Top Banner
Synchronous machine
32

Synchronous Machine - elektro.fs.cvut.cz

Dec 22, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Synchronous Machine - elektro.fs.cvut.cz

Synchronousmachine

Page 2: Synchronous Machine - elektro.fs.cvut.cz

1. Construction

Page 3: Synchronous Machine - elektro.fs.cvut.cz

Synchronous Machines

Generator

Exciter

View of a two-pole round rotor generator and exciter.

Page 4: Synchronous Machine - elektro.fs.cvut.cz

Synchronous Machines

Major components of a round rotor two-pole generator

N S

A-

B+

C-

A

C

BStator with

laminated iron core

Slots with phase

winding

Rotor with dc winding

A+

B-

C+

+

+ +

++

-

- -

--

Page 5: Synchronous Machine - elektro.fs.cvut.cz

Synchronous Machines

Cross-section of a large turbo generator. (Courtesy Westinghouse)

Page 6: Synchronous Machine - elektro.fs.cvut.cz

Synchronous Machines

Details of a generator stator.

Laminated iron core with slots

Insulated copper bars are placed in the slots to form the three-phase winding

Metal frame

Page 7: Synchronous Machine - elektro.fs.cvut.cz

Synchronous Machines

Rotor block of a large generator. (Courtesy Westinghouse)

Page 8: Synchronous Machine - elektro.fs.cvut.cz

Synchronous Machines

Generator rotor with conductors placed in the slots.

Page 9: Synchronous Machine - elektro.fs.cvut.cz

Synchronous Machines

Large generator rotor completely assembled. (Courtesy Westinghouse)

DC current terminals

Shaft

Steelretaining

ring

DC currentterminals

Wedges

Shaft

Page 10: Synchronous Machine - elektro.fs.cvut.cz

Synchronous Machines

Two-pole salient pole generator concept.

B-

B+

A+

C+

C-

A-

Rotor with dc winding

Stator with laminated iron core

N

SSlots with

phase winding

+++++

-----

Page 11: Synchronous Machine - elektro.fs.cvut.cz

Synchronous Machines

Four-pole salient pole generator concept.

B-

B+

A+

C+C-

A-

-- +

+

--+ +--

+ +

--+

+

N

SS

N

A+

C-

B+A-

B-

C+

Page 12: Synchronous Machine - elektro.fs.cvut.cz

Synchronous Machines

Stator of a large salient pole hydro generator; inset shows the insulated conductors and spacers.

Page 13: Synchronous Machine - elektro.fs.cvut.cz

Synchronous Machines

Large hydro generator rotor with view of the vertical poles.

Page 14: Synchronous Machine - elektro.fs.cvut.cz

Synchronous Machines

Rotor of a four-pole salient pole generator.

Pole

DC excitationwinding

Fan

Sliprings

Page 15: Synchronous Machine - elektro.fs.cvut.cz

Synchronous Machines

Concept of the brushless exciter system

Generator

Rotating rectifierExciter rotor

Exciter stator

Fieldwinding

Phasewindings

Rotates

Stationary

Φ Idc

Page 16: Synchronous Machine - elektro.fs.cvut.cz

Operating Concept

Page 17: Synchronous Machine - elektro.fs.cvut.cz

Synchronous Machines

Operating concept of a synchronous generator

A+

Flux Φfnsy

A-

C+

B+C-

B-

N

S

-

++

++-

--

-

+

Page 18: Synchronous Machine - elektro.fs.cvut.cz

Synchronous Machines

Rotation produced flux linkage variation.

N

S

-

+

+

-

+N

S

No flux linkage with phase AMaximum flux linkage with phase A

B+

A+

C+

A-

C-

B- B-

A+

C- B+

A-

C+

- + -

+

-

+

- +

-

+-

(a) Flux is perpendicular to phase A (b) Flux is parallel to phase A

Page 19: Synchronous Machine - elektro.fs.cvut.cz

Synchronous Machines

Rotating flux linkage to phase A.

30

nsy

A+ A-

C+

B+C-

B-

N

S

-

++

++-

--

-

+

ΦlinkΦrotωt

Page 20: Synchronous Machine - elektro.fs.cvut.cz

Synchronous MachinesMain rotating flux

synπω 2=

)cos()( tt rotlink ωΦ=Φ

dttdNtE link

stas)()( Φ=

)90cos()sin()(

°+Φ=Φ−=

tNtNtE

rotsta

rotstas

ωωωω

2ωrotsta

staNE Φ

=

2pfnsy =

The rotating flux generates the induced voltage

Page 21: Synchronous Machine - elektro.fs.cvut.cz

Synchronous Machines

30

nsy

A+

A-

C+

B+C-

B-

N

S

-

++

++-

--

-

+Field flux ΦfArmatureflux Φar

Field (Φf) and load generated (Φar) rotating fluxes.

Page 22: Synchronous Machine - elektro.fs.cvut.cz

Synchronous MachinesArmature flux

)cos(2)( tItI staarm ω=Load current generates a rotating flux reducing the main flux and induced voltage)cos()( tt ararm ωΦ=Φ

)(sin)(

)( tNdt

tdNtE arstaarm

staar ωωΦ−=Φ

=

2ωarsta

armNE Φ

=

armstat EEV −=

Page 23: Synchronous Machine - elektro.fs.cvut.cz

Synchronous MachinesArmature flux

)sin(2

)sin(2

)cos(2)()(

tIX

tIL

tIdtdL

dttdILtE

staarm

staarm

staarmarm

armar

ω

ωω

ω

−=

−=

==

sta

arstaarm I

NX2

ωΦ=

leakagearmsyn XXX +=

Page 24: Synchronous Machine - elektro.fs.cvut.cz

Synchronous MachinesSingle phase equivalent circuit )( synstasynarm XjIE =−

synstastasynarmstat XjIEEEV −=−= −

DC

VtEstaIsta

Xsyn Rsta

Flux

Single-phase equivalent circuit of a synchronous generator.

Page 25: Synchronous Machine - elektro.fs.cvut.cz

Synchronous Machines• The generator is loaded• The load current produces a rotating flux• This rotating flux induces a ac three phase voltage in

the stator winding.• This voltage is

– subtracted from the induced voltage.– represented by a voltage drop on the synchronous reactance

• The equivalent circuit of a synchronous generator is a voltage source and a reactance connected in series

Page 26: Synchronous Machine - elektro.fs.cvut.cz

Synchronous Machines

Generator Application– Power angle: Angle between the dc

excitation current generated induced voltage and the terminal voltage

UbUV ZU

XadIsp

I

RX1σ

Page 27: Synchronous Machine - elektro.fs.cvut.cz

Synchronous Machines• Phasor diagram of synchronous

machine

I R + I Xj + I Xj +UU 1adbˆˆˆˆˆ

σ= I R + I Xj + I Xj +UU 1adbˆˆˆˆˆ

σ=

I R + I Xj + I Xj +UU 1adbˆˆˆˆˆ

σ=

Page 28: Synchronous Machine - elektro.fs.cvut.cz

Synchronous MachinesGenerator Application

– Loading: power is less than angle 90 deg• All generators in the system are connected in parallel• All generators rotates with the synchronous speed• The load can be increased by increasing the input mechanical power by

regulating the turbine impute power• The speed does not change, the power angle increases• Maximum power angle is 90 degree, beyond that operation is unstable

– Reactive power regulation– When the excitation is:

• Increased, the generator reactive power also increases;• Decreased, the generator reactive power also decreases

Page 29: Synchronous Machine - elektro.fs.cvut.cz

• Load and excitation dependence

I (Isp)

Un

0kap

0,2kap0,6kap

0,8ind0ind

1

U

I

0kap

0,6kap

0,6ind

0ind

1

I b

Page 30: Synchronous Machine - elektro.fs.cvut.cz

Synchronous Machines

Synchronization– Verify that the phase sequences of the two systems are the

same.

– Adjust the machine speed with the turbine that drives the generator until the generator voltage frequency is nearly the same as the frequency of the network voltage.

– Adjust the terminal voltage of the generator by changing the dc field (rotor) current until the generator terminal voltage is almost equal to the network voltage. Acceptable limit is 5%.

– Adjust the phase angle of the generator terminal voltage by regulating the input power until it is nearly equal with the phase angle of the network voltage. Acceptable limits are about 15°.

Page 31: Synchronous Machine - elektro.fs.cvut.cz

Synchronous Machines

• Synchronization

A

L1

L2

L3

NAPÁJENÍBUZENÍ

V2 f2

V1 f1

SA

Page 32: Synchronous Machine - elektro.fs.cvut.cz

The generator and network power vs power angleδ 0deg 1deg, 180deg..:=

0 30 60 90 120 150 1800

50

100

150

200

250

Pg δ( )kW

Pnet δ( )kW

110

δdeg

Stable operation

Unstable operationMaximum

power

Operation point