)

Prepared as described for 3a; 1-((4-iodophenoxy)methyl)benzene 1t

COOH

BnO

(100 mg, 0.32 mmol) gave 3t, after purification with silica gel column chromatography

(Hexane:EtOAc = 65:35) as white solid (61 mg, 75%); mp 208-210 oC ( lit.7 mp 209-211 oC); 1H

NMR (600 MHz, DMSO-d6) δ 5.15 (s, 2H), 6.38 (d, J = 15.96 Hz, 1H), 7.04 (d, J = 8.76 Hz,

2H), 7.33 (t, J = 7.26 Hz, 1H), 7.39 (t, J =7.5 Hz, 2H), 7.45 (d, J = 7.26 Hz, 2H), 7.54 (d, J =

15.96 Hz, 1H), 7.63 (d, J = 8.76 Hz, 2H); 13C NMR (150 MHz, DMSO-d6) δ 69.3, 115.2, 116.6,

127.0, 127.7, 127.9, 128.5, 129.9, 136.7, 143.7, 160.0, 167.8; IR (KBr) 3031, 2930, 2836, 1668,

1601, 1512, 1430 cm-1.

5. Typical experimental procedure for reaction of 4-iodotoluene in gram scale:

For gram scale reaction, 4-iodotoluene 1a (1 g, 4.58 mmol), maleic anhydride (1.35 g, 13.76

mmol), K2CO3 (633 mg, 4.48 mmol) and Pd@PS (2059 g, 2 mol% of Pd) were treated under the

aforementioned conditions to give 3a after purification with silica gel column chromatography

(Hexane:EtOAc = 70:30) as final product (520 mg, 70%).

6. Recyclability Experiments

The recyclability experiment of Pd@PS was carried out using 4-iodotoluene as model substrate

under the optimum reaction conditions. The catalyst was recovered, washed with water and then

with acetone, dried under reduced pressure after each cycle before applying it in the next

reaction. The catalyst was successfully applied upto 5th cycle as the isolated yield of product 3a

showed less decrease upto 5th cycle.

Page 15: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S15

Cycles Yield 3a (%)

1 80

2 80

3 77

4 75

5 69

7. TEM analysis of Pd@PS after 5th cycle:

TEM analysis of Pd@PS after recyclability experiments was performed to find outs the size and

dispersion of Pd NPs. The TEM image at 50 nm showed the presence of Pd NPs and the

corresponding particle size distribution histogram confirmed the average number of NPs having

size in range of 1-3 nm. The study reveals that the size of nanoparticles of Pd@PS remains

unaffected after 5th cycle of reaction. But, NPs were not well dispersed as of fresh Pd@PS

catalyst. The nanoparticles clustering might be the reason for loss of catalytic activity.

Figure S3. (a) TEM at 50 nm (b) Particle size distribution histogram from (a)

Page 16: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S16

8. ICP-AES studies

ICP-AES analysis was performed for the reaction mixture using 4-iodotoluene as model

substrate under standard reaction conditions. The reaction mixture after complete digestion under

acidic conditions was subjected for ICP-AES analysis which showed leaching less than 1 ppm.

9. Mercury Test

The reaction of 4-iodotoluene under standard reaction conditions was screened for mercury test.

We conducted the test using 500 equiv. of Hg(0) with respect to Pd@PS (3 mol% of Pd).

Initially we stirred the Hg(0) and Pd@PS catalyst for half an hour followed by the addition of 4-

iodotoluene (1 equiv.), maleic anhydride (3 equiv.) and K2CO3 (1 equiv.) in PEG-400:Dioxane

(1:1) and reaction was performed under optimized reaction conditions. The product 3a was

isolated in 18% yield indicating the poisoning of catalyst.

Page 17: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S17

10. NMR (1H and 13C) Spectra

(E)-3-p-tolylacrylic acid (3a)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

21.09

38.66

38.94

39.22

39.50

39.78

40.05

40.33

118.13

128.27

129.64

131.55

140.32

144.08

167.81

3a

COOH

1H NMR, (300 MHz, ((CD3)2SO)

COOH

3a13C NMR (75 MHz (CD3)2SO)

Page 18: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S18

(E)-3-m-tolylacrylic acid (3b)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

20.86

20.88

38.72

39.00

39.28

39.56

39.83

40.11

40.39

119.04

125.46

128.68

128.83

130.97

134.20

138.20

144.09

167.62

COOH

3b

13C NMR (75 MHz (CD3)2SO)

COOH

3b

1H NMR (300 MHz (CD3)2SO)

Page 19: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S19

(E)-3-o-tolylacrylic acid (3c)

-10190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

19.2

4

38.6

838

.95

39.2

339

.51

39.7

940

.07

40.3

4

120.

1812

6.40

126.

4612

9.93

130.

6813

2.90

137.

1214

1.15

167.

50

COOH

3c1H NMR (300 MHz (CD3)2SO)

COOH

3c13C NMR (75 MHz (CD3)2SO)

Page 20: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S20

(E)-3-(4-methoxyphenyl)acrylic acid (3d)

11 10 9 8 7 6 5 4 3 2 1 ppm3.419

3.780

6.359

6.386

6.951

6.965

7.530

7.556

7.618

7.632

3.06

1.00

1.99

1.00

2.03

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

39.10

39.24

39.38

39.52

39.66

39.80

39.94

55.34

114.40

116.55

126.88

129.99

143.81

161.00

167.91

COOH

3dH3CO

1H NMR (600 MHz (CD3)2SO)

COOH

3dH3CO

13C NMR (150 MHz (CD3)2SO)

Page 21: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S21

(E)-3-(3-methoxyphenyl)acrylic acid (3e)

9 8 7 6 5 4 3 2 1 0 ppm

2.50

2.50

2.50

3.41

3.78

6.53

6.56

6.97

6.97

6.98

6.98

7.23

7.25

7.25

7.31

7.32

7.33

7.54

7.57

3.02

1.00

1.00

2.03

1.01

1.00

200 180 160 140 120 100 80 60 40 20 0 ppm

39.10

39.24

39.38

39.52

39.66

39.80

39.93

55.27

112.95

116.32

119.61

120.81

130.00

135.70

143.94

159.65

167.64

OCH3

COOH

3e1H NMR (600 MHz (CD3)2SO)

OCH3

COOH

3e13C NMR (150 MHz (CD3)2SO)

Page 22: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S22

(E)-3-(2-methoxyphenyl)acrylic acid (3f)

9 8 7 6 5 4 3 2 1 0 ppm

1.98

2.08

3.86

6.50

6.52

6.97

6.98

6.99

7.07

7.09

7.39

7.39

7.40

7.41

7.42

7.66

7.66

7.67

7.67

7.83

7.85

3.05

1.00

1.00

1.01

1.00

1.01

1.00

200 180 160 140 120 100 80 60 40 20 0 ppm

39.10

39.24

39.38

39.52

39.66

39.80

39.93

55.67

111.76

119.31

120.77

122.52

128.46

131.82

138.77

157.78

167.92

COOH

OCH33f

1H NMR (600 MHz (CD3)2SO)

COOH

OCH33f

13C NMR (150 MHz (CD3)2SO)

Page 23: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S23

Cinnamic acid (3g)

11 10 9 8 7 6 5 4 3 2 1 0 ppm

2.49

9

3.43

0

6.51

76.

544

7.40

37.

407

7.41

37.

577

7.60

37.

670

7.67

37.

679

7.68

57.

731

1.00

3.01

1.02

2.09

-10190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

39.1

039

.24

39.3

839

.52

39.6

639

.80

39.9

4

119.

27

128.

2712

8.99

130.

3113

4.28

144.

03

167.

67

COOH

3g1H NMR, (600 MHz, (CD3)2SO)

COOH

3g13C NMR (150 MHz (CD3)2SO)

Page 24: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S24

(E)-3-(naphthalen-3-yl)acrylic acid (3h)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

39.09

39.23

39.37

39.50

39.64

39.78

39.92

121.93

123.00

125.26

125.76

126.32

127.17

128.75

130.41

130.78

131.02

133.33

140.23

167.48

COOH

3h1H NMR, (600 MHz, (CD3)2SO)

COOH

3h13C NMR (150 MHz (CD3)2SO)

Page 25: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S25

(E)-3-(4-chlorophenyl)acrylic acid (3i)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

38.67

38.95

39.22

39.50

39.78

40.06

40.34

120.09

128.93

129.89

133.22

134.74

142.51

167.42

Cl

COOH

3i13C NMR (75 MHz, (CD3)2SO)

Cl

COOH

3i1H NMR (300 MHz (CD3)2SO)

Page 26: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S26

(E)-3-(3-chlorophenyl)acrylic acid (3j)

11 10 9 8 7 6 5 4 3 2 1 ppm

2.496

2.499

2.501

3.436

6.591

6.618

7.412

7.425

7.438

7.445

7.448

7.456

7.459

7.547

7.574

7.644

7.656

7.789

1.01

2.00

1.01

1.01

1.00

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

38.68

38.96

39.23

39.51

39.79

40.07

40.35

120.98

126.69

127.73

129.75

130.64

133.72

136.51

142.23

167.25

Cl

OH

O

3j1H NMR (600 MHz (CD3)2SO)

Cl

OH

O

3j13C NMR (150 MHz (CD3)2SO)

Page 27: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S27

(E)-3-(4-bromophenyl)acrylic acid (3k)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

39.10

39.23

39.37

39.51

39.65

39.79

39.93

120.17

123.58

130.20

131.90

133.57

142.67

167.48

Br

COOH

3k13C NMR (150 MHz, (CD3)2SO)

Br

COOH

3k1H NMR (600 MHz (CD3)2SO)

Page 28: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S28

(E)-3-(4-fluorophenyl)acrylic acid (3l)

11 10 9 8 7 6 5 4 3 2 1 ppm

2.499

6.473

6.500

7.214

7.229

7.243

7.572

7.599

7.735

7.745

7.749

7.758

1.00

2.01

1.00

2.06

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

39.10

39.24

39.38

39.52

39.66

39.80

39.93

115.84

115.98

119.16

130.50

130.55

130.93

130.95

142.73

162.37

164.02

167.57

F

COOH

3l13C NMR (150 MHz (CD3)2SO)

F

COOH

3l1H NMR (600 MHz (CD3)2SO)

Page 29: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S29

(E)-3-(4-bromo-2-fluorophenyl)acrylic acid (3m)

9 8 7 6 5 4 3 2 1 0 ppm

2.50

2.50

2.50

3.46

6.58

6.61

7.44

7.44

7.45

7.45

7.55

7.58

7.60

7.60

7.61

7.62

7.76

7.77

7.78

1.00

1.00

0.99

1.01

1.01

200 180 160 140 120 100 80 60 40 20 0 ppm

39.10

39.24

39.38

39.52

39.66

39.80

39.93

119.45

119.62

121.37

121.44

122.59

122.63

123.81

123.88

128.26

128.29

130.65

130.67

134.72

134.74

159.39

161.08

167.21

O

OH

F

Br3m

1H NMR (600 MHz, (CD3)2SO)

3m

O

OH

F

Br3m

13C NMR (150 MHz, (CD3)2SO)

Page 30: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S30

(E)-3-(4-acetylphenyl)acrylic acid (3n)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

26.87

39.10

39.24

39.38

39.52

39.66

39.80

39.93

121.81

128.44

128.71

137.60

138.61

142.61

167.33

197.55

H3COC

COOH

3n13C NMR (150 MHz, (CD3)2SO)

H3COC

COOH

3n1H NMR (600 MHz, (CD3)2SO)

Page 31: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S31

(E)-3-(4-(methoxycarbonyl)phenyl)acrylic acid (3o)

11 10 9 8 7 6 5 4 3 2 1 ppm

2.496

2.499

2.502

3.378

3.389

3.857

6.635

6.662

7.616

7.643

7.814

7.828

7.953

7.967

2.98

1.00

1.00

2.01

2.05

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

39.10

39.24

39.38

39.52

39.66

39.80

39.94

52.27

121.98

128.40

129.59

130.58

138.78

142.38

165.78

167.24

H3COOC

COOH

3o13C NMR (150 MHz, (CD3)2SO)

H3COOC

COOH

3o1H NMR, (600 MHz, (CD3)2SO)

Page 32: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S32

(E)-3-(4-(trifluoromethyl)phenyl)acrylic acid (3p)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

38.68

38.96

39.24

39.52

39.80

40.07

40.35

122.21

125.53

125.58

125.63

125.68

125.77

128.73

129.14

129.38

129.57

129.99

130.41

138.25

141.90

167.07

F3C

COOH

3p13C NMR (150 MHz, (CD3)2SO)

F3C

COOH

3p13C NMR (600 MHz, (CD3)2SO)

Page 33: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S33

(E)-3-(4-cyanophenyl)acrylic acid (3q)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

38.68

38.96

39.24

39.52

39.80

40.07

40.35

112.08

118.55

122.83

128.83

132.68

138.82

141.85

167.06

NC

COOH

3q13C NMR (75 MHz, (CD3)2SO)

NC

COOH

3q1H NMR (300 MHz (CD3)2SO)

Page 34: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S34

(E)-3-(4-formylphenyl)acrylic acid (3r)

11 10 9 8 7 6 5 4 3 2 1 ppm

2.500

3.369

6.681

6.708

7.640

7.667

7.898

7.912

7.921

7.935

10.021

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

39.58

39.72

39.86

39.99

40.13

40.27

40.41

122.91

129.25

130.34

137.31

140.36

142.86

167.66

193.10

OHC

COOH

3r13C NMR, (150 MHz, (CD3)2SO)

OHC

COOH

3r1H NMR (600 MHz, (CD3)2SO)

Page 35: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S35

(E)-3-(4-(4-methylbenzenesulfonoyl)phenyl)acrylic acid (3s)

11 10 9 8 7 6 5 4 3 2 1 ppm

2.435

3.300

4.865

6.421

6.447

7.004

7.019

7.398

7.411

7.543

7.557

7.585

7.611

7.684

7.698

3.06

1.00

2.00

1.96

2.00

1.11

2.07

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

21.76

48.72

48.86

49.00

49.14

49.28

49.43

49.57

120.82

124.10

129.79

130.69

131.24

133.64

135.16

144.56

147.55

152.34

170.09

TsO

COOH

3s13C NMR (150 MHz, (CD3OD)

TsO

COOH

3s1H NMR (600 MHz, (CD3OD)

Page 36: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S36

(E)-3-(4-(benzyloxy)phenyl)acrylic acid (3t)

11 10 9 8 7 6 5 4 3 2 1 ppm

2.499

3.401

5.145

6.364

6.391

7.032

7.047

7.329

7.341

7.377

7.389

7.402

7.440

7.452

7.528

7.555

7.621

7.635

2.03

1.00

1.98

0.99

2.01

2.00

1.00

2.00

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

39.09

39.23

39.37

39.51

39.64

39.78

39.92

69.36

115.22

116.65

127.05

127.75

127.95

128.49

129.95

136.75

143.71

160.03

167.85

BnO

COOH

3t13C NMR, (150 MHz, (CD3)2SO)

BnO

COOH

3t1H NMR (600 MHz, (CD3)2SO)

Page 37: Synthesis using Maleic Anhydride as Substitute of Acrylic ...S1 Polystyrene Supported Palladium Nanoparticles Catalyzed Cinnamic Acid Synthesis using Maleic Anhydride as Substitute

S37

References:

1) Fukuyama, T.; Arai, M.; Matsubara, H.; Ryu I. J. Org. Chem. 2004, 69, 8105-8107.

2) Pardin, C.; Pelletier, J. N.; Lubell, W. D.; Keillor, J. W. J. Org. Chem. 2008, 73, 5766-

5775.

3) Pawar, P. M.; Jarag K. J.; Shankarling, G. S. Green Chem., 2011, 13, 2130-2134.

4) Ghorai, P.; Kraus, A.; Keller, M.; Go¨tte, C.; Igel, P.; Schneider, E.; Schnell, D.;

Bernhardt, G.; Dove, S.; Zabel, M.; Elz, S.; Seifert, R.; Buschauer A. J. Med. Chem.,

2008, 51, 7193-720.

5) Shil, A. K.; Kumar, S.; Reddy, C. B.; Dadhwal, S.; Thakur, V.; Das P. Org. Lett., 2015,

17, 5352-5355

6) Dale, W. J.; Hennis, H. E.; J. Am. Chem. Soc., 1956, 78, 2543-2547.

7) Doherty, D. G.; J. Am. Chem. Soc., 1955, 77, 4887-4892.

8)