Top Banner
Symmetry of Single-walled Carbon Nanotubes
15

Symmetry of SWNTs Kriza Gyorgy I

Apr 05, 2018

Download

Documents

Azhar Zaidi
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Symmetry of SWNTs Kriza Gyorgy I

8/2/2019 Symmetry of SWNTs Kriza Gyorgy I

http://slidepdf.com/reader/full/symmetry-of-swnts-kriza-gyorgy-i 1/15

Symmetry of Single-walled

Carbon Nanotubes

Page 2: Symmetry of SWNTs Kriza Gyorgy I

8/2/2019 Symmetry of SWNTs Kriza Gyorgy I

http://slidepdf.com/reader/full/symmetry-of-swnts-kriza-gyorgy-i 2/15

Carbon Nanotubes

Outline

Part I (November 29)

Symmetry operations

Line groups

Part II (December 6)

Irreducible representations Symmetry-based quantum numbers

Phonon symmetries

Page 3: Symmetry of SWNTs Kriza Gyorgy I

8/2/2019 Symmetry of SWNTs Kriza Gyorgy I

http://slidepdf.com/reader/full/symmetry-of-swnts-kriza-gyorgy-i 3/15

Construction of nanotubes

 a1  ,  a 2 primitive lattice vectors of 

graphene

Chiral vector:

 c = n1  a1 + n2  a2

n1 , n2 integers: chiral numbers

Mirror lines:

"zig-zag line” through the midpoint of 

bonds

"armchair line” through the atoms 

Sixfold symmetry: 0   < 60° 

Page 4: Symmetry of SWNTs Kriza Gyorgy I

8/2/2019 Symmetry of SWNTs Kriza Gyorgy I

http://slidepdf.com/reader/full/symmetry-of-swnts-kriza-gyorgy-i 4/15

Construction of nanotubes

 a1  ,  a 2 primitive lattice vectors of 

graphene

Chiral vector:

 c = n1  a1 + n2  a2

n1 , n2 integers: chiral numbers

Mirror lines:

"zig-zag line” through the midpoint of 

bonds

"armchair line” through the atoms 

Page 5: Symmetry of SWNTs Kriza Gyorgy I

8/2/2019 Symmetry of SWNTs Kriza Gyorgy I

http://slidepdf.com/reader/full/symmetry-of-swnts-kriza-gyorgy-i 5/15

 Why "chiral" vector?

Chiral structure: no mirror symmetry

"left-handed" and "right-handed" versions

If  c is not along a mirror line then the

structure is chiral

and 60°  –     pairs of chiral structures

It is enough to consider 0     30° 

n1  n2  0

Page 6: Symmetry of SWNTs Kriza Gyorgy I

8/2/2019 Symmetry of SWNTs Kriza Gyorgy I

http://slidepdf.com/reader/full/symmetry-of-swnts-kriza-gyorgy-i 6/15

Discrete translational symmetry 

The line perpendicular to the chiral vector

goes through a lattice point.

(For a general triangular lattice, this is

only true if cos ( a1 ,a2) is rational. For

the hexagonal lattice cos ( a1 ,a 2) = ½.)

Period:

Page 7: Symmetry of SWNTs Kriza Gyorgy I

8/2/2019 Symmetry of SWNTs Kriza Gyorgy I

http://slidepdf.com/reader/full/symmetry-of-swnts-kriza-gyorgy-i 7/15

Space groups and line groups

Space group describes the symmetries of a crystal.

General element is an isometry:

( R | t ) , where R  O(3) orthogonal transformation (point symmetry: it has a fixed point)

 t = n1  a1 + n2  a2 + n3  a3 3T (3) (superscript: 3 generators, argument: in 3d space)

 Line group describes the symmetries of nanotubes (or linear polymers, quasi-1d subunitsof crystals)

( R | t ) , where R  O(3)

 t = n a  1T (3) (1 generator in 3d space)

Page 8: Symmetry of SWNTs Kriza Gyorgy I

8/2/2019 Symmetry of SWNTs Kriza Gyorgy I

http://slidepdf.com/reader/full/symmetry-of-swnts-kriza-gyorgy-i 8/15

Page 9: Symmetry of SWNTs Kriza Gyorgy I

8/2/2019 Symmetry of SWNTs Kriza Gyorgy I

http://slidepdf.com/reader/full/symmetry-of-swnts-kriza-gyorgy-i 9/15

Rotations about the principal axis

Let n be the greatest common divisorof the chiral numbers n1 and n2 .

The number of lattice points (open

circles) along the chiral vector is n + 1.

Therefore there is a C n rotation (2  / n

angle) about the principal axis of the

line group.

Page 10: Symmetry of SWNTs Kriza Gyorgy I

8/2/2019 Symmetry of SWNTs Kriza Gyorgy I

http://slidepdf.com/reader/full/symmetry-of-swnts-kriza-gyorgy-i 10/15

Mirror planes and twofold rotations

Mirror planes only in achiral nanotubes

Twofold rotations in all nanotubes

Page 11: Symmetry of SWNTs Kriza Gyorgy I

8/2/2019 Symmetry of SWNTs Kriza Gyorgy I

http://slidepdf.com/reader/full/symmetry-of-swnts-kriza-gyorgy-i 11/15

Screw operations

All hexagons are equivalent in thegraphene plane and also in the

nanotubes

General lattice vector of graphene

corresponds to a screw operation in the

nanotube:

Combination of 

rotation about the line axis

translation along the line axis

Page 12: Symmetry of SWNTs Kriza Gyorgy I

8/2/2019 Symmetry of SWNTs Kriza Gyorgy I

http://slidepdf.com/reader/full/symmetry-of-swnts-kriza-gyorgy-i 12/15

General form of screw operations

q  —  number of carbon atoms in the unit cell

n  —  greatest common divisor of the chiral numbers n1 and n2

a  —  primitive translation in the line group (length of the unit cell)

Fr(x) — fractional part of the number x

 ( x)  —  Euler function

All nanotube line groups are non-symmorphic!

Nanotubes are single-orbit structures!

(Any atom can be obtained from any other atom by applying a symmetry operation

of the line group.) 

Page 13: Symmetry of SWNTs Kriza Gyorgy I

8/2/2019 Symmetry of SWNTs Kriza Gyorgy I

http://slidepdf.com/reader/full/symmetry-of-swnts-kriza-gyorgy-i 13/15

Glide planes

Only in chiral nanotubes

Combination of reflexion to a plane

and a translation

Page 14: Symmetry of SWNTs Kriza Gyorgy I

8/2/2019 Symmetry of SWNTs Kriza Gyorgy I

http://slidepdf.com/reader/full/symmetry-of-swnts-kriza-gyorgy-i 14/15

Line groups and point groups of carbon

nanotubesChiral nanotubs:

 Lq p22

Achiral nanotubes:

 L2nn / mcm

Construction of  point group PG of a line group G :

( R | t )   ( R | 0 ) (This is not the group of point symmetries of the nanotube!)

Chiral nanotubs:

q22 ( Dq in Schönfliess notation)

Achiral nanotubes:

2n  / mmm ( D2nh in Schönfliess notation)

Page 15: Symmetry of SWNTs Kriza Gyorgy I

8/2/2019 Symmetry of SWNTs Kriza Gyorgy I

http://slidepdf.com/reader/full/symmetry-of-swnts-kriza-gyorgy-i 15/15

Site symmetry of carbon atoms

Chiral nanotubs:

1 (C 1) only identity operation leaves the carbon atom invariant

Achiral nanotubes:

m (C 1h) there is a mirror plane through each carbon atom