Top Banner
Synchrotron Radiation based TDPAC I. Sergueev European Synchrotron Radiation Facility Grenoble, France HFI / NQI 2010, 12-17 September 2010 CERN ESRF CERN
23

Synchrotron Radiation based TDPAC

Jan 08, 2016

Download

Documents

Hammer Hammer

CERN. Synchrotron Radiation based TDPAC. I. Sergueev European Synchrotron Radiation Facility Grenoble, France. ESRF. Outline. SR TDPAC: comparison with conventional TDPAC SR TDPAC: comparison with MS and NRS Examples of application: Site-specific phonon dynamics - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Synchrotron  Radiation based  TDPAC

Synchrotron Radiation based TDPACI. Sergueev

European Synchrotron Radiation FacilityGrenoble, France

HFI / NQI 2010, 12-17 September 2010 CERN

ESRF

CERN

Page 2: Synchrotron  Radiation based  TDPAC

Outline

• SR TDPAC: comparison with conventional TDPAC •SR TDPAC: comparison with MS and NRS

• Examples of application:

• Site-specific phonon dynamics

• Relaxation in glasses

• Study of QI in -tin

• Conclusion

HFI / NQI 2010, 12-17 September 2010 CERN

Page 3: Synchrotron  Radiation based  TDPAC

Nuclear Resonance Scattering

HFI / NQI 2010, 12-17 September 2010 CERN

ground state

excited state

life time of the excited state - 0

absorption re-emission

Time

0 200 ns

Time

A.Q.Baron et al, Europhys. Lett.,34, 331(1996)

I.Sergueev et al, Phys. Rev. B 73, 024203 (2006)I.Sergueev et al. Phys. Rev. B 78, 214436 (2008)

Page 4: Synchrotron  Radiation based  TDPAC

TDPAC vs SR TDPAC

HFI / NQI 2010, 12-17 September 2010 CERN

1

2

β-,β+,EC

TDPAC

1 2

SRPAC

1 2

sample(-source)

counterstart stop

detector 2

12 detector

SR

start stopcounter

sample

Advantages of SR TDPAC:•no chemical or electronic aftereffects•only one nuclear transition•in general, large contrast of the beats

dete

ctor

1

Page 5: Synchrotron  Radiation based  TDPAC

Formal description of SR TDPAC for M1

HFI / NQI 2010, 12-17 September 2010 CERN

Z

kin

kout

Z

k1

k2

TDPAC

)()(cos1)( 22222/ tGPAetI t )()(cos21)( 22222

/ tGPAetI t

Isotope transition 2A22

57Fe, 119Sn 1/23/21/2 0.5

61Ni, 155Gd 3/25/23/2 0.28

121Sb, 151Eu

5/27/25/2 0.22

99Ru 5/23/25/2 0.02

SR TDPAC

Page 6: Synchrotron  Radiation based  TDPAC

SR TDPAC on 57Fe

HFI / NQI 2010, 12-17 September 2010 CERN

Z

kin

kout

0 50 100 150

200

400

600

Time / ns

Inte

nsity

/ co

unts

200

400

600

200

400

600

Sample: ferrocene enriched by 57Fewith quadrupole splitting

ttG cos)( 54

51

22

)()(cos21)( 22222/ tGPAetI t

Sample: α-iron enriched by 57Fewith magnetic splitting

0 100 200 3000

100

Inte

nsi

ty /

counts

Time t / ns

Z

kin

kout

B

)(21)( 22/ tRAetI t

ttR B2cos)( 43

41

1 2

3

1

2

3

Page 7: Synchrotron  Radiation based  TDPAC

SR TDPAC for E2 transition

HFI / NQI 2010, 12-17 September 2010 CERN

Nuclear transition : 0+ 2+, Cascade: 0 2 0

0 1 2 3 4 5 60

1

2

Rela

tive Inte

nsi

ty

Time t / ns

166ErFe6Sn6

D. H. Ryan and J.M.Cadogan, Hyp. Int. 153 (2004) 43

)4cos)(cos)(cos()(

)(cos)(21)(

)4(424

1444444

1

22222/

PPtGA

PtGAetI t

Page 8: Synchrotron  Radiation based  TDPAC

Experimental setup

HFI / NQI 2010, 12-17 September 2010 CERN

Monochromator

High ResolutionMonochromator

Al foilUndulator

Sample

Detector

Detector

beam

Detector with Si APDs

APD

Dynamical range: ~106 ph/sTime resolution: ~0.1-2 ns

Energyband width:

1-30 meV

Page 9: Synchrotron  Radiation based  TDPAC

SR TDPAC vs NFS

HFI / NQI 2010, 12-17 September 2010 CERN

k0

t = 0 t = 0

k0

k1

t > 0

nuclear bragg diffraction

single nucleus scatteringSR TDPAC

k0

t > 0

coherent scattering in forward direction -

- nuclear forward scattering

Optical theorem:

t f wd( ) I m Fourier f (t) MS total cross-section

NFS amplitude

Differences:• dependence on the spatial evolution of nuclei• dependence on the ground nuclear state spin evolution

Page 10: Synchrotron  Radiation based  TDPAC

Hyp. Int.: quadrupole splitting

0 200 400 600

NFS

I(t)

Time t (ns)

SR TDPAC

-2 0 2 Velocity [ mm/s ]

Rela

tive

tra

nsm

issi

on

MS

i t i tE e e

Coherent superposition of the wavelets

I=3/2

I=1/2

Energy level diagram: 57Fe, quadrupole splitting

|m|3/2

1/2

1/2

Ferrocene

HFI / NQI 2010, 12-17 September 2010 CERN

Page 11: Synchrotron  Radiation based  TDPAC

Hyp. Int.: 2 single lines

0 200 400 600

NFS

I(t)

Time t (ns)

SRPAC

-2 0 2 Velocity [ mm/s ]

Rela

tive

tra

nsm

issi

on

MS

I=3/2

I=1/2

SR TDPACMS, NFS

HFI / NQI 2010, 12-17 September 2010 CERN

Page 12: Synchrotron  Radiation based  TDPAC

Hyp. Int.: magnetic splitting

0 100 200 300

NFS

Log

I(t)

Time t [ ns ]

SR TDPAC

-8 -4 0 4 8 Velocity [ mm/s ]

Rela

tive

tra

nsm

issi

on

MS

-ironm

+3/2+1/2-1/2-3/2

-1/2+1/2

MS, NFS

SRPAC

HFI / NQI 2010, 12-17 September 2010 CERN

SR

SR TDPAC

NFS

Page 13: Synchrotron  Radiation based  TDPAC

Applications

• Site-specific phonon dynamics

• Relaxation in glasses

• Study of QI in -tin

Page 14: Synchrotron  Radiation based  TDPAC

Phonon assisted SR TDPAC

HFI / NQI 2010, 12-17 September 2010 CERN

Weber, H., Hafner, S.S.: Z. Krist. 133 (1971) 331.

A site: tetrahedral, B = 49.0 T

B site: octahedral, B = 46.0 T

Handke B et al., Phys. Rev. B 71 (2005) 144301Sample:Magnetite, Fe3O4

Page 15: Synchrotron  Radiation based  TDPAC

Phonon assisted SR TDPAC

HFI / NQI 2010, 12-17 September 2010 CERN

)(21)( 22/ tRAetI t

)2cos()2cos()( 43

41

43

41 tBtAtR BA

B site

A site

16 meV22 meV

35 meV

0

1

A=0.5, B=0.5

A=0.6, B=0.4

A=0.8, B=0.2

0

1

Ani

sotrop

y

0 50 100 150 2000

1

Time / ns

Page 16: Synchrotron  Radiation based  TDPAC

Relaxation in glasses

HFI / NQI 2010, 12-17 September 2010 CERN

EFG

ferrocene Fe(C5H5)2

Sample:

Glass-former:Di-butyl phthalate, Tg = 178 K

Task: resolve rotational and translational degrees of motions

Page 17: Synchrotron  Radiation based  TDPAC

Relaxation in glasses

HFI / NQI 2010, 12-17 September 2010 CERN

Relaxation process

a aα

α

λ

k – jump rate, sec-1

a – jump distanceα – jump angleλ – wave length, 0.86 AR – radius of the molecule, 2 A

22

32

akT

223 kR

R

a 3

2

03.02

232

RT

R

Page 18: Synchrotron  Radiation based  TDPAC

Relaxation in glasses

HFI / NQI 2010, 12-17 September 2010 CERN

1000

2000

1000

2000

1000

2000

Inte

nsity

T = 180 K

1000

2000

500

0 100 200 300 400 500 600101

102

Time / ns

T = 280 K

102

103

101

102

T =205 K

Inte

nsity

0 100 200 300 400 500 600100

101

102

103

T =215 K

Time / ns

T =180 K

Sample:

Di-butyl phthalate, Tg = 178 K

Di isobytyl phthalate, Tg = 188 K5% ferrocene +

DiBP+FCSR TDPAC

DiBP+FCNFS

SR

SR TDPAC

NFS

Page 19: Synchrotron  Radiation based  TDPAC

Relaxation in glasses

HFI / NQI 2010, 12-17 September 2010 CERN

140 160 180 200 220 240 260 280 300

105

107

109

SR TDPAC NFS + MS

NR

S d

ampi

ng /

s-1

Temperature / K

DS

rat

e / s

-1

105

107

109

dielectric spectroscopy J .Phys.Chem.B 108(2004)4997

140 160 180 200 220 240 260 280 300

105

107

109

NR

S d

ampi

ng /

s-1

Temperature / K

SR TDPAC NFS + MS

105

107

109

DS

rat

e / s

-1

dielectric spectroscopy J .Phys.Chem.B 108(2004)4997

DBP+FC DiBP+FC

Conclusions:The probe reproduces the dynamics of the glass former.At low T dynamics of the probe follows slow β branchAt low T only molecular rotation is seen in both NFS and SR TDPAC.

Page 20: Synchrotron  Radiation based  TDPAC

Study of -tin by SR TDPACC. Strohm et al., in preparation

K.P.Mitrofanov et al., Sov. Phys. JETP 21 (1965) 524

0 100 200 300 400100

101

102

103

104

Time / ns

90 K

105

Inte

nsi

ty / c

ounts

190 K

104

105

295 K

104

105

573 K

0 100 200

0.8

1.0

1.2

Time / ns

0.8

1.0

1.2

0.8

1.0

1.2

Anis

otropy

0.8

1.0

1.2

Measurements by SR TDPAC

HFI / NQI 2010, 12-17 September 2010 CERN

J.C. Soares et al.,Phys.Lett. 45A(1973)465

Page 21: Synchrotron  Radiation based  TDPAC

Study of -tin by SRPAC

1970 1975 1980 2008

17.5

18.0

18.5

19.0

Deca

y half

time /

ns

Year of measurements

Nuclear Data Sheets value: 1/2

= 18.030.07 ns

Result of SRPAC measurements:1/2

= 18.290.01 ns

Results of measurements

0 100 200 300

0.24

0.26

0.28

0.30

0.32

this measurements previous MS and TDPAC

measurements

Qua

drup

ole

split

ting

/ mm

/s

Temperature / K

Conclusion:•value of the life time of 23.9keV nuclear state of 119Sn was obtained with high precision•quadrupole splitting of -tin have been seen in the time spectrum and was measured for different temperatures

HFI / NQI 2010, 12-17 September 2010 CERN

Page 22: Synchrotron  Radiation based  TDPAC

Conclusion

SR TDPAC – method which allows to extend study of hyperfine interactions by TDPAC on to Mössbauer isotopes

– method which allows to extend study of hyperfine interactions by MS into the range of zero Lamb-Mössbauer factor.

3 main directions of application:

Complementary to MS information about hyperfine splitting and dynamics

Hyperfine interactions in high energy Mössbauer isotopes

Study of hyperfine interactions and dynamics in soft condensed matter

HFI / NQI 2010, 12-17 September 2010 CERN

Page 23: Synchrotron  Radiation based  TDPAC

Acknowledgment

HFI / NQI 2010, 12-17 September 2010 CERN

• U. Van Bürck – TU München, Germany• G. Smirnov – Kurchatov Institute, Moscow, Russia

Members of ESRF nuclear resonance group:• R. Rüffer• A. Chumakov• T. Asthalter• C. Strohm•T. H. Deschaux-Beaume