Top Banner
Synthesis of a New Lewis Acid Deactivated Reversed- Phase Zirconia Stationary Phase for HPLC Bingwen Yan 1 , Clayton V. McNeff 1 , Danielle Hawker 1 , Peter W. Carr 2 1 ZirChrom Separations, Inc. 2 University of Minnesota 1-866-STABLE-1 www.zirchrom.com Pittcon 2004
16

Synthesis of a New Lewis Acid Deactivated …Synthesis of a New Lewis Acid Deactivated Reversed-Phase Zirconia Stationary Phase for HPLC Bingwen Yan 1, Clayton V. McNeff 1, Danielle

Jun 29, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Synthesis of a New Lewis Acid Deactivated …Synthesis of a New Lewis Acid Deactivated Reversed-Phase Zirconia Stationary Phase for HPLC Bingwen Yan 1, Clayton V. McNeff 1, Danielle

Synthesis of a New Lewis Acid Deactivated Reversed-Phase Zirconia Stationary Phase for HPLC

Bingwen Yan 1, Clayton V. McNeff 1, Danielle Hawker 1,

Peter W. Carr 2

1 ZirChrom Separations, Inc.2 University of Minnesota

1-866-STABLE-1www.zirchrom.com

Pittcon 2004

Page 2: Synthesis of a New Lewis Acid Deactivated …Synthesis of a New Lewis Acid Deactivated Reversed-Phase Zirconia Stationary Phase for HPLC Bingwen Yan 1, Clayton V. McNeff 1, Danielle

Outline

• Background – Advantages and surface chemistry of zirconia-based supports for HPLC

• Synthesis of Lewis acid deactivated reversed-phase support

• Chromatographic characterization • Chromatography of Lewis-base analytes

• Reversed-phase characteristics

• Ion-exchange characteristics

• Chemical stability testing

• LC/MS column bleed study

• Pharmaceutical applications

• Conclusion – ZirChrom®-EZ allows the use of LC/MS compatible mobile phases for the analysis of both acidic and basic analytes not previously possible on other zirconia-based reversed-phases

2

Page 3: Synthesis of a New Lewis Acid Deactivated …Synthesis of a New Lewis Acid Deactivated Reversed-Phase Zirconia Stationary Phase for HPLC Bingwen Yan 1, Clayton V. McNeff 1, Danielle

Pore structureParticle sizeChemical flexibilitySurface homogeneityMechanical stabilitySwellibilityChemical stabilityThermal stabilityColumn efficiency

Silica+ ++ ++ +- -+ ++ +- -+

++

Zirconia+ ++ ++- -+ ++ ++ ++ +++

Polymericphase

++ +++ +- -+ +- -- -

++ excellent; + good; -- fair.

Advantages of Zirconia-Based Supports for HPLC

3

Page 4: Synthesis of a New Lewis Acid Deactivated …Synthesis of a New Lewis Acid Deactivated Reversed-Phase Zirconia Stationary Phase for HPLC Bingwen Yan 1, Clayton V. McNeff 1, Danielle

Surface Chemistry of Zirconia-Based Supports for HPLC

Zr Zr

O

OZr Zr

O

OZr Zr

O

OZr Zr

O

O

O

OO

O

O

O

OHO

OH H2O OH2H2OOH

Brönsted Base: Zr Zr

O

O

O

H++ ⇔Zr Zr

O

O

O

H

Brönsted Acid: OHZrOOHZrOH 2+⇔+ −−

Lewis Acid: Zr

O

O

O

O P

O

OO

O

⇔+Zr

O

O

O

O

P

OO O

O

4

Page 5: Synthesis of a New Lewis Acid Deactivated …Synthesis of a New Lewis Acid Deactivated Reversed-Phase Zirconia Stationary Phase for HPLC Bingwen Yan 1, Clayton V. McNeff 1, Danielle

Zr Zr

O

OZr Zr

O

OZr Zr

O

OZr Zr

O

O

O

OO

O

O

O

OHO

OH H2O OH2H2OOH

3. Reflux PBD-ZrO2 in Ethylenediamine-N,N,N’,N’-tetra(methylenephosphonic)acid (EDTPA) solution

4. Wash to remove residual EDTPA

PBD

CH2

H2C N

N

H2C

CH2

CH2

H2C

P

P

P

P

O-

OHHO

O

-O

-O

O

O--O

O

-O

O

EDTPA

Synthesis of a Lewis-Acid Deactivated Reversed-Phase Support

1. Coat bare zirconia with polybutadiene(PBD)1

2. Crosslink PBD chains together using dicumyl peroxide as initiator

1) Li, J. W.; Reeder, D. H.; McCormick, A. V.; Carr, P. W. Journal of Chromatography A 1998, 791, 45-525

Page 6: Synthesis of a New Lewis Acid Deactivated …Synthesis of a New Lewis Acid Deactivated Reversed-Phase Zirconia Stationary Phase for HPLC Bingwen Yan 1, Clayton V. McNeff 1, Danielle

0102030405060708090

100

0 5 10 15 20 25 30Time (min.)

mA

U

Chromatographic Characterization –Chromatography of Lewis Base Analytes

LC Conditions: Mobile phase, 40/60 ACN/Water; Flow rate, 1.0 ml/min.; Temperature, 30 oC; Injection volume, 1 µl; Detection at 254 nm; Solutes: 1=methoxybenzoic acid, 2=ethoxybenzoicacid, 3=propoxybenzoic acid, 4=butoxybenzoic acid; Column, 50 mm x 4.6 mm i.d. ZirChrom®-EZ

These analytes are irreversibly adsorbed on

unmodified zirconia under these conditions

0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2Time (min.)

mA

U

1

32

4

OH

O

O

H3C

6

Page 7: Synthesis of a New Lewis Acid Deactivated …Synthesis of a New Lewis Acid Deactivated Reversed-Phase Zirconia Stationary Phase for HPLC Bingwen Yan 1, Clayton V. McNeff 1, Danielle

LSER Comparison of ZirChrom®-PBD and ZirChrom®-EZ

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

N-benzy

lform

amide

Benzy

lalco

holPhe

nol

3-phen

ylpro

panol

p-chloro

phenol

Acetop

henon

e

Benzo

nitrile

Nitrob

enze

ne

Methylb

enzo

ateAnis

ole

p-chloro

toluene

p-nitrobe

nzyl c

hlorid

e

Benzo

phenone

Bromobe

nzene

Naptha

lene

p-xylen

e

p-dichloro

benze

neBen

zene

Toluene

Ethylben

zene

Propy

lbenze

ne

Butylben

zene

log

(k' S

olut

e/k'

ben

zene

)

ZirChrom-EZZirChrom-PBD

-2.5

-1.5

-0.5

0.5

1.5

2.5

m s a b

LSER Coefficient

ZirChrom-PBD

ZirChrom-EZ

logk’=logk’0 + mVx + sπ*2 +a Σ α2 + b Σ β2

LC Conditions: Mobile phase, 40/60 ACN/Water; Flow rate, 1.0 ml/min.; Temperature, 30 oC; Injection volume, 5 µl; Detection at 254 nm; where mVx represents cavity formation and dispersion interactions, sπ*2 represents polar and dipolar interactions, a Σ α2 represents hydrogen bond acidity, b Σ β2 represents hydrogen bond basicity, and logk’0 is the intercept term. 7

Page 8: Synthesis of a New Lewis Acid Deactivated …Synthesis of a New Lewis Acid Deactivated Reversed-Phase Zirconia Stationary Phase for HPLC Bingwen Yan 1, Clayton V. McNeff 1, Danielle

Reversed-Phase Characteristics

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.25 0.35 0.45 0.55

φ

Log

Ret

entio

n Fa

ctor

AcetophenonePropiophenoneButyrophenoneValerophenone

LC Conditions: Mobile phase, indicated composition of ACN/Water; Flow rate, 2.0 ml/min.; Temperature, 35 oC; Injection volume, 5 µl; Detection at 254 nm; Column, 50 mm x 4.6 mm i.d. ZirChrom®-EZ

Solute Slope R2

Acetophenone -2.67 0.999Propiophenone -3.06 0.999Butyrophenone -3.51 0.998Valerophenone -4.03 0.997

φSk logk' log RP −= w

8

Page 9: Synthesis of a New Lewis Acid Deactivated …Synthesis of a New Lewis Acid Deactivated Reversed-Phase Zirconia Stationary Phase for HPLC Bingwen Yan 1, Clayton V. McNeff 1, Danielle

Ion-Exchange Characteristics

0.0

0.3

0.5

0.8

1.0

1.3

1.5

-1.70 -1.50 -1.30 -1.10 -0.90Log [NH4

+]

Log

Ret

entio

n Fa

ctor

N,N-dimethylbenzylamine N-methylbenzylamine

Benzylamine Benzene

Slope R2

Benzylamine -0.846 0.999N-methylbenzyamine -0.847 0.999

N,N-dimethylbenzylamine -0.840 0.999

N

LC Conditions: Mobile phase, 15/85 ACN/5mM MES, 25-100mM Ammonium acetate, pH 6.0; Flow rate, 2.0 ml/min.; Temperature, 35 oC; Injection volume, 5 µl; Detection at 254 nm; Column, 50 mm x 4.6 mm i.d. ZirChrom®-EZ

mIEX ]log[CConstantlogk' +−=

9

Page 10: Synthesis of a New Lewis Acid Deactivated …Synthesis of a New Lewis Acid Deactivated Reversed-Phase Zirconia Stationary Phase for HPLC Bingwen Yan 1, Clayton V. McNeff 1, Danielle

Chemical Stability

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0 1000 2000 3000 4000 5000Column Volumes

Ret

entio

n Fa

ctor

(k')

Hydroxybenzoic acid Ethoxybenzoic acid

Propoxybenzoic acid Butoxybenzoic acid

Exposure and Evaluation Conditions: Mobile phase, 15/85 ACN/0.1M Nitric acid, pH 1.0, or 0.1M Ammonium hydroxide, pH 10.0; Flow rate, 1.0 ml/min.; Temperature, 30 oC; Injection volume, 5 µl; Detection at 254 nm; Column, 50 mm x 4.6 mm i.d. ZirChrom®-EZ

0.0

5.0

10.0

15.0

0 1000 2000 3000 4000 5000Column Volumes

Ret

entio

n Fa

ctor

(k')

4-octyloxybenzoic acid

pH 1.0 pH 10.0

10

Page 11: Synthesis of a New Lewis Acid Deactivated …Synthesis of a New Lewis Acid Deactivated Reversed-Phase Zirconia Stationary Phase for HPLC Bingwen Yan 1, Clayton V. McNeff 1, Danielle

LC/MS Bleed Study – TIC’s From Gradient Elution

LC Conditions: Mobile phase, 0-100% ACN from 0-30 minutes; Flow rate, 0.80 ml/min.; Temperature, 25 oC; Detection by ESI-MS.

Blank gradient – No column

installed

Gradient #1

Gradient #2

11

Page 12: Synthesis of a New Lewis Acid Deactivated …Synthesis of a New Lewis Acid Deactivated Reversed-Phase Zirconia Stationary Phase for HPLC Bingwen Yan 1, Clayton V. McNeff 1, Danielle

Extracted Spectra

Gradient #1

Gradient #2

TIC

TIC

Scan

Scan

12

Page 13: Synthesis of a New Lewis Acid Deactivated …Synthesis of a New Lewis Acid Deactivated Reversed-Phase Zirconia Stationary Phase for HPLC Bingwen Yan 1, Clayton V. McNeff 1, Danielle

Separation of Acidic Drugs with LC/MS-Friendly Mobile Phase

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10

Time (minutes)

Abs

orba

nce

(mA

U)

5

2

4

3

1

LC Conditions: Column, 150 mm x 4.6 mm i.d. ZirChrom®-EZ; Mobile phase, A = 20mM ammonium acetate, pH 5.0, B = ACN; Flow rate, 1.0 ml/min.; Temperature, 35 oC; Injection volume, 10 µl; Detection at 254 nm.; Solutes: 1=Acetaminophen, 2=Naproxen, 3=Ketoprofen, 4=Fenoprofen, 5=Indomethacin

Time (min.) %A %B0 90 10

10 10 90

O

OH

O

13

Page 14: Synthesis of a New Lewis Acid Deactivated …Synthesis of a New Lewis Acid Deactivated Reversed-Phase Zirconia Stationary Phase for HPLC Bingwen Yan 1, Clayton V. McNeff 1, Danielle

ZirChrom®-PBD vs. ZirChrom®-EZ for Metanephrine by LC-MS

A: 20mM Ammonium acetate, pH 6.0

B: Acetonitrile

0

1

2

3

Metanephrine Normetanephrine

Gra

dien

t Ret

entio

n Ti

me

(min

.) ZirChrom-EZZirChrom-PBD

Time (min.) %A %B0 90 105 10 90

0

10

20

30

40

50

60

0 2 4 6 8 10Time (min.)

mA

U

LC Conditions: Column, 50 mm x 4.6 mm i.d. ZirChrom®-EZ; Mobile phase, 25/75 ACN/20mM ammonium acetate, pH 6.0; Flow rate, 1.20 ml/min.; Temperature, 35 oC; Injection volume, 10 µl; Detection at 254 nm.

14

Page 15: Synthesis of a New Lewis Acid Deactivated …Synthesis of a New Lewis Acid Deactivated Reversed-Phase Zirconia Stationary Phase for HPLC Bingwen Yan 1, Clayton V. McNeff 1, Danielle

Pharmaceutical Applications –Opioid Isomers

MorphineM.W. 285.33

HydromorphoneM.W. 285.33

O

NH

H

HO

H

HO

H

H

O

NH

H

HO

H

HO

CodeineM.W. 299.36

O

NH

H

HO

H

O

H

H

H3C

O

NH

H

HO

H

OH3C

HydrocodoneM.W. 299.36

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5Time (minutes)

Abs

orba

nce

(mA

U)

1

2

3

4

Time (min.) %A %B0 90 105 10 90

LC Conditions: Column, 50 mm x 4.6 mm i.d. ZirChrom®-EZ; Mobile phase, A = 20mM ammonium acetate, pH 6.0, B = ACN; Flow rate, 2.00 ml/min.; Temperature, 35 oC; Injection volume, 10 µl; Detection at 254 nm.; Solutes: 1=Morphine, 2=Hydromorphone, 3=Codeine, 4=Hydrocodone 15

Page 16: Synthesis of a New Lewis Acid Deactivated …Synthesis of a New Lewis Acid Deactivated Reversed-Phase Zirconia Stationary Phase for HPLC Bingwen Yan 1, Clayton V. McNeff 1, Danielle

Advantages of ZirChrom®-EZ Over Silica-and Other Zirconia-Based Phases

Advantages over silica reversed-phases…

Stable from pH 1-10, with similar temperature stability

Increased retention and loading for cationic compounds

Very different selectivity, particularly for cationic compounds

Advantages over other zirconia reversed-phases…

Does not require non-volatile buffers for Lewis base analytes

Increased retention for cationic compounds, particularly at low pHConclusion – ZirChrom®-EZ allows the use of LC/MS compatible mobile phases for the analysis of both acidic and basic analytes not previously possible on other zirconia-based reversed-phases

Acknowledgements: Cabot Corporation 16