Top Banner

of 14

Symmetry Schemes for the Elementary Particles

Apr 14, 2018

Download

Documents

Mani Pillai
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/30/2019 Symmetry Schemes for the Elementary Particles

    1/14

    C h a p t e r 1 3S y m m e t r y s c h e m e s for t h ee l e m e n t a r y p a r t i c l e s

    L e p t o n s a n d h a d r o n sThe s t a r t i ng po in t o f a ll sym m et ry schemes fo r t he e l emen ta ry pa r t i c l e s is t heobse rva t ion tha t t he re appea r t o be fou r fundamen ta l i n t e rac t ions be tweenthese par t ic les . Th ese are , in decreasing ord er of s t rength :( i) th e s t ron g in ter ac t ion , f i rs t d i scussed in the context of the b inding ofthe nucleons in the nucleus;

    ( i i ) the e lec t romagnet ic in terac t ion;( iii) the w eak in terac t io n (which , for exam ple , is responsib le for be ta dec ay);( iv) the gravi ta t ional in terac t ion .

    (Recen t deve lopmen t s sugges t t ha t t hese in t e rac t ions m ay no t be d i s t inc t , bu tm ay be man i fes t a t ions o f a s ing le fund am en ta l i n t e rac t ion . )In te rm s of these four in terac t ions i t is possib le to d iv ide the observ edpart ic les in to two m ajo r ca tegories , the " lep tons" (and "a nt i lep tons") whichn e v e r exper i ence s t rong in te rac t ions , and the "had rons" (and "an t ihad rons" )wh ich , a t l east i n some c i rcumstances , i n t e rac t t h roug h the s t rong in t e rac t ion .In add i ti on the re a re t he " in t e rmed ia t e" pa r t i c l e s t ha t a re t he ca r r i e rs o f t hein t e rac tions (o f wh ich the pho ton , W + and Z ~ have ac tua l ly been obse rveda t t he time o f wr i t i ng ) . Th e ca t egory o f h a d r o n s can be fu r the r d iv ided in totwo c lasses , tho se w hose in t r ins ic sp in j i s an in teger (= 0 , 1 , 2 , . . . ) be ing

    1 3cal led "mesons" and the o thers ( for which j = 2 , 2 , ' " ") be ing referred to as"ba ryons" . T he " l ep ton num ber" and "ba ryo n number" may then be de f inedfor a l l the present ly observed par t ic les by

    1, i f the part ic le is a lepton,L - - 1 , i f the par t ic le i s an an t i lep ton ,

    0 , for any o th er typ e of par t ic le ,255

  • 7/30/2019 Symmetry Schemes for the Elementary Particles

    2/14

    256 GROUP THEOR Y IN PHYSIC Sa n d 1,B = - 1 ,

    0,i f the par t ic le is a baryon,i f t he pa r t i c l e i s an an t iba ry on ,for any o ther type of par t ic le .

    2 T h e g l o b a l i n t e r n a l s y m m e t r y g r o u p S U ( 2 )and isotopic spin

    T he objec t of th i s sec t ion is to in t rod uce the concept of i so topic sp in a ndpresent the basic ideas in such a way tha t they are eas i ly genera l izable too the r i n t e rna l symmet r i e s .

    Cons ide r f ir st t he case o f t he p ro ton (p ) and the neu t ron (n ). The i r re s tmasses mp a n d mn a r e a l mo s t identical ( m p C 2 - 938.3 MeV, mnc 2 = 939.6MeV) , and the i r i n t e rac t ions wi th each o the r ( t ha t i s p -p , p -n and n -n ) a reindepende n t o f how they a re pa i red (p rov ided tha t t hey a re a lways coup ledin to the same s t a t e o f t o t a l sp in and pa r i t y ) . I t is a s t hou gh the re is on lyone par t ic le , the "nucleon" (N), which m ight ex is t in e i ther of two s ta tes , onecor respond ing to t he p ro ton and the o the r t o t he neu t ron , t hese two s t a t e sbeing d is t inguished only by an e lec t rom agn et ic f ie ld . Th is is a s imi lar s i tua t io nt o t h a t o f a n a t o m i n a s ta t e w i t h o rb i t a l a n g u l a r mo m e n t u m l s u b j e c t e d t oa smal l mag net ic f ie ld H. As noted in Ch ap ter 10, Sect ion 6 , i f a l l the effec tsof the e lec t rons ' sp ins are neglec ted ( inc luding degeneracies caused by the m )the n the ene rgy e igenvalue o f a s t a t e w i th an gu la r m om en tu m I is (2l + 1 ) -fo lddege nera te in the absence of the f ie ld , bu t sp l i ts in to ( 2 /+ 1) d i fferent va luesw hen the f ie ld is appl ied . N atu ra l ly one does not rega rd thes e as be ing (21 + 1)d i ffe ren t a toms , b u t r a the r t he y a re t hou gh t o f a s (2 /+ 1 ) d i ffe ren t s t a t e s o ft h e s a me a t o m.The co r respondence be tween these two s i t ua t ions depends on the connec-t ion between energy and ma ss in the specia l theo ry of re la t iv i ty . I t l eads tothe proposal tha t the nucleon N should be ass igned an " i so topic sp in" I wi thvalue 89 ( th is va lue being chosen so th a t 21 + 1 - 2 , so tha t i t can e x is t in21 + 1 (=2) d i ffe ren t s t a te s , one co r respond ing to t he p ro ton and one to t h eneu t ron . Fu r the r , i t is sugges t ed tha t i n t he absence o f e l ec t romagn e t i c i n t e r -ac t ions ( tha t is , i n a un ive rse w i th no e l ec t rom agne t i c i n t e rac t ions ) t he p ro to nand the ne u t ron wou ld be iden t ica l , and each o f t he i r i n t e rac t ions , wh ich a real l "strong", would also be ident ical .Developing th is fur ther , one can in t roduce three se l f-ad jo in t l inear opera-to rs I1 , I2 and Z3 tha t sa t i s fy the commuta t ion re l a t i ons

    [z z2] = iz ,}(13.1)

    That i s , more br ief ly ,3

    r= l(13.2)

  • 7/30/2019 Symmetry Schemes for the Elementary Particles

    3/14

    E L E M E N T A R Y P A R T IC L E S Y M M E T R Y S CH E M E S 257for p , q = 1 , 2 , 3 . The se are ident ica l to the c om m uta t ion re la t ions in Eq ua t ion(10 .9 ) . Indeed one can wr i t e , by ana logy wi th Equa t ion (10 .7) ,

    Z p = - i O ( a p ) , (13.3)(for p = 1, 2 , 3), whe re al , a2 and a3 are basis elem ents of the real Lie alg eb rasu (2 ) . The ana logy may be ex tended so tha t /1 , 2 :2 and Z3 may be rega rdedas be ing ope ra to rs co r respond ing to t he mea su rem en t o f t he "compon en t s" o fi so topic sp in in three mutual ly perpendicular d i rec t ions in an " i so topic sp inspace" . In t roduc ing the l i nea r ope ra to r Z2 by

    z 2 _ ( Z l ) 2 + ( z 2 ) 2 + ( z 3 ) 2 ( 1 3 . 4 )(by analogy wi th E qu at io n (10 .16)), i t is c lear th a t a ll the pr ope rt ies of theope ra to rs A1, A2, A3 and A 2 considered in C ha pte r 10, Sect ion 3 , a pplyequal ly to the ope ra tor s 2"1, I2 , I 3 and Z 2 . In par t icu lar , the op era tor Z 2 has

    1 3eigenvalues of the form I ( I + 1), where I takes one of the values 0, ~, 1 , ~, . . . .This quant i ty I i s then regarded as the " i so topic sp in" , and the poss ib le va luesof i t s "c om pon ent in the th i rd d i rec t ion in iso topic sp in space" assoc ia ted w i ththe op era tor 2:3 are g iven by the e ig env alue /3 of 2 :3 , which a ssum e any of the(2 I + 1) v a lu e s I , I - 1 , . . . , - I . T h e s i mu l ta n e o u s e ig e n ve c to r o f / 2 a n d / 3wi th e igenvalues I ( I + 1 ) a n d / 3 ma y b e d e n o t e d (b y a n a l o g y w i t h E qu a t i o n s(10.23) an d (10.24)) as r so th at

    ~ ( 2 , , I }= /3r 9 (13.5)

    Indeed , for any e lement a of the su(2) Lie a lgeb ra span ned by the b asis ele-men t s a l , a2 and a3 o f Eq ua t ion (13.3) ,

    I(I)(a)r = E D ' ( a ) I i I 3 r 'I ~ = - I (13.6)

    where D / is t he i r reduc ib l e rep resen ta t ion o f su (2 ) i n t roduc ed in Cha p te r 10,Sect ion 3.I t may a l so be a ssumed tha t a l l t hese i so top ic sp in ope ra to rs commutewi th a l l t he ope ra to rs co r respond ing to space - t ime t rans fo rmat ions , so tha t

    the s t a t e vec to r o f each had ron is t he d i rec t p rodu c t o f a func t ion o f space-t ime an d one o f t he vec to rs ~ / I . Each va lue o f /3 co r responds to a pa r t ic l e , t hese t of (2I + 1) par t ic les asso cia ted wi th a par t icu la r va lue I be ing sa id to forman " i so topic m ul t ip le t" . I t is impl ied from E qu at io n (13.6) th a t th e vectorsr fo rm the bas is o f t he (2 I + 1 ) -d imens ional i r reduc ib l e rep resen ta t ion D I

    1of su(2) . In the case of the nucleons, the pro ton is ass igned the va lu e/ 3 =1a n d t h e n e u t r o n t h e v a l u e / 3 = - 5 "

    These considera t ions imply tha t a l l the par t ic les in an i so topic mul t ip le tmus t have the same in t r in s i c sp in and pa r i t y , a s we l l a s t he same ba ryonn u mb e r ( a n d o t h e r qu a n t u m n u mb e r s , s u c h a s s t r a n g e n e s s a n d c h a rm) .

  • 7/30/2019 Symmetry Schemes for the Elementary Particles

    4/14

    258 G R O U P T H E O R Y I N P H Y S I C Si so top ic mu l t ip le t B Y I /3 Q pa r t i c le

    - 1 - 1 7 r-, p -Ir, p 0 0 1 0 0 7r~ ~

    1 1 7r+,p +_ ! 0 K ~ K *~1 2K , K * 0 1 ~ ! 1 K + K *+2

    ~ , r 0 0 0 0 0 ~ ~ 1 6 2 1 7 6 1 7 6_ 1 0 nN 1 1 89 2

    ! 1 p2_ 3 --1 A -2_ ! 0 A ~A 1 1 3 2! 1 A +23 2 A ++2

    A 1 0 0 0 0 A ~- 1 - 1 E -

    E 1 0 1 0 0 E ~1 1 E +

    _ ! - I = -9 . 1 - I 5 ! 0 =o

    2

    1 - 2 0 0 - 1 g t -Tab le 13.1 : I so top ic sp in , hype rcha rg e and ba ryo n num ber a s s ignm ents o fs o m e o f t h e m o s t i m p o r t a n t h a d ro n s .

    I t i s a s s u m e d t h a t al l hadrons can be c lassi f ied wi thin th is scheme. His-to r ica l ly , the ea r l i e s t pa r t i c le s to be incorpora ted in th i s s cheme a f te r thenuc leons we re the th ree p ions ~ r+, 1r~ and ~ r - , which we re a s s igned by to ani so top ic mul t ip le t w i th I = 1 , the va lue s o f /3 be ing 1 , 0 and -1 re spec t ive ly .For bo th the nuc leons and the p ions the e lec t r i c cha rge Q e of the pa r t i c le i sg iven by

    1Q = / 3 + ~ B , (1 3.7 )w h e r e B , t h e b a r y o n n u m b e r i n t r o d u c e d i n t h e p r e v i o u s s e c t i o n , h a s v a l u e 1for the nuc leons and 0 fo r the p ions . In f ac t E qu a t io n (13 .7 ) ho lds on ly fo r a lln o n - s t r a n g e a n d u n - c h a r m e d h a d r o n s , t h e g e n e r a l i z a t i o n f o r s t r a n g e h a d r o n sbe ing g iven la te r in E qu a t io n (13 .9 ) . A l i st o f i so top ic sp in a s s ignmen ts fors o m e o f t h e m o s t i m p o r t a n t h a d r o n s i s c o n t a i n e d i n T a b le 1 3.1 .

  • 7/30/2019 Symmetry Schemes for the Elementary Particles

    5/14

    E L E M E N T A R Y P A R T I C L E S Y M M E T R Y S C H E M E S 259The essen t ia l a s sumpt ion under ly ing the above ana lys i s i s tha t the SU(2)group correspon ding to th e Lie a lgebra su(2) is the invar iance group of thes t rong in te rac t ion H ami l ton ian . Th is impl ie s tha t th i s Ham i l ton ian and the

    cor respond ing T-mat r ix a re i r reduc ib le t enso r ope ra to rs t r ans fo rming as theone-dimensional ident i ty i r reducib le representa t ion . This enables predic t ionsto be m ade of ra t ios of cross-sec t ions and s imilar dyn am ical qu ant i t ies us ingthe Wigner-Eckar t Theorem and the Clebsch-Gordan coeff ic ients for su(2) .(See, for example, Chapter 18, Section 2, of Cornwell (1984) for an introduc-tory deta i led analys is) .

    3 T h e g l o b a l i n t e r na l s y m m e t r y g r o u p S U ( 3 )a n d s t r a n g e n e s s

    The p resen t accoun t o f the su (3 ) sy m m etry scheme fo r hadron s is in tended toin trodu ce i ts m ost s ignif icant fea tures and to emph asize the ro le of the group-theore t ica l and Lie-a lgebra ic arguments developed in ear l ie r chapters . Therehave been m an y long and de ta i led reviews of the su(3) schem e, and to thesethe reader is referred for more specif ic inform at ion on ce r ta in topics . The fol-lowing list gives a selection of these: B ehre nds et a l . (1962), Behrends (1968),Seres te tsk i i (1965) , Carru thers (1966) , Charap et e l . (1967), de Franceschiand Maiani (1965), de Swart (1963, 1965), Dyson (1966), Emmerson (1972),Lo ndon (1964), G at t o (1964), G el l -M ann and Ne 'e m an (1964), Gou rdin(1967), Kokkedee (1969), Lichtenberg (1978), Mathews (1967), Ne'eman(1965) , O 'Raifear ta igh (1968) and Smorodinsky (1965) .

    The concep t o f the s t rangeness q ua n tu m num ber was deve loped ou t o f the"associa ted product ion " hypo thesis of Pais (1952) to expla in the observat iontha t ce r ta in hadrons a re c rea ted by s t rong in te rac t ions , bu t decay th roughthe weak in te rac t ion (Ge l l -Mann 1953 , Nakano a nd Nish i j ima 1953 , Nish i-j ima 1954 , Ge l l -Mann and P a is 1955). The p roposa l was tha t eve ry hadronpossesses a " s t rangeness qu an t um num ber" S , wh ich is a ssum ed to be an in te-ge r , and tha t p roduc t ion o r decay takes p lace th rough the s t rong in te rac t ioni f and on ly if the qu an t i ty AS , de f ined by

    A S -- {sum of in i t ia l va lues of S} - {sum of f inal va lues of S},is zero , tha t is , i f and only if s t rang enes s is addi t ive ly conserved. Th e gener-a l iza t ion of E qu at io n (13 .7) is g iven by the "Gel l -M ann-N ishi j ima formula"

    Q = / 3 + ( 1 / 2 ) B + (1 / 2) S , (13.9)(which is consis tent wi th Equat ion (13 .7) , as nucleons and p ions are ass ignedthe value S - 0). This form ula indica tes th a t i t i s m ore convenient to workwith the "hypercharge" Y def ined by

    y = B + S, ( 3.10)

  • 7/30/2019 Symmetry Schemes for the Elementary Particles

    6/14

    260 G R O U P T H E O R Y I N P H Y S I C Si n t e rms o f wh ich Eq ua t ion (13 .9 ) becom es

    Q = I3 + ( 1/ 2) Y . (13.11)Assuming tha t B i s conserved , the se lec t ion ru le for s t rong in terac t ions i s tha tthey ac t i f and only i f

    A Y = 0 . (13 .12)Tab le 13 .1 g ives t he a ss ignmen t o f hype rcha rge for some o f t he m os t im por t an thad rons .

    I t is na tura l to ass um e th a t the p oss ib le va lues of Y a re e igenvalues ofa se l f-ad jo in t l inear ope ra to r Y. As a ll the pa r t ic les in an i so topic mu l t i -p l e t a re a ssum ed to have the same va lue o f Y , and as Y is a ssum ed to bes imul t aneous ly measu rab le w i th /3 , i t i s necessa ry tha t

    [y , 2:p] = 0 (13.1 3)for p = 1, 2 , 3 , imp lying th at

    [Y ,2 2] = 0 (13.14)as we l l . Moreover , Y i s a ssumed to be unchanged by space - t ime t rans fo rma-t ions.

    As Y i s an in teger for a l l observed par t ic les , i t i s reasonable to assumetha t iY i s the basis e lem ent of a rea l Lie a lgebra th a t is i som orphic to a u(1)rea l Lie a lgeb ra ( the corres pond ing basis e lem ent of u(1) be in g [ i] ). ) (As theun i t a ry i r reduc ib le rep re sen ta t ions o f t he co r respond ing L ie g roup U(1 ) a rea l l one-d imensional and are g iven by

    Fu(1)([ei~]) = [ei~],where p = 0 , and where x i s rea l , i t fol lows th a t the corre spon dingi r reduc ib l e rep resen ta t ions o f u (1 ) a re such tha t

    = [ i p ] .

    Th en the e igenvalues of Y take the va lues p - 0 ,-1-1, =h2, . . . . ) Co nseq uen t lythe set cons ist ing of iY, iZ1, iZ2 and iZ3 forms th e basis of a u(1) @ su(2) rea lL ie a lgeb ra ( the commuta t ion re l a t i ons be ing Equa t ions (13 .1 ) and (13 .13 ) ) .However , th i s a lone does not imply any corre la t ion between the e igenvalueso f Y and 23. To ob ta in th i s it is necessa ry to make the fu r the r a ssum pt ionthat th i s u(1) G su(2) Lie a lgebra i s the proper subalgebra of a la rger rea l Liea lgebra .

    The na tu ra l cand ida t es t o cons ide r a re t he rank-2 compac t semi -s imp lerea l Lie a lgebras , because a l l the i r re levant propert ies are known. Being com-pact , a l l the f in i te-d imensional re pres enta t io ns of the i r asso cia ted L ie groupsa re equ iva l en t t o un i t a ry rep resen ta t ions , wh ich the i so top ic sp in a rgumen t sof the previous sec t ion suggest to be a desi rab le fea ture . A rank-2 a lgeb ra isa p p ro p r i a t e b e c a u s e i t c a n a c c o mmo d a t e t w o mu t u a l l y c o mmu t i n g o p e ra t o r s

  • 7/30/2019 Symmetry Schemes for the Elementary Particles

    7/14

    E L E M E N T A R Y P A R T I C L E S Y M M E T R Y S C H E M E S 26 1(co r respond ing to y and 23 ) in i ts Car t a n suba lgeb ra . Th e non-s imple can -d id ate su(2) @ su(2) can be e l imina ted because i t wo uld leave the va lues ofY and i f3 unre la ted , so the choice i s narrowed to the rank-2 compact s implerea l L ie algeb ras . The ana lys is o f Ch ap te r 11 shows tha t t he re a re on ly th reenon- i somorph ic a lgeb ras w i th the requ i red p roper t i e s , namely su (3 ) ( t he com-pac t rea l form of A2), so(5) (which i s the com pac t rea l form of B2 an d C2,as these are i somorphic) , and th e com pact rea l form of G2. I t is now c leartha t t he scheme based on su (3 ) ag rees we l l w i th exper imen ta l obse rva t ion ,and tha t t h i s i s no t t he case fo r t he schemes based on the o the r a lgeb ras .Consequent ly the present account wi l l be confined so le ly to the su(3) scheme.Even wi th su (3 ) se l ec t ed a s be ing the appropr i a t e a lgeb ra , t he re s t i l l r ema insthe qu est ion of the prec ise re la t ionship of y and 2"3 to th e basis e lem ents ofthe C ar t an suba lgeb ra o f A2 . Th i s i s equ iva l en t t o t he p rob lem o f a ss ign ingpart ic les to mul t ip le t s , which was reso lved by Gel l -Mann (1961, 1962) andNe 'eman (1961) , and which wi l l be d iscussed short ly .

    Th e b asic phi losophy of the su(3) schem e is th a t Y and i f3 are me m bers ofthe C ar t an suba lgeb ra of A2 , and the i r e igenvalues Y an d /3 a re de t e rm inedby the weights of the i r reducib le repre senta t io ns of A2. Th e se t of had ronsco r respon d ing to a pa r t i cu l a r i r reduc ib le rep resen ta t ion is sa id t o fo rm a "uni -t a ry mul t ip l e t " and the had rons invo lved a re a ssumed to be iden t i ca l apa r tf rom the i r va lues o f Y , / 3 and I , so t ha t t hey a ll have the sam e sp in, pa r -i t y and ba ryo n number . Moreover, i t is a ssum ed th a t i n an idea l un iversethe re is on ly one type o f i n t e rac tion , t he s t rong in t e rac t ion , and t ha t a ll t hepa r t i c l e s in a un i t a ry m ul t ip le t have exac t ly t he sam e mass . A t t h i s po in tthere i s a problem, because i t wi l l become apparent tha t in the rea l worldthe pa r t i c l e s i n a un i t a ry mul t ip l e t have masses t ha t a re on ly ve ry rough lyequal . Th e s i tua t ion is qu an t i ta t ive ly qui te d ifferent f rom that in the iso-topic sp in scheme, where the masses wi th in an i so topic mul t ip le t d i ffer by a tmo s t a few pe r cen t, and where the d i ffe rence can be a t t r i b u ted to t he w eakere l ec t romag ne t i c i n t e rac tion . I t is c l ea r t ha t t he cons ide rab le m ass -sp l i tt i ngsbe tween i so top ic mu l t ip l e t s i n a un i t a ry mul t ip l e t canno t be a t t r i bu ted to t hee l ec t romagne t i c i n t e rac t ion , so tha t i t i s necessa ry to make the a ssumpt iontha t t he re a re two types o f s t rong in t e rac tion . Th e w eaker ve rsion, wh ich wil lbe ca l l ed the "med ium-s t rong in t e rac t ion" , i s a ssumed to be re spons ib l e fo rthese m ass-sp l i t t ings . Th e s t ron ger vers ion wi ll s t il l be referred to as " the"s t rong in t e rac t ionThe fi rst priori ty is to establ ish the relat ionship of Y, ffl , i f2 and if3 to thebas is e l em en t s h~ 1, h ~ , ea l , e - ~ l , e~2 , e -~2 , e~1+~2 and e_ (~ l+~2) o f t heWeyl canon ica l basi s o f A2 . T he req u i remen t s a re t ha t :

    (i) Z1, 2"2, 2"3 sat isfy the co m m uta t io n relat io ns in Eq ua t ion s (13.1);(ii) Y sa t i s f i e s t he commuta t ion re l a t i ons in Equa t ion (13 .13 ) ; and

    (iii ) i f any par t ic le in a un i tar y m ul t ip le t ha s in tegra l e lec t r ic charge ( th a tis , i f Q is an integer), then a ll t he pa r t i c l e s i n t he mul t ip l e t mus t havein tegra l e lec t r ic charge .

  • 7/30/2019 Symmetry Schemes for the Elementary Particles

    8/14

    262 G R O U P T H E O R Y I N P H Y S I C S

    _ 2 0

    23

    f ~

    Figure 13.1: Values of/3 and Y for the irreducible representation{3}.

    These requirements lead to the assignments"Y = l(I)(Ha ~) + 2(I)(Ha2) = 2(I)(ha~) + 4(I)(ha2) = 2(I)(H2),2"1 - 89 89 = v / - ~{ (I ) ( e~ , ) - ( I ) (e_~)} ,Z2 = - 89 + 89 = - i x / ~ { ( I ) ( e ~ ) + (I )( e_ ~) },I 3 = ~ 1 0 ( H ~ ) = 3( I) (h~ ) = vf3(I)(H1)

    (13.15)(where HI a n d / / 2 a re the o r tho-normal basis e lements of the Ca r tan sub-algebra of A2 of Exa mple II of Ch apt er 11, Sect ion 6) . (The detai led a rgum entthat leads to Equations (13.15) may be found, for example, in Chapter 18,Section 3, of Cornwell (1984)).Th e irreducible rep resentat ion s of A2 were invest igated in detail in Ch apte r12, Section 4. For a weight

    A- - #1 0 ~ 1 -~ - ~2 OL 2 , (13.16)the associated eigenv alues/3 and Y of the operators :/'3 and y are given by1}/3 = #I- ~#2, (13.17)Y = #2.The argument is s imply that , by Equations (13.15) above,

    /3 = A(3h~, ) = 3 { # 1 ( o ~ 1 , O L l > - ~ - # 2 ( o ~ 1 , o l2 > } ~ - - # 1 - ( 1 / 2 ) # 2 ,and

    Y = A(2hal +4 ha 2)= #1{2(O~1,O~1> "~- 4 ( a l , a2> } + #2{2(C~1, a2 ) + 4 (a 2, a2 )} = #2"

  • 7/30/2019 Symmetry Schemes for the Elementary Particles

    9/14

    E L E M E N T A R Y P A R T I C L E S Y M M E T R Y S C H E M E S 263

    Y

    I I

    ol

    Figure 13 .2 : Values of /3 and Y for the i r reducib le representa t ion{8}.

    The re su l t i ng pa i r s o f e igenva lues /3 and Y fo r t he i r reduc ib le rep rese n ta t ions{3}, {8}, {6} and {10} can be rea d off Figu res 12.1, 12.3, 12.4 and 12.6, andare d isp layed in Figures 13.1 , 13.2, 13 .3 and 13 .4 . For the repr esen ta t ion s{3*}, {6*} and {10"} the va lues of / 3 and Y are the negat ives of those of {3},{6} and { 10} respect ive ly . By Eq ua t ion (13.11) the corre spon ding values ofthe e lec t r ic charge Q e are given by

    Q - P l . (13.18 )The we igh t o f mu l t ip l ic i t y 2 o f t he i r reduc ib le re p resen ta t ion {8} m ay bethough t o f a s be ing assoc i a t ed wi th two e igenvec to rs , one co r respond ing tothe e igenvalues I = 0 , /3 = 0 , Y = 0 , and the o ther to I = 1 , /3 = 0 , Y = 0 .Th e bes t -e s t ab l i shed non- t r iv i a l un i t a ry mul t ip l e t s a re i nd ica t ed in F igu res13.5, 13.6, 13.7 an d 13.8. In each case the figure on the rig ht ha nd sidei s t he quan t i t y m c 2, quo ted in MeV, where m i s t he ave rage re s t mass o fthe co r resp ond ing i sotop ic mu l t ip le t . (The m em bers o f an i so top ic m u l t ip l e tnecessar i ly l ie in the sam e horizonta l l ine in each of these f igures .) To each ofthe b a ryo n mu l t ip le t s { 8} and { 10} the re co r respond an t iba ryon s t rans fo rm ingas {8} and {10"} respect ive ly ({8} being ident ica l to i t s complex conjugate) .A t t he t ime t ha t t h i s scheme was p roposed a ll t he pa r t i c l e s o f t he ba ryo ndecup le t had a l ready been obse rved , excep t fo r t he ~ - . Th e subseq uen td i scovery o f t h i s pa r t ic l e w i th p rec i se ly the p red ic t ed q ua n tu m num bers (and ares t mass a s p red ic t ed by the Ge l l -Mann-Okubo mass fo rmula ) was a t r i umphfor the theory . In addi t ion to the hadro ns l i s ted in the f igures , there are a

  • 7/30/2019 Symmetry Schemes for the Elementary Particles

    10/14

    264 G R O U P T H E O R Y I N P H Y S I C S

    _1. .- I 2 i0 2 I

    I

    43

    r 13

    Figure 13.3: Values of /3 and Y for the i rreducible representat ion{6}.

    - ~ - I 29 , ,

    i_ _30 2 I z

    - I 9

    - 2

    , , . __

    Figure 13.4 : Values of /3 and Y for the irreducible represen tation{ 10}.

  • 7/30/2019 Symmetry Schemes for the Elementary Particles

    11/14

    E L E M E N T A R Y P A R T I C L E S Y M M E T R Y S C H E M E S 265

    n( u d d )

    PI 9( u u d )

    ( d s s )

    9 3 9

    ~ o(u s s )

    I - I o ( u d s ) ~ - I I- I - ~ 0 ~ I I 1 9 3( d d s ) A~ (u d s ) (u u s ) 1 11 5

    - I 1 3 1 8

    I3

    Figu re 13 .5 : Th e baryon octe t {S} wi th j = 89 a n d p a r i t y + . (T h e qu a rkcon ten t s a re in pa ren theses . The f igu res on the r igh t han d s ide give m c 2 (inMev ), w here m is the average m ass of the i so topic mul t ip le t to i t s le f t. )

    A - A 09 @( d d d ) ( u d d ) 9 1 2 3 2(u u d ) (u u u )

    3 ~ . - _ ! ~ . o I ~ - + ~ 1 3 8 5( d d s ) ( u d s ) ( u u s ) Z 5

    ,..~o- I 9 1 5 3 0(u s s )

    " 2( s s s )

    ( d s s )

    1 6 7 2

    Figure 13 .6 : The ba ryon decup le t {10} wi th j = 3 and pa r i t y + . (The qua rkcon ten t s a re in pa ren theses . Th e f igu res on the r igh t ha nd s ide g ive m c 2 (inM ev), w here m is the average ma ss of the i so topic mu l t ip le t to i t s le f t. )

  • 7/30/2019 Symmetry Schemes for the Elementary Particles

    12/14

    266 G R O U P T H E O R Y I N P H Y S I C S

    - I ~(~

    K o( d ~ )

    I2,_

    K w

    ( s S )

    I

    7tO~ 0

    K . l -( u ~ )

    ( u ~ , d d )I

    (uS,dd,s~,)

    4 9 6

    l ~ r + 13 7: ~ - I 3( u d ) 5 4 9

    Ko- I 9 4 9 6( s d )

    Fi g u re 1 3 . 7 : T h e me s o n o c t et {8 } w i t h j = 0 a n d p a r i t y - . (T h e qu a rkcontents are in parenthes es . The f igures on the r ight han d s ide g ive m c 2 (inMev), whe re m is the average mass o f the i so topic m ul t ip le t to i t s le f t. )num ber of s ingle ts (be longing to the i r reducib le rep rese nta t io n {1}) .

    One po in t t ha t i s immed ia t e ly apparen t f rom Figu re 13 .1 i s t ha t fo r t hei rreducib le rep rese nta t ion {3} the va lues of Q are 2 1 and 1 i .e . t h e y, - 5 - 5a r e n o t i n t e g e r s . This is ac tual ly a specia l case of the ge nera l res u l t th a tthe e igenvalues Q for the uni tary mul t ip le t be longing to the i r reducib le rep-r e s e n t a t i o n r ( { n ~ , n 2 } ) a r e i n t eg e r s i f a n d o n ly i f (n l - n 2 ) /3 i s a n i n t e g e r .(The a rgu m en t i s t ha t , by Eq ua t ions (12 .9 ) and (12.10 ) , eve ry we igh t ~ inr({n ~, n2}) is of t he fo rm

    2 2A -- n lA1 + n2A2 - q l a l - q2c~2 = ~ -~ k = l {~ -~ j = l n j ( A - t ) k J - qk }c ~ k ,so tha t , f rom Eq ua t ions (13 .16 ) and (13.18) ,

    2Q = Z n j ( A - 1 ) l J - q l - - ( 2 / 3 ) n l + ( 1 / 3 ) n 2 - q l - - - ( 1 / 3 ) ( n l - n 2 ) + n l - q l .

    j--1As n l , n2, ql , a nd q2 are al l integers, this e xpre ssion is an in tege r i f an d o nlyif ( n l - n 2 ) / 3 is a n in t eg e r .)

    The mos t f ru i t fu l p roposa l fo r dea l ing wi th th i s obse rva t ion was made byOel l -Mann (1964) and Zweig (1964) , and i s tha t the par t ic les correspondingto the i r reducib le representa t ions {3} and {3*} do exis t , and are the basiccon st i tuents of a ll the observed hadrons . Ge l l -Ma nn (1964) ca l led the par t ic leso f t he {3} "quarks" , so tha t t hose o f t he {3*} become "an t iqua rks" . The

    1 wh i l e t he an t i qu a rkss s u mp t i o n is t h a t t h e q u a rk s h av e b a ry o n n u m b e r B =

  • 7/30/2019 Symmetry Schemes for the Elementary Particles

    13/14

    E L E M E N T A R Y P A R T I C L E S Y M M E T R Y S C H E M E S 267

    p -- I(dS)

    K .O( d ~ )

    _ !2

    K ~-(sS)

    K ~ I . 8 9 2( u { )

    p O ( u O , d d )i P * 7 7 00 , ~ 2 I( u u , d d ,s ~ ) ( u d ) 7 8 3 Z3

    ~ , o- I =_ 8 9 2( s d )

    Figure 13 .8" The meson oc t e t {8} wi th j = 1 and pa r i t y - . (The qua rkcon tents are in parentheses . Th e f igures on the r ight han d s ide g ive m c 2 (inMe v), w here m is the av erage mass of the i so topic m ul t ip le t to i t s lef t .)

    1 Th e th ree qu a rks a re now usua l ly ca l led the u , d ando r r e s p o n d t o B = - 5 "s quarks (u corresponding to i so topic sp in "up" , d to i so topic sp in "down",and s t o non-ze ro s t rangeness ) , and the a ssoc i a t ed an t i qua rks a re deno ted byfi, d and $. The pro pert ies of the q uark s are sum m ariz ed in Table 13.2.

    In t he s imp les t mode l t he m e s o n s are m ade of q~ pai rs ( i.e. qu ark a ndan t iq ua rk pai rs) . As (10 .38) shows th a t D 1/ 2 | 1 /2 ~ D 1 ~ two par t ic les1 combine to p roduce compos i t e s w i th sp in 1 and sp in 0 .i th in t r ins ic sp inM ore ove r, as note d in (1 2.18), for A2 {3} | {3*} ..~ {8} @ {1}, so th a t th eqc7 pai rs t ra nsfo rm as the {8} and the {1}. Th is expla ins ver y neat ly th eobse rva t ion tha t t he re ex i s t su (3 ) meson oc t e t s and s ing le t s w i th bo th sp in 1and sp in 0 .

    For b a r y o n s t he s imp les t a ssum pt ion is t ha t each ba ryon cons i st s o f t h reequ arks (and so each an t iba ry on cons i s ts o f t h ree an t i qua rks ) . As th ree pa r t i -1 3cles wi th in t r ins ic sp in ~ couple to produce a composi te wi th in t r ins ic sp in

    qu a rk B I /3 Y S Q1/3 1/2 1/2 1/3 0 2//31 //3 1 / 2 - 1 / 2 1 /3 0 - 1 / 31//3 0 0 - 2 / 3 - 1 - 1 / 3

    Tab le 13.2" Q ua n tu m num bers o f t he q ua rks u , d and s .

  • 7/30/2019 Symmetry Schemes for the Elementary Particles

    14/14

    268 G R O U P T H E O R Y I N P H Y S I C So r 8 9 because , b y Equat ion (10 .38) ) ,D 1/2 | D 1/2 | D 1/2 ( D 1 G D ~ | D 1/2 ~ (D ~ @ D 1/2) 9 (D O D 1/2)

    (D3/2 @ D 1/2) @ D 1/2,an d, as wa s not ed in (12.18), for A2 {3} | {3} | {3} ~ {10} @ 2{8} @ {1}, thisprov ides a s imple exp lana t ion o f the ex i s tence o f baryon o c te t s o f sp in 89a n d3bary on d ecuple t s o f sp in ~ .The quark con ten t s sugges ted by the cons idera t ions a re ind ica ted in F ig-ures 13.5, 13.6, 13.7 and 13.8.W he n the u n i t a ry sp in pa r t s o f the s t a t e vec to r s fo r the b aryons a re in -ves t igated along the l ines indicated above for mesons , one very s igni f icantfea tu re em erges. I t can shown tha t the t r ip le p roduc t s o f {3} basi s vec to r sthat form bas is vectors for the {10} are s y m m e t r i c wi th r espec t to the in te r -chan ge of indices . Also, as D 3/2 correspo nds to the highe s t weight ap pe ar in gin D 1/2 | D 1/2 | D 1/2 th e intr in sic spin p ar t of the s ta te ve ctors for the 3' 2sp in compos i t es a re s y m m e t r i c produc t s o f the sp in par t s o f the cons t i tuen t s .As the gen era l ized Pau l i Exc lus ion Pr inc ip le s t a t es tha t f e rmion s t a t e vec to r sm u s t b e a n t i s y m m e t r i c with respect to in terchanges such as these, i t fo l lowstha t , i f t he on ly d i s t ingu i sh ing l abe l s fo r the quarks a re those a l r eady in t ro -3duced , then the o rb i t a l par t o f the th ree-quark wave func t ions fo r the sp in -~d ecu p l e t b a r y o n s m u s t b e a n t i s y m m e t r i c . W hile th is .is no t impo ssible, i t iscon t ra ry to exper ience wi th g ro und s t a t e conf igura tions in o ther systems . Thed i l em m a can b e av o i d ed b y m ak i n g t h e f u r t h e r a s s u m p t i o n t h a t e ach o f t h eth ree quarks u , d and s comes in three var ie t i es tha t a re d i s t ingu i shed by afur th er featu re , which is cal led "colour" . ( I t wi ll be app recia ted th at th is ispure ly a m at t e r o f t e rmino logy , and th a t i t has no th ing to do wi th "colour" inthe norm al s ense o f the word . ) I f each o f the th ree q uarks o f a sp in -3 decup le thas a d i f fe ren t co lour, then the in te rna l sym m et ry par t o f the s t a t e vec to r isno longer symmet r i c , and so the p rob lem wi th the o rb i t a l par t does no t a r i s e .Th i s idea fo rms the bas is o f the "SU(3) co lour symm et ry scheme" and thenceo f "q u a n t u m ch r o m o d y n am i cs " . I n th i s sch em e t h e s t ro n g i n t e rac t i o n tak esp lace th rough the exchange of 8 "g luons" , which be long to the i r r educ ib lerepre sen ta t ion {8} of the SU(3) co lour g roup .

    Thi s in t roduc t ion wi l l be conc luded by no t ing tha t i t has p roved veryf ru i tfu l to ex tend th e above co ns idera t ions in var ious d i r ec t ions . Th e m os ts t r a igh t fo rward genera l i za t ion , f rom su(3) to su (4 ) , p roduces a s cheme wi tht h e ad d i t i o n a l q u an t u m n u m b er " ch a r m " . T h e m o r e s o p h i s ti c a ted s u g g es ti o ntha t symmet ry b reak ing i s " spon taneous" in o r ig in g ives r i s e to p rob lemswithin "global" schemes (Golds tone 1961, Golds tone et al. 1962). However,as was shown by Higgs (1964a,b , 1966) , when incorporated in a gauge theory(Yang a nd Mil ls 1954 , an d Shaw 1955) these di f ficul ties not only disap pea rbu t p erm i t m ass genera t ion o f the in te rm edia te par t ic l es , thereb y a l lowingthe cons t ruc t ion o f a un i f i ed theory o f weak and e lec t romagnet i c in te rac t ions(c.f . Sa lam 1980, W einberg 1980, and Glashow 1980), based on a u(1) G su(2)a lgebra .