Top Banner

of 522

Symmetrical Componet Fauly calculation

Jul 05, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/16/2019 Symmetrical Componet Fauly calculation

    1/521

    1

    Hands-On Relay School

    Jon F. Daume

    Bonneville Power Administration

    March 14-15, 2011

    Theory TrackTransmission Protection Theory

    Symmetrical Components &Fault Calculations

  • 8/16/2019 Symmetrical Componet Fauly calculation

    2/521

    2

    Class Outline

    Power system troublesSymmetrical components

    Per unit system

    Electrical equipment impedances

    Sequence networks

    Fault calculations

  • 8/16/2019 Symmetrical Componet Fauly calculation

    3/521

    3

    Power System ProblemsFaults

    Equipment troubleSystem disturbances

  • 8/16/2019 Symmetrical Componet Fauly calculation

    4/521

    4

    Fault CausesLightning

    Wind and ice

    VandalismContamination

    External forces

    Cars, tractors, balloons, airplanes, trees, critters,flying saucers, etc.

    Equipment failures

    System disturbances

    Overloads, system swings

  • 8/16/2019 Symmetrical Componet Fauly calculation

    5/521

    5

  • 8/16/2019 Symmetrical Componet Fauly calculation

    6/521

    6

    Fault TypesOne line to ground (most common)

    Three phase (rare but most severe)

    Phase to phase

    Phase to phase to ground

  • 8/16/2019 Symmetrical Componet Fauly calculation

    7/521

    7

    Symmetrical

    Components

  • 8/16/2019 Symmetrical Componet Fauly calculation

    8/521

    8

    Balanced & Unbalanced SystemsBalanced System:

    3 Phase load3 Phase fault

    Unbalanced System:

    Phase to phase faultOne line to ground

    fault

    Phase to phase toground fault

    Open pole orconductor 

    Unbalanced load

  • 8/16/2019 Symmetrical Componet Fauly calculation

    9/521

    9

    Balanced & Unbalanced Systems

     A

    C

    B

    Balanced

    System

     A

    C

    BUnbalanced System

  • 8/16/2019 Symmetrical Componet Fauly calculation

    10/521

    10

    Sequence Currents for

    Unbalanced Network

    Ia2

    Ic2Ib2

    Negative Sequence

    Ic0Ib0

    Ia0

    Zero Sequence

    Ia1

    Ic1

    Ib1

    Positive Sequence

  • 8/16/2019 Symmetrical Componet Fauly calculation

    11/521

    11

    Sequence QuantitiesCondition + - 0

    3 Phase load   - -3 Phase fault   - -

    Phase to phase fault 

    -One line to ground fault  

    Two phase to ground fault  

    Open pole or conductor   

    Unbalanced load  

  • 8/16/2019 Symmetrical Componet Fauly calculation

    12/521

    12

    Phase Values From Sequence

    ValuesCurrents:

    I A = Ia0 + Ia1 + Ia2IB = Ib0 + Ib1 + Ib2

    IC = Ic0 + Ic1 + Ic2

    Voltages:

    V A = Va0 + Va1 + Va2

    VB = Vb0 + Vb1 + Vb2

    VC = Vc0 + Vc1 + Vc2

  • 8/16/2019 Symmetrical Componet Fauly calculation

    13/521

    13

    a Operator a = -0.5 + j √3= 1 ∠ 120°

    2a2 = -0.5 – j √3= 1 ∠ 240°

    2

    1 + a + a2 = 0

    1

    a

    a 2

  • 8/16/2019 Symmetrical Componet Fauly calculation

    14/521

    14

    Phase Values From Sequence

    ValuesCurrents:

    I A = Ia0 + Ia1 + Ia2IB = Ia0 + a

    2Ia1 + aIa2

    IC = Ia0 + aIa1 + a2Ia2

    Voltages:

    V A = Va0 + Va1 + Va2

    VB = Va0 + a2Va1 + aVa2

    VC = Va0 + aVa1 + a2Va2

  • 8/16/2019 Symmetrical Componet Fauly calculation

    15/521

    15

    Sequence Values From Phase

    ValuesCurrents:

    Ia0 = (I A + IB + IC)/3Ia1 = (I A + aIB + a

    2IC)/3

    Ia2 = (I A + a2IB + aIC)/3

    Voltages:

    Va0 = (V A + VB + VC)/3

    Va1 = (V A + aVB + a2VC)/3

    Va2 = (V A + a2VB + aVC)/3

  • 8/16/2019 Symmetrical Componet Fauly calculation

    16/521

    16

    Zero Sequence Filter 3Ia0 = Ig = Ir = I A + IB + IC

    and: 1 + a + a2

    = 0

    I A = Ia0 + Ia1 + Ia2

    +IB = Ia0 + a2Ia1 + aIa2

    +IC = Ia0 + aIa1 + a2Ia2

    = Ig = 3Iao + 0 + 0

  • 8/16/2019 Symmetrical Componet Fauly calculation

    17/521

    17

    Ia

    Ic

    Ib

    3I0 = Ia + Ib + Ic

    Zero Sequence Current Filter 

  • 8/16/2019 Symmetrical Componet Fauly calculation

    18/521

    18

    Zero Sequence Voltage Filter 

    3V0

    3 VO Polarizing Potential

    Ea Eb Ec

  • 8/16/2019 Symmetrical Componet Fauly calculation

    19/521

    19

    Negative Sequence Filter Some protective relays are designed to

    sense negative sequence currents and/or

    voltages

    Much more complicated than detecting zero

    sequence valuesMost modern numerical relays have negative

    sequence elements for fault detection

    and/or directional control

  • 8/16/2019 Symmetrical Componet Fauly calculation

    20/521

    20

    ExampleI A = 3 + j 4

    IB = -7 - j 2IC = -2 + j 7

    + j 

    - j 

    IA = 3+ j 4

    IB = -7- j 2

    IC = -2+ j 7

  • 8/16/2019 Symmetrical Componet Fauly calculation

    21/521

    21

    Zero SequenceIa0 = (I A + IB + IC)/3

    = [(3+ j 4)+(-7- j 2)+(-2+ j 7)]/3= -2 + j 3 = 3.61 ∠ 124°

    Ia0 = Ib0 = Ic0

    Ic0Ib0

    Ia0

    Zero Sequence

  • 8/16/2019 Symmetrical Componet Fauly calculation

    22/521

    22

    Positive SequenceIa1 = (I A + aIB + a

    2IC)/3

    = [(3+ j 4)+(-0.5+ j √3/2)(-7- j 2)+(-0.5- j √3/2)(-2+ j 7)]/3

    = [(3+ j 4)+(5.23- j5 .06)+(7.06- j 1.77)]/3

    = 5.10 - j 0.94 = 5.19 ∠ -10.5°

    Ib1 is rotated -120º Ic1 is rotated +120º

  • 8/16/2019 Symmetrical Componet Fauly calculation

    23/521

    23

    Positive Sequence

    Ia1

    Ic1

    Ib1

  • 8/16/2019 Symmetrical Componet Fauly calculation

    24/521

    24

    Negative SequenceIa2 = (I A + a

    2IB + aIC)/3

    = [(3+ j 4)+(-0.5- j √3/2)(-7- j 2)+(-0.5+ j √3/2)(-2+ j 7)]/3

    = [(3+ j 4)+(1.77+ j 7.06)+(-5.06- j 5.23)]/3

    = -0.1 + j 1.94 = 1.95 ∠ 92.9°

    Ib2 is rotated +120º Ic2 is rotated -120º

  • 8/16/2019 Symmetrical Componet Fauly calculation

    25/521

    25

    Negative Sequence

    Ia2

    Ic2Ib2

  • 8/16/2019 Symmetrical Componet Fauly calculation

    26/521

    26

    Reconstruct Phase Currents

    Ia

    Ic

    Ib

    Ic1

    Ib1

    Ia1

    Ib0

    Ia0

    Ic0

    Ia2

    Ib2

    Ic2

  • 8/16/2019 Symmetrical Componet Fauly calculation

    27/521

    27

    Positive, Negative, and ZeroSequence Impedance

    Network Calculations for aFault Study

  • 8/16/2019 Symmetrical Componet Fauly calculation

    28/521

    28

    +, -, 0 Sequence Networks

    Simple 2 Source Power System Example

    Fault

    1PU

    Z1

    I1

    Z2

    I2

    Z0

    I0

    V0

    -

    +

    V2

    -

    +

    V1

    -

    +

  • 8/16/2019 Symmetrical Componet Fauly calculation

    29/521

    29

    Impedance Networks & Fault TypeFault Type + - 0

    3 Phase fault 

    - -Phase to phase fault   -

    One line to ground fault  

    Two phase to ground fault  

  • 8/16/2019 Symmetrical Componet Fauly calculation

    30/521

    30

    Per Unit

  • 8/16/2019 Symmetrical Componet Fauly calculation

    31/521

    31

    Per UnitPer unit values are commonly used for fault

    calculations and fault study programs

    Per unit values convert real quantities to

    values based upon number 1

    Per unit values include voltages, currents andimpedances

    Calculations are easier 

    Ignore voltage changes due to transformers

    Ohms law still works

  • 8/16/2019 Symmetrical Componet Fauly calculation

    32/521

    32

    Per Unit

    Convert equipment impedances into per unit

    values

    Transformer and generator impedances are

    given in per cent (%)

    Line impedances are calculated in ohmsThese impedances are converted to per unit

    ohms impedance

  • 8/16/2019 Symmetrical Componet Fauly calculation

    33/521

    33

    Base kVA or MVA

     Arbitrarily selected

     All values converted to common KVA or MVABase

    100 MVA base is most often used

    Generator or transformer MVA rating may beused for the base

  • 8/16/2019 Symmetrical Componet Fauly calculation

    34/521

    34

    Base kV

    Use nominal equipment or line voltages

    765 kV 525 kV345 kV 230 kV

    169 kV 138 kV

    115 kV 69 kV

    34.5 kV 13.8 kV

    12.5 kV etc.

  • 8/16/2019 Symmetrical Componet Fauly calculation

    35/521

    35

    Base Ohms, Amps

    Base ohms:

    kV

    2

    1000 = kV

    2

     base kVA base MVA

    Base amps:

    base kVA = 1000 base MVA

    √3 kV √3 kV

  • 8/16/2019 Symmetrical Componet Fauly calculation

    36/521

    36

    Base Ohms, Amps (100 MVA Base)

    kV Base Ohms Base Amps

    525 2756.3 110.0

    345 1190.3 167.3

    230 529.0 251.0

    115 132.3 502.0

    69 47.6 836.7

    34.5 11.9 1673.513.8 1.9 4183.7

    12.5 1.6 4618.8

  • 8/16/2019 Symmetrical Componet Fauly calculation

    37/521

    37

    Conversions

    Percent to Per Unit:

    base MVA x % Z of equipment3φ MVA rating 100

    = Z pu Ω @ base MVA

    If 100 MVA base is used:

    % Z of equipment = Z pu Ω3φ MVA rating

  • 8/16/2019 Symmetrical Componet Fauly calculation

    38/521

    38

    Ohms to Per Unit

    pu Ohms = ohms / base ohms

    base MVA x ohms = puΩ

     @ base MVAkV2LL

  • 8/16/2019 Symmetrical Componet Fauly calculation

    39/521

    39

    Per Unit to Real Stuff 

     Amps = pu amps x base amps

    kV = pu kV x base kVOhms = pu ohms x base ohms

  • 8/16/2019 Symmetrical Componet Fauly calculation

    40/521

    40

    Converting Between Bases

    Znew = Zold x base MVAnew x kV2old

    base MVAold kV2new

    Evaluation of System

  • 8/16/2019 Symmetrical Componet Fauly calculation

    41/521

    41

    Evaluation of System

    ComponentsDetermine positive, negative, and zero

    sequence impedances of various devices

    (Z1, Z2, Z0)

    Only machines will act as a voltage source in

    the positive sequence networkConnect the various impedances into networks

    according to topography of the system

    Connect impedance networks for various fault

    types or other system conditions

  • 8/16/2019 Symmetrical Componet Fauly calculation

    42/521

    42

    Synchronous Machines

    ~

    Machine values:Machine reactances given in % of the

    machine KVA or MVA rating

    Ground impedances given in ohms

  • 8/16/2019 Symmetrical Componet Fauly calculation

    43/521

    43

    Synchronous Machines

    Machine values:

    Subtransient reactance (X"d)

    Transient reactance (X'd)

    Synchronous reactance (Xd)

    Negative sequence reactance (X2)

    Zero sequence reactance (X0)

  • 8/16/2019 Symmetrical Componet Fauly calculation

    44/521

    44

    Synchronous Machines

    Machine neutral ground impedance: Usually

    expressed in ohms

    Use 3R or 3X for fault calculations

    Calculations generally ignores resistance

    values for generatorsCalculations generally uses X”d for all

    impedance values

  • 8/16/2019 Symmetrical Componet Fauly calculation

    45/521

    45

    Generator Example

    Machine nameplate values:

    250 MVA, 13.8 kV

    X"d = 25% @ 250 MVA

    X'd = 30% @ 250 MVA

    Xd = 185% @ 250 MVA

    X2 = 25% @ 250 MVA

    X0 = 10% @ 250 MVA

  • 8/16/2019 Symmetrical Componet Fauly calculation

    46/521

    46

    Generator Example

    Convert machine reactances to per unit @common MVA base, (100):

    X"d = 25% / 250 = 0.1 pu

    X'd = 30% / 250 = 0.12 pu

    Xd = 185% / 250 = 0.74 puX2 = 25% / 250 = 0.1 pu

    X0 = 10% / 250 = 0.04 pu

    base MVA x % Z of equipment = Z pu Ω @ base MVA

    3φ MVA rating 100

  • 8/16/2019 Symmetrical Componet Fauly calculation

    47/521

    47

    Generator Example

    ~R1 jX1” = 0.1

    R0 jX0 = 0.04

    R2 jX2 = 0.1

  • 8/16/2019 Symmetrical Componet Fauly calculation

    48/521

    48

    Transformers

    Zx X

    Ze

    ZhH 1:N

    Vh

    Ih

    ZhxH

    X

    Equivalent Transformer - Impedance in %

    ZhxΩ = Vh /Ih = Zh + Zx /N2

    Zhx % = Vh /Ih x MVA/kV2 x 100

  • 8/16/2019 Symmetrical Componet Fauly calculation

    49/521

    49

    Transformers

    Impedances in % of the transformer MVA

    rating

    Convert from circuit voltage to tap voltage:

    %Xtap = %Xcircuit kV2circuit

    kV2tap

    f

  • 8/16/2019 Symmetrical Componet Fauly calculation

    50/521

    50

    Transformers

    Convert to common base MVA:

    %X @ base MVA =

    base MVA x %X of Transformer 

    MVA of Measurement

    %X of Transformer = pu X @ 100 MVA

    MVA of MeasurementX1 = X2 = X0 unless a special value is given for

    X0

    T f E l

  • 8/16/2019 Symmetrical Componet Fauly calculation

    51/521

    51

    Transformer Example

    250 MVA Transformer 

    13.8 kV Δ- 230 kV Yg

    10% Impedance @ 250 MVA

    X = 10% = 0.04 pu @ 100 MVA

    250

    X1 = X2 = X0 = X

     Assume R1, R2, R0 = 0

    T f E l

  • 8/16/2019 Symmetrical Componet Fauly calculation

    52/521

    52

    Transformer ExampleR1 jX1 = 0.04

    R0 jX0 = 0.04

    R2 jX2 = 0.04

    Zero sequence connection depends upon

    winding configuration.

  • 8/16/2019 Symmetrical Componet Fauly calculation

    53/521

    T f C ti

  • 8/16/2019 Symmetrical Componet Fauly calculation

    54/521

    54

    Transformer ConnectionsWinding Connection Sequence Network Connections

    Z1, Z2 Z0

    Z1, Z2 Z0

    Z1, Z2 Z0

    Z1, Z2 Z0

    D lt W T f

  • 8/16/2019 Symmetrical Componet Fauly calculation

    55/521

    55

    Delta Wye Transformer 

     A

    B

    C

    Ia

    Ic

    Ib

    IA

    IB

    IC

    nIA

    nIC

    3I0 = IA+IB+IC

    nIB

  • 8/16/2019 Symmetrical Componet Fauly calculation

    56/521

    Transformer Connections

  • 8/16/2019 Symmetrical Componet Fauly calculation

    57/521

    57

    Transformer Connections

     A YG / YG connection provides a series

    connection for zero sequence current

     A Δ / YG connection provides a zero sequence(I0) current source for the YG winding

     Auto transformer provides same connection asYG / YG connection

    Use 3R or 3X if a Y is connected to ground

    with a resistor or reactor 

    Three Winding Transformer

  • 8/16/2019 Symmetrical Componet Fauly calculation

    58/521

    58

    Three Winding Transformer 

    Impedances ZHL, ZHM, & ZML given in % at

    corresponding winding rating

    Convert impedances to common base MVA

    Calculate corresponding “T” network

    impedances:ZH = (ZHL+ ZHM - ZML)/2

    ZM

    = (- ZHL

    + ZHM

    + ZML

    )/2

    ZL = (ZHL- ZHM + ZML)/2

    “T” Network

  • 8/16/2019 Symmetrical Componet Fauly calculation

    59/521

    59

    T  Network

    Calculate corresponding “T” network

    impedances:

    ZH = (ZHL+ ZHM - ZML)/2

    ZM = (- ZHL+ ZHM + ZML)/2

    ZL = (ZHL- ZHM + ZML)/2ZHL= ZH + ZL

    ZHM = ZH + ZMZML= ZM+ ZL

    ZH ZM

    ZL

    Transformer Example

  • 8/16/2019 Symmetrical Componet Fauly calculation

    60/521

    60

    Transformer Example

    230 kV YG/115 kV YG/13.2 kV Δ

    Nameplate Impedances

    ZHL= 5.0% @ 50 MVA

    ZHM = 5.75% @ 250 MVA

    ZML = 3.15% @ 50 MVA

    Transformer Example

  • 8/16/2019 Symmetrical Componet Fauly calculation

    61/521

    61

    Transformer Example

    Convert impedances to per unit @ common

    MVA Base (100)

    ZHL= 5.0% @ 50 MVA = 5.0 / 50

    = 0.10 pu

    ZHM = 5.75% @ 250 MVA = 5.75 / 250= 0.023 pu

    ZML = 3.15% @ 50 MVA = 3.15 / 50= 0.063 pu

  • 8/16/2019 Symmetrical Componet Fauly calculation

    62/521

    Transformer Example

  • 8/16/2019 Symmetrical Componet Fauly calculation

    63/521

    63

    Transformer Example

    0.03 -0.007

    0.07

    H M 0.03 -0.007

    0.07

    H M

    LL

    H, 230 kV L, 13.8 kV M, 115 kV

    +, - Sequence 0 Sequence

  • 8/16/2019 Symmetrical Componet Fauly calculation

    64/521

    Problem

    Calculate pu impedances for generators and

    transformers

    Use 100 MVA baseIgnore all resistances

    Problem

  • 8/16/2019 Symmetrical Componet Fauly calculation

    65/521

    65

    Problem

    Fault

    13.8 kV 13.8 kV230 kV230 kV

    115 kV

    Problem - Generator Data

  • 8/16/2019 Symmetrical Componet Fauly calculation

    66/521

    66

    Problem Generator Data

    Machine nameplate values:

    300 MVA Nameplate rating

    X"d = 25% @ 300 MVA

    X'd = 30% @ 300 MVA

    Xd = 200% @ 300 MVAX2 = 25% @ 300 MVA

    X0 = 10% @ 300 MVA

    Left generator: 13.8 kVRight generator: 115 kV

    Problem - Transformer Data

  • 8/16/2019 Symmetrical Componet Fauly calculation

    67/521

    67

    Problem Transformer Data

    Two winding transformer nameplate values

    300 MVA Transformer 

    13.8 kV Δ- 230 kV Yg10% Impedance @ 300 MVA

    Three winding transformer nameplate values

    230 kV Yg/115 kV Yg/13.8 kV ΔZ

    HL

    = 5.0% @ 50 MVA (230 kV – 13.8 kV)

    ZHM = 6.0% @ 300 MVA (230 kV –115 kV)

    ZML = 3.2% @ 50 MVA (115 kV – 13.8 kV)

    Transmission Lines

  • 8/16/2019 Symmetrical Componet Fauly calculation

    68/521

    68

    Transmission Lines

    R jX

    Positive & Negative Sequence

  • 8/16/2019 Symmetrical Componet Fauly calculation

    69/521

    69

    Line Impedance

    Z1 = Z2 = Ra + j 0.2794 f   log GMDsep60 GMRcond

    or 

    Z1 = Ra + j (Xa + Xd) Ω/mile

    Ra and Xa from conductor tables

    Xd = 0.2794 f log GMD

    60

  • 8/16/2019 Symmetrical Componet Fauly calculation

    70/521

    70

    Positive & Negative SequenceLine Impedancef = system frequency

    GMDsep = Geometric mean distance

    between conductors = 3√(dabdbcdac) where

    dab, dac, dbc = spacing between conductorsin feet

    GMRcond = Geometric mean radius of

    conductor in feetRa = conductor resistance, Ω/mile

    Zero Sequence Line Impedance

  • 8/16/2019 Symmetrical Componet Fauly calculation

    71/521

    71

    q p

    Z0 = Ra + Re +

     j 0.01397 f log De _______ 3√(GMRcond GMDsep2)

    or 

    Z0 = Ra + Re + j (Xa + Xe - 2Xd) Ω/mile

    Zero Sequence Line Impedance

  • 8/16/2019 Symmetrical Componet Fauly calculation

    72/521

    72

    q p

    Re = 0.2862 for a 60 Hz. system. Re does

    not vary with ρ.

    De = 2160 √(ρ /f) = 2788 @ 60 Hz.

    ρ = Ground resistivity, generally assumed to

    be 100 meter ohms.Xe = 2.89 for 100 meter ohms average

    ground resistivity.

    Transmission Lines

  • 8/16/2019 Symmetrical Componet Fauly calculation

    73/521

    73

    Ra j(Xa+Xd)

    Ra+Re j(Xa+Xe-2Xd)

    Ra j(Xa+Xd)

    Z1

    Z2

    Z0

    Transmission Line Example

  • 8/16/2019 Symmetrical Componet Fauly calculation

    74/521

    74

    p

    230 kV Line

    50 Miles long

    1272 kcmil ACSR Pheasant Conductor 

    Ra = 0.0903 Ω /mile @ 80° C

    Xa = 0.37201 Ω /mileGMR = 0.0466 feet

    Structure: horizontal “H” frame

    Transmission Line Example

  • 8/16/2019 Symmetrical Componet Fauly calculation

    75/521

    75

    pStructure “H” frame:

    GMD = 3√(dabdbcdac) =3√(23x23x46)

    = 28.978 feet

    Xd = 0.2794 f log GMD60

    = 0.2794 log 28.978 = 0.4085Ω

     /mile

     A CB

    23 Feet 23 FeetJ6 Configuration

    Transmission Line Example

  • 8/16/2019 Symmetrical Componet Fauly calculation

    76/521

    76

    p

    Z1 = Z2 = Ra + j (Xa + Xd)

    = 0.0903 + j (0.372 + 0.4085)

    = 0.0903 + j 0.781 Ω /mileZ1 Line = 50(0.0903 + j 0.781)

    = 4.52 + j 39.03 Ω = 39.29 Ω ∠ 83.4 °

    Per unit @ 230 kV, 100 MVA Basebase MVA x ohms = pu Ω @ base MVA

    kV2LL

    Z1 Line = (4.52 + j 39.03)100/2302

    = 0.0085 + j 0.0743 pu

    Transmission Line Example

  • 8/16/2019 Symmetrical Componet Fauly calculation

    77/521

    77

    Z0 = Ra + Re + j (Xa + Xe – 2Xd) = 0.0903

    + 0.286+ j (0.372 + 2.89 - 2 x0.4085)

    = 0.377 + j 2.445 Ω /mileZ0 Line = 50(0.377 + j 2.445)

    = 18.83 + j 122.25Ω

     = 123.69Ω

     ∠ 81.2 °

    Per unit @ 230 kV, 100 MVA Base

    Z0 Line = (18.83 + j 122.25)100/2302

    = 0.0356 + j 0.2311 pu

    Transmission Line Example

  • 8/16/2019 Symmetrical Componet Fauly calculation

    78/521

    78

    Z1

    Z2

    Z0

    0.0085 j0.0743

    0.0356 j0.2311

    0.0085 j0.0743

    Long Parallel Lines

  • 8/16/2019 Symmetrical Componet Fauly calculation

    79/521

    79

    Mutual impedance between lines

    Mutual Impedance

  • 8/16/2019 Symmetrical Componet Fauly calculation

    80/521

    80

    Result of coupling between parallel lines

    Only affects Zero sequence network

    Will affect ground fault magnitudes

    Will affect ground current flow in lines

    Line #1

    Line #2

    3I0, Line #1

    3I0, Line #2

    Mutual Impedance

  • 8/16/2019 Symmetrical Componet Fauly calculation

    81/521

    81

    ZM = Re + j 0.838 log De   Ω/mile

    GMDcircuits

    or

    ZM = Re + j (Xe − 3Xd circuits) Ω/mile

    Re = 0.2862 @ 60 Hz

    De = 2160 √(ρ /f) = 2788 @ 60 Hz

    Xe = 2.89 for 100 meter ohms averageground resistivity

    Mutual Impedance

  • 8/16/2019 Symmetrical Componet Fauly calculation

    82/521

    82

    GMDcircuits is the ninth root of all possible

    distances between the six conductors,

    approximately equal to center to centerspacing

    GMDcircuits =

    9√(da1a2da1b2da1c2db1a2db1b2db1c2dc1a1dc1b2dc1c2)

    Xd circuits = 0.2794 log GMDcircuits

    Mutual Impedance Example

  • 8/16/2019 Symmetrical Componet Fauly calculation

    83/521

    83

     A CB

    23 Feet 23 Feet

     A CB

    23 Feet 23 Feet

    Circuit #1 Circuit #2

    46 Feet

    46 Feet

    92 Feet

    69 Feet

    69 Feet

    92 Feet

    115 Feet

    138 Feet

    115 Feet

    92 Feet

    Mutual Impedance Example

  • 8/16/2019 Symmetrical Componet Fauly calculation

    84/521

    84

    GMDcircuits =9√(da1a2da1b2da1c2db1a2db1b2db1c2dc1a1dc1b2dc1c2) =

    9√(92x115x138x69x92x115x46x69x92)= 87.84 feet

    Xd circuits = 0.2794 log GMDcircuits

    = 0.2794 log 87.84 = 0.5431 Ω/mileZM = Re + j (Xe − 3Xd circuits)

    = 0.2862 + j (2.89 - 3x0.5431)

    = 0.2862 + j 1.261 Ω/mile(Z 0 = 0.377 + j 2.445 Ω /mile)

    Mutual Impedance Model

  • 8/16/2019 Symmetrical Componet Fauly calculation

    85/521

    85

    Bus 1 Bus 2

    Z0 Line 1

    Z0 Line 2

    ZM

    Bus 1 Bus 2Z02 - ZM

    Z01- ZM

    ZM

    Mutual Impedance Model

  • 8/16/2019 Symmetrical Componet Fauly calculation

    86/521

    86

    Model works with at least 1 common bus

    ZM  Affects zero sequence network only

    ZM For different line voltages:

    pu Ohms = ohms x base MVAkV1 x kV2

    Mutual impedance calculations and modelingbecome much more complicated with larger

    systems

  • 8/16/2019 Symmetrical Componet Fauly calculation

    87/521

    Problem

  • 8/16/2019 Symmetrical Componet Fauly calculation

    88/521

    88

    Calculate Z1 and Z0 pu impedances for a

    transmission line

    Calculate R1, Z1, R0 and Z0

    Calculate Z1 and Z0 and the angles for Z1and Z0

    Calculate Z0 mutual impedance between

    transmission linesUse 100 MVA base and 230 kV base

    Problem

  • 8/16/2019 Symmetrical Componet Fauly calculation

    89/521

    89

    Fault

    13.8 kV 13.8 kV230 kV230 kV

    115 kV

    Transmission Line Data

  • 8/16/2019 Symmetrical Componet Fauly calculation

    90/521

    90

    2 Parallel 230 kV Lines

    60 Miles long

    1272 kcmil ACSR Pheasant conductor Ra = 0.0903 Ω /mile @ 80° C

    Xa = 0.37201 Ω /mile

    GMR = 0.0466 feetH frame structure - flat, 23 feet between

    conductors

    Spacing between circuits = 92 feet centerline tocenterline

  • 8/16/2019 Symmetrical Componet Fauly calculation

    91/521

    91

    Fault Calculations andImpedance Network

    Connections

    Why We Need Fault Studies

  • 8/16/2019 Symmetrical Componet Fauly calculation

    92/521

    92

    Relay coordination and settings

    Determine equipment ratings

    Determine effective grounding of system

    Substation ground mat design

    Substation telephone protectionrequirements

    Locating faults

    Fault Studies

  • 8/16/2019 Symmetrical Componet Fauly calculation

    93/521

    93

    Fault Types:

    3 Phase

    One line to ground

    Phase to phase

    Phase to phase to ground

    Fault Locations:

    Bus fault

    Line endLine out fault (bus fault with line open)

    Intermediate faults on transmission line

    Fault Study Assumptions

  • 8/16/2019 Symmetrical Componet Fauly calculation

    94/521

    94

    Ignore loads

    Use generator X”d

    Generator X2 equal X”d

    Ignore generator resistance

    Ignore transformer resistance0 Ω Fault resistance assumed

    Negative sequence impedance = positivesequence impedance

    Positive Sequence Network

  • 8/16/2019 Symmetrical Componet Fauly calculation

    95/521

    95

    Z1sl Z1tl Z1Ll Z1Lr Z1sr 

    Z1h Z1m

    Z1l

    V1=1-I1Z1+

    Vl = 1 Vr = 1

    I1

    Fault

    Negative Sequence Network

  • 8/16/2019 Symmetrical Componet Fauly calculation

    96/521

    96

    Z2sl Z2tl Z2Ll Z2Lr Z2sr 

    Z2h Z2m

    Z2lV2= -I2Z2

    +

    I2

    Fault

    Zero Sequence Network

  • 8/16/2019 Symmetrical Componet Fauly calculation

    97/521

    97

    Z0sl Z0tl Z0Ll Z0Lr Z0sr 

    Z0h Z0m

    Z0l

    V0= -I0Z0+

    I0

    Fault

    Network Reduction

  • 8/16/2019 Symmetrical Componet Fauly calculation

    98/521

    98

    Simple 2 Source Power System Example

    Fault

    1PU

    Z1

    I1

    Z2

    I2

    Z0

    I0

    V0

    -

    +

    V2

    -

    +

    V1

    -

    +

    Three Phase Fault

  • 8/16/2019 Symmetrical Componet Fauly calculation

    99/521

    99

    Only positive sequence impedance network

    usedNo negative or zero sequence currents or

    voltages

    Simple 2 Source Power System Example

    Fault

    Three Phase Fault

    +++

  • 8/16/2019 Symmetrical Componet Fauly calculation

    100/521

    100

    1PU

    Z1

    0.084

    I1=11.9 I2=0 I0=0

    V0

    -

    +

    V2

    -

    +

    V1

    -

    +

    Z0

    0.081

    Z2

    0.084

    Three Phase Fault

  • 8/16/2019 Symmetrical Componet Fauly calculation

    101/521

    101

    Simple 2 Source Power System Example

    Fault

    Z1sl Z1tl Z1Ll Z1Lr Z1sr 

    Z1h Z1m

    Z1lV1=1-I1Z1

    +

    Vl = 1 Vr = 1

    Sequence Network Connection for 3 Phase Fault

    I1

    0.1 0.0370.04 0.037 0.1

    0.03

    0.07

    -0.007

    Three Phase Fault

  • 8/16/2019 Symmetrical Componet Fauly calculation

    102/521

    102

    Positive Sequence Network Reduced

    Simple 2 Source Power System Example

    Fault

    V1=1-I1Z1+

    Vl = 1 Vr = 1

    I1

    0.177 0.160

    Three Phase Fault VectorsIc

  • 8/16/2019 Symmetrical Componet Fauly calculation

    103/521

    103

    Va

    Vc

    Vb

    Ia

    Ib

    Three Phase Fault

    MVA = MVA

  • 8/16/2019 Symmetrical Componet Fauly calculation

    104/521

    104

    MVAFault = MVABase

    ZFault pu

    or 

    I pu Fault current = 1 pu ESource

    ZFault pu

    Three Phase Fault

    I = E / Z = 1 / Z

  • 8/16/2019 Symmetrical Componet Fauly calculation

    105/521

    105

    I1 = E / Z1 = 1 / Z1

    I2 = I0 = 0

    I A = I1 + I2 + I0 = I1

    IB = a2I1

    IC = aI1V1 = 1 – I1Z1 = 0

    V2

    = 0, V0

    = 0

    V A = VB = VC = 0

    Phase to Phase Fault

  • 8/16/2019 Symmetrical Componet Fauly calculation

    106/521

    106

    Positive and negative sequence impedance

    networks connected in parallelNo zero sequence currents or voltages

    Simple 2 Source Power System Example

    Fault

    Phase to Phase Fault

  • 8/16/2019 Symmetrical Componet Fauly calculation

    107/521

    107

    1PU

    Z1

    I1

    Z2

    I2

    Z0

    I0

    V0

    -

    +

    V2

    -

    +

    V1

    -

    +

    Phase to Phase Fault

    Fault

  • 8/16/2019 Symmetrical Componet Fauly calculation

    108/521

    108

    Z2sl Z2tl Z2Ll Z2Lr Z2sr 

    Z2h Z2m

    Z2l

    V2= -I2Z2+

    I2 = -I1

    Z1sl Z1tl Z1Ll Z1Lr Z1sr 

    Z1h Z1m

    Z1l

    V1=1-I1Z1

    I1

    +

    Vl = 1 Vr = 1

    Sequence Network Connection for Phase to Phase Fault

    Fault

    Phase to Phase Fault Vectors

  • 8/16/2019 Symmetrical Componet Fauly calculation

    109/521

    109

    Va

    Vc

    Vb

    Ic

    Ib

    Phase to Phase FaultI1 = - I2 = E = 1 I0 = 0

  • 8/16/2019 Symmetrical Componet Fauly calculation

    110/521

    110

    I1 I2 E ___1___ I0 0

    (Z1 + Z2) (Z1 + Z2)

    I A = I0 + I1 + I2 = 0

    IB = I0 + a2I1 + aI2 = a

    2I1 - aI1

    IB = (a2 - a) E = _- j √3 E_ = - j 0.866 E(Z1 + Z2) (Z1 + Z2) Z1

    IC

    = - IB

    (assume Z 1 = Z 2  )

    Phase to Phase FaultV1 = E - I1Z1 = 1 - I1Z1

  • 8/16/2019 Symmetrical Componet Fauly calculation

    111/521

    111

    V1 E I1Z1 1 I1Z1

    V2 = - I2Z2 = V1

    V0 = 0

    V A = V1 + V2 + V0 = 2 V1

    VB = V0 + a2

    V1 + aV2 = a2

    V1 + aV1 = -V1VC = -V1

    Phase to phase fault = 86.6%3 phase fault

    Single Line to Ground Fault

  • 8/16/2019 Symmetrical Componet Fauly calculation

    112/521

    112

    Positive, negative and zero sequence

    impedance networks connected in series

    Simple 2 Source Power System Example

    Fault

    Single Line to Ground Fault

    +++

  • 8/16/2019 Symmetrical Componet Fauly calculation

    113/521

    113

    1PU

    Z1

    .084

    I0=4.02

    V0

    -

    +

    V2

    -

    +

    V1

    -

    +

    Z2

    .084

    Z0

    .081

    I2=4.02I1=4.02

    Single Line to Ground Fault

    Z l Z tl Z Ll Z L ZZ1l

    V1=1-I1Z1+

    Vl = 1 Vr = 10.07

  • 8/16/2019 Symmetrical Componet Fauly calculation

    114/521

    114

    Z2sl Z2tl Z2Ll Z2Lr Z2sr 

    Z2h Z2m

    Z2l

    V2= -I2Z2+

    Z0sl Z0tl Z0Ll Z0Lr Z0sr 

    Z0h Z0m

    Z0l

    V0= -I0Z0+

    Z1sl Z1tl Z1Ll Z1Lr Z1sr 

    Z1h Z1mI1

    I2

    I0

    Sequence Network Connection for One Line to Ground Fault

    I1 = I2 = I0

    0.1 0.0370.04 0.037 0.1

    0.03 -0.007

    0.04 0.1160.04 0.116 0.04

    0.03

    0.07

    -0.007

    0.1 0.0370.04 0.037 0.10.03

    0.07

    -0.007

    Single Line to Ground Fault VectorsVc

  • 8/16/2019 Symmetrical Componet Fauly calculation

    115/521

    115

    Va

    Vb Ia

    Single Line to Ground Fault

    I1 = I2 = I0 = E = 1   

  • 8/16/2019 Symmetrical Componet Fauly calculation

    116/521

    116

    1 2 0 ____ _____ ____ _____

    (Z1 + Z2 + Z0) (Z1 + Z2 + Z0)

    I A = I1 + I2 + I0 = 3 I0

    IB = I0 + a2I1 + aI2 = I0 + a

    2I0 + aI0 = 0

    IC = 0

    I Ground = I Residual = 3I0

    Single Line to Ground Fault

    V1 = E - I1Z1 = 1 - I1Z1

  • 8/16/2019 Symmetrical Componet Fauly calculation

    117/521

    117

    1 1 1 1 1

    V2 = - I2Z2

    V0 = - I0Z0

    V A = V1 + V2 + V0 = 0

    VB = V0 + a2

    V1 + aV2 = (Z1 - Z0 ) + a2

    (Z0+Z1+Z1)

    VC

    = V0

    + aV1

    + a2V2

    = (Z1

    - Z0

    ) + a

    (assumes Z 1 = Z 2  ) (Z0+Z1+Z1)

    Two Phase to Ground Fault

  • 8/16/2019 Symmetrical Componet Fauly calculation

    118/521

    118

    Positive, negative and zero sequence

    impedance networks connected in parallel

    Simple 2 Source Power System Example

    Fault

    Two Phase to Ground Fault

    +++

  • 8/16/2019 Symmetrical Componet Fauly calculation

    119/521

    119

    1PU

    Z1

    I1

    Z2

    I2

    Z0

    I0

    V0

    -

    V2

    -

    V1

    -

  • 8/16/2019 Symmetrical Componet Fauly calculation

    120/521

    Two Phase to Ground Fault Vectors

    Ic

  • 8/16/2019 Symmetrical Componet Fauly calculation

    121/521

    121

    Va

    Vc

    Vb

    Ib

    Other Conditions

    Fault calculations and symmetrical

  • 8/16/2019 Symmetrical Componet Fauly calculation

    122/521

    122

    components can also be used to evaluate:

    Open pole or broken conductor Unbalanced loads

    Load included in fault analysis

    Transmission line fault location

    For these other network conditions, refer to

    references.

    References

    Circuit Analysis of AC Power Systems, Vol. 1 &2, Edith Clarke

  • 8/16/2019 Symmetrical Componet Fauly calculation

    123/521

    123

    , d C a e

    Electrical Transmission and Distribution

    Reference Book, Westinghouse Electric Co.,

    East Pittsburgh, Pa.

    Symmetrical Components, Wagner and Evans,McGraw-Hill Publishing Co.

    Symmetrical Components for Power Systems

    Engineering, J. Lewis Blackburn, MarcelDekker, Inc.

  • 8/16/2019 Symmetrical Componet Fauly calculation

    124/521

    124

    The end

    Jon F. DaumeBonneville Power Administration

    Retired!

    Theory Track

    Transmission Protection TheoryTransmission System

  • 8/16/2019 Symmetrical Componet Fauly calculation

    125/521

    1

    Hands-On Relay School

    Jon F. DaumeBonneville Power Administration

    March 14-15, 2011

    Transmission System

    Protection

    Discussion Topics• Protection overview

    • Transmission line protectionPh d d f lt t ti

  • 8/16/2019 Symmetrical Componet Fauly calculation

    126/521

    2

     – Phase and ground fault protection

     – Line differentials

     – Pilot schemes

     – Relay communications

     – Automatic reclosing

    • Breaker failure relays• Special protection or remedial action schemes

    Power Transfer 

    Vs VrX

  • 8/16/2019 Symmetrical Componet Fauly calculation

    127/521

    3

    Power Transfer 

    0

    0.5

    1

    0 30 60 90 120 150 180

     Angle Delta

       T  r  a  n  s  m   i   t   t  e   d   P  o  w

      e  r

    P = Vs Vr sin / X

    Increase Power Transfer 

    • Increase transmission system operating

    voltage

  • 8/16/2019 Symmetrical Componet Fauly calculation

    128/521

    4

    voltage

    • Increase angle δ• Decrease X

     – Add additional transmission lines

     – Add series capacitors to existing lines

  • 8/16/2019 Symmetrical Componet Fauly calculation

    129/521

    5

    Power Transfer During Faults

    Power Transfer 

    1.2

  • 8/16/2019 Symmetrical Componet Fauly calculation

    130/521

    6

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 30 60 90 120 150 180

     Angle Del ta

       T  r  a  n  s

      m   i   t   t  e   d   P  o  w  e

      r

    Normal

    1LG

    LL

    LLG

    3 Phase

    Vs Vr

  • 8/16/2019 Symmetrical Componet Fauly calculation

    131/521

    7

    Power Transfer 

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 30 60 90 120 150 180

     Angle Delta

          P    o    w    e

        r

    BP1

    3

    21

    P2

    6

    4

    5

     A

    System Stability

    • Relay operating speed

    • Circuit breaker opening speed

  • 8/16/2019 Symmetrical Componet Fauly calculation

    132/521

    8

    • Circuit breaker opening speed

    • Pilot tripping• High speed, automatic reclosing

    • Single pole switching

    • Special protection or remedial action

    schemes

    IEEE Device Numbers

    Numbers 1 - 97 used

    21 Distance relay

  • 8/16/2019 Symmetrical Componet Fauly calculation

    133/521

    9

    21 Distance relay

    25 Synchronizing or synchronism checkdevice

    27 Undervoltage relay

    32 Directional power relay43 Manual transfer or selector device

    46 Reverse or phase balance current relay

    50 Instantaneous overcurrent or rate of riserelay (fixed time overcurrent)

    (IEEE C37.2)

    51 AC time overcurrent relay52 AC circuit breaker 

    59 O lt l

    IEEE Device Numbers

  • 8/16/2019 Symmetrical Componet Fauly calculation

    134/521

    10

    59 Overvoltage relay

    62 Time delay stopping or opening relay63 Pressure switch

    67 AC directional overcurrent relay

    79 AC reclosing relay

    81 Frequency relay

    86 Lock out relay87 Differential relay

    (IEEE C37.2)

    Relay Reliability

    • Overlapping protection

    – Relay systems are designed with a high level

  • 8/16/2019 Symmetrical Componet Fauly calculation

    135/521

    11

      Relay systems are designed with a high level

    of dependability

     – This includes redundant relays

     – Overlapping protection zones

    • We will trip no line before its time – Relay system security is also very important

     – Every effort is made to avoid false trips

    Relay Reliability

    • Relay dependability (trip when required)

    – Redundant relays

  • 8/16/2019 Symmetrical Componet Fauly calculation

    136/521

    12

      Redundant relays

     – Remote backup – Dual trip coils in circuit breaker 

     – Dual batteries

     – Digital relay self testing – Thorough installation testing

     – Routine testing and maintenance

     – Review of relay operations

    Relay Reliability

    • Relay security (no false trip)

     – Careful evaluation before purchase

  • 8/16/2019 Symmetrical Componet Fauly calculation

    137/521

    13

    p

     – Right relay for right application – Voting

    • 2 of 3 relays must agree before a trip

     – Thorough installation testing – Routine testing and maintenance

     – Review of relay operations

  • 8/16/2019 Symmetrical Componet Fauly calculation

    138/521

    14

    Transmission

    Line Protection

    Western Transmission System

    Voltage, kV Northwest WECC

    115 - 161 27400 miles 48030 miles

  • 8/16/2019 Symmetrical Componet Fauly calculation

    139/521

    15

    Northwest includes Oregon, Washington, Idaho,

    Montana, northern Nevada, Utah, British Columbia

    and Alberta.WECC is Western Electricity Coordinating Council

    which includes states and provinces west of Rocky

    Mountains.

    230 20850 miles 41950 miles

    287 - 345 4360 miles 9800 miles

    500 9750 miles 16290 miles

    260 - 500 DC 300 miles 1370 miles

    Transmission Line Impedance

    • Z ohms/mile = Ra + j (Xa + Xd)

    • R X function of conductor type length

  • 8/16/2019 Symmetrical Componet Fauly calculation

    140/521

    16

    Ra, Xa function of conductor type, length

    • Xd function of conductor spacing, length

    Ra j(Xa+Xd)

    Line Angles vs. Voltage

    Z = √[Ra2 + j(Xa+Xd)2]

    ∠θ ° = tan-1 (X/R)

  • 8/16/2019 Symmetrical Componet Fauly calculation

    141/521

    17

    ( )

    Voltage Level Line Angle (∠θ °)7.2 - 23 kV 20 - 45 deg.

    23 - 69 kV 45 - 75 deg.

    69 - 230 kV 60 - 80 deg.

    230 - 765 kV 75 - 89 deg.

    Typical Line Protection

  • 8/16/2019 Symmetrical Componet Fauly calculation

    142/521

    18

  • 8/16/2019 Symmetrical Componet Fauly calculation

    143/521

    19

    Distance Relays

    (21, 21G)

  • 8/16/2019 Symmetrical Componet Fauly calculation

    144/521

    CT & PT Connections

    V Phase

  • 8/16/2019 Symmetrical Componet Fauly calculation

    145/521

    21

    21

    67N

    I Phase

    3I0 = Ia + Ib + Ic 3V0

    I Polarizing

    Instrument Transformers

    • Zsecondary = Zprimary x CTR / VTR• The PT location determines the point from

    which impedance is measured

  • 8/16/2019 Symmetrical Componet Fauly calculation

    146/521

    22

    which impedance is measured

    • The CT location determines the faultdirection

     – Very important consideration for • Transformer terminated lines

    • Series capacitors

    • Use highest CT ratio that will work tominimize CT saturation problems

    Saturated CT Current

    100

    150

  • 8/16/2019 Symmetrical Componet Fauly calculation

    147/521

    23

    -100

    -50

    0

    50

    -0.017 0.000 0.017 0.033 0.050 0.0

    Original Distance Relay

    • True impedance characteristic – Circular characteristic concentric to RX axis

  • 8/16/2019 Symmetrical Componet Fauly calculation

    148/521

    24

    • Required separate directional element• Balance beam construction

     – Similar to teeter totter 

     – Voltage coil offered restraint

     – Current coil offered operation

    • Westinghouse HZ – Later variation allowed for an offset circle

    Impedance Characteristic

    X

  • 8/16/2019 Symmetrical Componet Fauly calculation

    149/521

    25

    R

    Directional

    mho Characteristic

    • Most common distance element in use• Circular characteristic

    Passes through RX origin

  • 8/16/2019 Symmetrical Componet Fauly calculation

    150/521

    26

     – Passes through RX origin

     – No extra directional element required

    • Maximum torque angle, MTA, usually setat line angle, ∠θ ° – MTA is diameter of circle

    • Different techniques used to provide full

    fault detection depending on relay type – Relay may also provide some or full

    protection for ground faults

    3 Zone mho Characteristic

    X

    Zone 3

  • 8/16/2019 Symmetrical Componet Fauly calculation

    151/521

    27

    R

    Zone 1

    Zone 2

    3 Zone Distance Elements Mho Characteristic

    Typical Reaches

    %

  • 8/16/2019 Symmetrical Componet Fauly calculation

    152/521

    28

    21 Zone 1 85-90%

    21 Zone 2 125-180%, Time Delay Trip

    21 Zone 3 150-200%, Time Delay Trip

    Typical Relay Protection Zones

    67 Ground Instantaneous Overcurrent

    67 Ground Time Overcurrent

    67 Ground Time Permissive Transfer Trip Overcurrent

    Coordination Considerations,

    Zone 1• Zone 1

     – 80 to 90% of Line impedance

    Account for possible errors

  • 8/16/2019 Symmetrical Componet Fauly calculation

    153/521

    29

     – Account for possible errors

    • Line impedance calculations

    • CT and PT Errors

    • Relay inaccuracy

     – Instantaneous trip

    Coordination Considerations

    • Zone 2 – 125% or more of line impedance

    • Consider strong line out of service

  • 8/16/2019 Symmetrical Componet Fauly calculation

    154/521

    30

    g

    • Consider lengths of lines at next substation – Time Delay Trip

    • > 0.25 seconds (15 cycles)

    • Greater than BFR clearing time at remote bus• Must be slower if relay overreaches remote zone

    2’s.

     – Also consider load encroachment

     – Zone 2 may be used with permissiveoverreach transfer trip w/o time delay

    Coordination Considerations

    • Zone 3 – Greater than zone 2

    • Consider strong line out of service

  • 8/16/2019 Symmetrical Componet Fauly calculation

    155/521

    31

    • Consider strong line out of service

    • Consider lengths of lines at next substation

     – Time Delay Trip

    • > 1 second

    • Greater than BFR clearing time at remote bus

    • Must be longer if relay overreaches remote zone

    3’s.

     – Must consider load encroachment

    Coordination Considerations

    • Zone 3 Special Applications – Starter element for zones 1 and 2

    Provides current reversal logic for permissive

  • 8/16/2019 Symmetrical Componet Fauly calculation

    156/521

    32

     – Provides current reversal logic for permissive

    transfer trip (reversed)

     – May be reversed to provide breaker failure

    protection

     – Characteristic may include origin for current

    only tripping

     – May not be used

    Problems for Distance Relays

    • Fault in front of relay

    • Apparent Impedance

  • 8/16/2019 Symmetrical Componet Fauly calculation

    157/521

    33

    • Load encroachment• Fault resistance

    • Series compensated lines

    • Power swings

    3 Phase Fault in Front of Relay

    • No voltage to make impedancemeasurement-use a potential memory

    circuit in distance relay

  • 8/16/2019 Symmetrical Componet Fauly calculation

    158/521

    34

    circuit in distance relay

    • Use a non-directional, instantaneous

    overcurrent relay (50-Dead line fault relay)

    • Utilize switch into fault logic – Allow zone 2 instantaneous trip

     Apparent Impedance• 3 Terminal lines with apparent

    impedance

    • Fault resistance also looks like anapparent impedance

  • 8/16/2019 Symmetrical Componet Fauly calculation

    159/521

    35

    apparent impedance

    • Most critical with very short orunbalanced legs

    • Results in – Short zone 1 reaches

     – Long zone 2 reaches and time delays

    • Pilot protection may be required

     Apparent Impedance

    Bus A Bus BZa = 1 ohm

    Ia = 1

    Zb = 1

    Ib = 1

  • 8/16/2019 Symmetrical Componet Fauly calculation

    160/521

    36

    Z apparent @

    Bus A = Za +ZcIc/Ia

    = 3 Ohms

     Apparent Impedance

    Ic = Ia + Ib = 2 Zc = 1

    Bus C

    Coordination Considerations

    • Zone 1 – Set to 85 % of actual impedance to nearest

    terminal

  • 8/16/2019 Symmetrical Componet Fauly calculation

    161/521

    37

    • Zone 2

     – Set to 125 + % of apparent impedance to

    most distant terminal – Zone 2 time delay must coordinate with all

    downstream relays

    • Zone 3 – Back up for zone 2

    Load Encroachment

    • Z Load = kV2

    / MVA – Long lines present biggest challenge

     – Heavy load may enter relay characteristic

  • 8/16/2019 Symmetrical Componet Fauly calculation

    162/521

    38

    • Serious problem in August, 2003 East

    Coast Disturbance

    • NERC Loading Criteria – 150 % of emergency line load rating

     – Use reduced voltage (85 %)

     – 30° Line Angle• Z @ 30° = Z @ MTA cos (∠MTA° -∠30° ) for mho

    characteristic

  • 8/16/2019 Symmetrical Componet Fauly calculation

    163/521

    Load Encroachment

    X

    Zone 3

  • 8/16/2019 Symmetrical Componet Fauly calculation

    164/521

    40

    R

    Zone 1

    Zone 2

    Load Consideration with Distance Relays

    Load

     Area

    Lens Characteristic

    • Ideal for longer transmission lines• More immunity to load encroachment

  • 8/16/2019 Symmetrical Componet Fauly calculation

    165/521

    41

    • Less fault resistance coverage• Generated by merging the common area

    between two mho elements

    Lens Characteristic

  • 8/16/2019 Symmetrical Componet Fauly calculation

    166/521

    42

    Tomato Characteristic

    • May be used as an external out of stepblocking characteristic

    • Reaches set greater than the tripping

  • 8/16/2019 Symmetrical Componet Fauly calculation

    167/521

    43

    g pp g

    elements

    • Generated by combining the total area of

    two mho elements

    Quadrilateral Characteristic

    • High level of freedom in settings• Blinders on left and right can be moved in

    or out

  • 8/16/2019 Symmetrical Componet Fauly calculation

    168/521

    44

     – More immunity to load encroachment (in)

     – More fault resistance coverage (out)

    • Generated by the common area between – Left and right blinders

     – Below reactance element

     – Above directional element

    Quadrilateral Characteristic

    X

  • 8/16/2019 Symmetrical Componet Fauly calculation

    169/521

    45

    R

    Quadrilateral Characteristic

    Special Load Encroachment

    X

    Zone 4

  • 8/16/2019 Symmetrical Componet Fauly calculation

    170/521

    46

    R

    Zone 1

    Zone 2

  • 8/16/2019 Symmetrical Componet Fauly calculation

    171/521

    Fault ResistanceX

    Zone 3

  • 8/16/2019 Symmetrical Componet Fauly calculation

    172/521

    48

    R

    Zone 1

    Zone 2

    Fault Resistance Effect on a Mho Characteristic

    Rf 

    Series Compensated Lines

    • Series caps added to increase loadtransfers

     – Electrically shorten line

  • 8/16/2019 Symmetrical Componet Fauly calculation

    173/521

    49

    • Negative inductance

    • Difficult problem for distance relays

    • Application depends upon location ofcapacitors

    Series Caps

    Zl Zc

    Zl > Zc

  • 8/16/2019 Symmetrical Componet Fauly calculation

    174/521

    50

    21

    21 Zl > Zc

  • 8/16/2019 Symmetrical Componet Fauly calculation

    175/521

    Coordination Considerations

    • Zone 1 – 80 to 90% of compensated line impedance

     – Must not overreach remote bus with caps in

    service

  • 8/16/2019 Symmetrical Componet Fauly calculation

    176/521

    52

    service

    • Zone 2

     – 125% + of uncompensated apparent lineimpedance

     – Must provide direct tripping for any line fault

    with caps bypassed – May require longer time delays

    Power Swing

    • Power swings can cause false trip of 3phase distance elements

    • Option to

  • 8/16/2019 Symmetrical Componet Fauly calculation

    177/521

    53

     – Block on swing (Out of step block)

     – Trip on swing (Out of step trip)

    • Out of step tripping may require special breaker • Allows for controlled separation

    • Some WECC criteria to follow if OOSB

    implemented

    Out Of Step Blocking

    X

    OOSB Outer Zone

    OOS

    B Inner Zone

  • 8/16/2019 Symmetrical Componet Fauly calculation

    178/521

    54

    R

    Zone 1

    Zone 2

    Typical Out Of Step Block Characteristic

    t = 30 ms?

    Ground Distance

    P t ti

  • 8/16/2019 Symmetrical Componet Fauly calculation

    179/521

    55

    Protection

    and Kn(21G)

    Fault Types

    • 3 Phase fault – Positive sequence impedance network only

    • Phase to phase fault

    – Positive and negative sequence

  • 8/16/2019 Symmetrical Componet Fauly calculation

    180/521

    56

     – Positive and negative sequenceimpedance networks in parallel

    • One line to ground fault

     – Positive, negative, and zero sequenceimpedance networks in series

    • Phase to phase to ground fault

     – Positive, negative, and zero sequenceimpedance networks in parallel

    Sequence Networks

  • 8/16/2019 Symmetrical Componet Fauly calculation

    181/521

    57

  • 8/16/2019 Symmetrical Componet Fauly calculation

    182/521

    Kn - Why?• Using phase/phase or phase/ground

    quantities does not give proper reachmeasurement for 1LG fault

    • Using zero sequence quantities gives thezero sequence source impedance not the

  • 8/16/2019 Symmetrical Componet Fauly calculation

    183/521

    59

    zero sequence source impedance, not theline impedance

    • Current compensation (Kn) does work forground faults

    • Voltage compensation could also be used

    but is less common

    Current Compensation, KnK

    n= (Z

    0L- Z

    1L)/3Z

    1LZ0L = Zero sequence transmission line impedance

    Z1L = Positive sequence transmission line

    impedance

  • 8/16/2019 Symmetrical Componet Fauly calculation

    184/521

    60

    impedanceIRelay = I A + 3I0(Z0L- Z1L)/3Z1L = I A + 3KnI0

    ZRelay = V A Relay/IRelay = V A/(I A + 3KnI0) = Z1L

    Reach of ground distance relay with current

    compensation is based on positive sequence line

    impedance, Z1L

    Current Compensation, Kn• Current compensation (Kn) does work for

    ground faults.

    • Kn = (Z0L – Z1L)/3Z1

    – Kn may be a scalar quantity or a vector quantitywith both magnitude and angle

  • 8/16/2019 Symmetrical Componet Fauly calculation

    185/521

    61

      K may be a scalar quantity or a vector quantitywith both magnitude and angle

    • Mutual impedance coupling from parallel

    lines can cause a ground distance relay tooverreach or underreach, depending uponground fault location

    • Mutual impedance coupling can provideincorrect fault location values for groundfaults

    Ground Fault

    Protection

  • 8/16/2019 Symmetrical Componet Fauly calculation

    186/521

    62

    Protection

    (67N)

    Ground Faults

    • Directional ground overcurrent relays(67N)

    • Ground overcurrent relays

    – Time overcurrent ground (51)

  • 8/16/2019 Symmetrical Componet Fauly calculation

    187/521

    63

      Time overcurrent ground (51)

     – Instantaneous overcurrent (50)

    • Measure zero sequence currents• Use zero sequence or negative sequence

    for directionality

    Typical Ground OvercurrentSettings

    • 51 Time overcurrentSelect TOC curve, usually very inverse

    Pickup, usually minimum

    Time delay >0.25 sec. for remote bus fault

  • 8/16/2019 Symmetrical Componet Fauly calculation

    188/521

    64

    Time delay 0.25 sec. for remote bus fault

    • 50 Instantaneous overcurrent

    >125% Remote bus fault• Must consider affects of mutual coupling

    from parallel transmission lines.

    Polarizing for DirectionalGround Overcurrent Relays

    • I Residual and I polarizing – I Polarizing: An autotransformer neutral CT

    may not provide reliable current polarizing

    • I Residual and V polarizing

  • 8/16/2019 Symmetrical Componet Fauly calculation

    189/521

    65

    p g

     – I Residual 3I0 = Ia + Ib + Ic

     – V Polarizing 3V0 = Va + Vb + Vc• Negative sequence

     – Requires 3 phase voltages and currents

     – More immune to mutual coupling problems

    Current Polarizing

    CT

    H1

    X1

    H2

    Y1

  • 8/16/2019 Symmetrical Componet Fauly calculation

    190/521

    66

    I Polarizing

     Auto Transformer Polarizing Current Source

    H3

    X3

    X2 Y2

    Y3

    H0X0

    Voltage PolarizingEa Eb Ec

  • 8/16/2019 Symmetrical Componet Fauly calculation

    191/521

    67

    3 VO Polarizing Potential

    Mutual Coupling

    • Transformer affect between parallel lines – Inversely proportional to distance between

    lines

    • Only affects zero sequence current

  • 8/16/2019 Symmetrical Componet Fauly calculation

    192/521

    68

    y q

    • Will affect magnitude of ground currents

    • Will affect reach of ground distance relays

    Mutual Coupling

    Line #13I0, Line #1

  • 8/16/2019 Symmetrical Componet Fauly calculation

    193/521

    69

    Line #2

    3I0, Line #2

    Mutual Coupling vs. GroundRelays

    Taft

    645 Amps

    1315 Amps645 Amps

    1980 Amps

    GarrisonTaft Garrison

  • 8/16/2019 Symmetrical Componet Fauly calculation

    194/521

    70

    Taft

    920 Amps

    260 Amps920 Amps

    1370 Amps

    1LG Faults With Mutual Impedances

    1LG Faults Without Mutual Impedances

    GarrisonTaft Garrison

    Other Line

  • 8/16/2019 Symmetrical Componet Fauly calculation

    195/521

    71

    Other Line

    Protection Relays

    Line Differential

  • 8/16/2019 Symmetrical Componet Fauly calculation

    196/521

    72

    87 87

    Line Differential Relays

    • Compare current magnitudes, phase, etc.at each line terminal

    • Communicate information between relays

    • Internal/external fault? Trip/no trip?

  • 8/16/2019 Symmetrical Componet Fauly calculation

    197/521

    73

    p p

    • Communications dependant!

    • Changes in communications paths orchannel delays can cause potential

    problems

    Phase Comparison

    • Compares phase relationship at terminals• 100% Channel dependant

     – Looped channels can cause false trips

    • Nondirectional overcurrent on channel

  • 8/16/2019 Symmetrical Componet Fauly calculation

    198/521

    74

    Nondirectional overcurrent on channel

    failure

    • Immune to swings, load, series caps• Single pole capability

    Pilot Wire

    • Common on power house lines• Uses metallic twisted pair 

     – Problems if commercial line used

     – Requires isolation transformers and protection

  • 8/16/2019 Symmetrical Componet Fauly calculation

    199/521

    75

    on pilot wire

    • Nondirectional overcurrent on pilot failure• Newer versions use fiber or radio

    • Generally limited to short lines if metallic

    twisted pair is used

  • 8/16/2019 Symmetrical Componet Fauly calculation

    200/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    201/521

    Current Differential

    • Single pole capability• 3 Terminal line capability

    • May include an external, direct transfer trip

    feature

  • 8/16/2019 Symmetrical Componet Fauly calculation

    202/521

    78

    • Immune to swings, load, series caps

    Transfer Trip

  • 8/16/2019 Symmetrical Componet Fauly calculation

    203/521

    79

    Transfer Trip

  • 8/16/2019 Symmetrical Componet Fauly calculation

    204/521

    Tone 1 Xmit

    Tone 2 Xmit

    Tone 1 Rcvd

    Tone 2 Rcvd

    Protective Relay

    Protective Relay

    Direct Transfer Trip

  • 8/16/2019 Symmetrical Componet Fauly calculation

    205/521

    81

    PCB Trip Coil PCB Trip Coil

    Direct Transfer Trip

    Direct Transfer Trip Initiation

    • Zone 1 distance• Zone 2 distance time delay trip

    • Zone 3 distance time delay trip

    • Instantaneous ground trip

    Time overcurrent ground trip

  • 8/16/2019 Symmetrical Componet Fauly calculation

    206/521

    82

    • Time overcurrent ground trip

    • BFR-Ring bus, breaker & half scheme• Transformer relays on transformer

    terminated lines

    • Line reactor relays

    Tone 2 Xmit

    Tone 2 Rcvd

    Permissive Relay

    Tone 2 Xmit

    Tone 2 Rcvd

    Permissive Relay

    Permissive Transfer Trip

  • 8/16/2019 Symmetrical Componet Fauly calculation

    207/521

    83

    PCB Trip Coil PCB Trip Coil

    Permissive Transfer Trip

    Permissive Keying

    • Zone 2 instantaneous• Permissive overcurrent ground (very

    sensitive setting)

    • PCB 52/b switch

  • 8/16/2019 Symmetrical Componet Fauly calculation

    208/521

    84

    • Current reversal can cause problems

  • 8/16/2019 Symmetrical Componet Fauly calculation

    209/521

    PRT Current Reversal

     A B

    Id

    Ia

    Ic

    I Fault, Line AB

    I Fault, Line CD

  • 8/16/2019 Symmetrical Componet Fauly calculation

    210/521

    86

    C D

     Breaker B opens instantaneously. Relays at B drop out.

    Fault current on line CD changes direction.

    Relays at A remain picked up and trip by permissive signal from B.

    Relays at C drop out and stop keying permissive signal to C.

    Relays at D pick up and key permissive signal to D.

    Directional ComparisonBlocking

    • Overreaching relays• Delay for channel time

    • Channel failure can allow overtrip

    • Often used with “On/Off” carrier 

  • 8/16/2019 Symmetrical Componet Fauly calculation

    211/521

    87

    Block Xmit

    Block Rcvd

    Block Xmit

    Block Rcvd

    Forward

    Relay

    Reverse

    Relay

    Reverse

    Relay

    Forward

    Relay

    Directional Comparison

  • 8/16/2019 Symmetrical Componet Fauly calculation

    212/521

    88

    PCB Trip Coil PCB Trip Coil

    Directional Comparison Blocking Scheme

    Time DelayTime Delay TDTD

    Directional Comparison Relays

    • Forward relays must overreach remotebus

    • Forward relays must not overreach remote

    reverse relays

    • Time delay (TD) set for channel delay

  • 8/16/2019 Symmetrical Componet Fauly calculation

    213/521

    89

    • Time delay (TD) set for channel delay

    • Scheme will trip for fault if channel lost – Scheme may overtrip for external fault on

    channel loss

    Tone Equipment

    • Interface between relays andcommunications channel

    • Analog tone equipment

    • Digital tone equipment

  • 8/16/2019 Symmetrical Componet Fauly calculation

    214/521

    90

    • Security features

     – Guard before trip

     – Alternate shifting of tones

     – Parity checks on digital

    Tone Equipment

    • Newer equipment has 4 or morechannels

     – 2 for direct transfer trip

     – 1 for permissive transfer trip

    1 for drive to lock out (block reclose)

  • 8/16/2019 Symmetrical Componet Fauly calculation

    215/521

    91

     – 1 for drive to lock out (block reclose)

    Relay to Relay Communications

    • Available on many new digital relays• Eliminates need for separate tone gear 

    • 8 or more unique bits of data sent from

    one relay to other 

    • Programmable functions

  • 8/16/2019 Symmetrical Componet Fauly calculation

    216/521

    92

    • Programmable functions

     – Each transmitted bit programmed for specificrelay function

     – Each received bit programmed for specific

    purpose

    TelecommunicationsChannels

    • Microwave radio – Analog (no longer available)

     – Digital

    • Other radio systems• Dedicated fiber between relays

  • 8/16/2019 Symmetrical Componet Fauly calculation

    217/521

    93

    Dedicated fiber between relays

     – Short runs

    • Multiplexed fiber 

     – Long runs

    • SONET Rings

    TelecommunicationsChannels

    • Power line carrier current – On/Off Carrier often used with directional

    comparison

    • Hard wire

    – Concern with ground mat interconnections

  • 8/16/2019 Symmetrical Componet Fauly calculation

    218/521

    94

      Concern with ground mat interconnections

     – Limited to short runs• Leased line

     – Rent from phone company

     – Considered less reliable

     Automatic Reclosing (79)

    • First reclose ~ 80% success rate• Second reclose ~ 5% success rate

    • Must delay long enough for arc to

    deionizet = 10.5 + kV/34.5 cycles

  • 8/16/2019 Symmetrical Componet Fauly calculation

    219/521

    95

    y

    14 cycles for 115 kV; 25 cycles for 500 kV

    • Must delay long enough for remoteterminal to clear 

    • 1LG Faults have a higher success ratethan 3 phase faults

     Automatic Reclosing (79)

    • Most often single shot• Delay of 30 to 60 cycles following line trip

    is common

    • Checking:

    – Hot bus & dead line

  • 8/16/2019 Symmetrical Componet Fauly calculation

    220/521

    96

      Hot bus & dead line

     – Hot line & dead bus – Sync check

    • Utilities have many different criteria for

    transmission line reclosing

    More on Reclosing

    • Only reclose for one line to ground faults• Block reclose for time delay trip (pilot

    schemes)

    • Never reclose on power house lines

    • Block reclosing for transformer fault on

  • 8/16/2019 Symmetrical Componet Fauly calculation

    221/521

    97

    Block reclosing for transformer fault on

    transformer terminated lines• Block reclosing for bus faults

    • Block reclosing for BFR

    • Do not use them

    Breaker Failure

    Relay

  • 8/16/2019 Symmetrical Componet Fauly calculation

    222/521

    98

    y

    (50BF)

    Breaker Failure

    • Stuck breaker is a severe impact tosystem stability on transmission systems

    • Breaker failure relays are recommended

    by NERC for transmission systemsoperated above 100 kV

  • 8/16/2019 Symmetrical Componet Fauly calculation

    223/521

    99

    • BFRs are not required to be redundant by

    NERC

    Breaker Failure Relays

    1. Fault on line2. Normal protective relays detect fault and

    send trip to breaker.

    3. Breaker does not trip.

    4. BFR Fault detectors picked up.

  • 8/16/2019 Symmetrical Componet Fauly calculation

    224/521

    100

    p p

    5. BFR Time delay times out (8 cycles)6. Clear house (open everything to isolate

    failed breaker)

    Breaker Failure Relay

    BFR Fault

    Detector PCB TripCoil #1

    TD

    Protective Relay

    TripTD

    BFR Retrip

    BFR Time

    Delay, 8~

  • 8/16/2019 Symmetrical Componet Fauly calculation

    225/521

    101

    Typical Breaker Failure Scheme with Retrip

    86

    Block Close

    PCB Trip

    Coil #2

    Delay, 8

    Typical BFR Clearing Times

    Proper Clearing:

    0 Fault occurs

    +1~ Relays PU, Key TT

    +2~ PCB trips

    +1~ Remote terminal clears

    Failed Breaker:

    0 Fault occurs

    +1~ BFR FD PU

    +8~ BFR Time Delay

    +1~ BFR Trips 86 LOR+2~ BU PCBs trip

    +1~ Remote terminal clears

  • 8/16/2019 Symmetrical Componet Fauly calculation

    226/521

    102

    3-4 Cycles local clearingtime

    4-5 Cycles remote clearing

    time

    12-13 Cycles local back upclearing time

    13-14 Cycles remote

    backup clearing

    Remedial Action

    Schemes (RAS)

  • 8/16/2019 Symmetrical Componet Fauly calculation

    227/521

    103

    aka: SpecialProtection Schemes

    Remedial Action Schemes

    • Balance generation and loads• Maintain system stability

    • Prevent major problems (blackouts)

    • Prevent equipment damage• Allow system to be operated at higher

    levels

  • 8/16/2019 Symmetrical Componet Fauly calculation

    228/521

    104

    levels

    • Provide controlled islanding

    • Protect equipment and lines from thermal

    overloads• Many WECC & NERC Requirements

    Remedial Action Schemes

    • WECC Compliant RAS – Fully redundant

     – Annual functional test

     – Changes, modifications and additions must beapproved by WECC

    Non WECC RAS

  • 8/16/2019 Symmetrical Componet Fauly calculation

    229/521

    105

    • Non WECC RAS

     – Does not need full redundancy

     – Local impacts only

     – Primarily to solve thermal overload problems

    Underfrequency Load Shedding

    • Reduce load to match available generation

    • Undervoltage (27) supervised (V > 0.8 pu)

    • 14 Cycle total clearing time required

    • Must conform to WECC guidelines

    • 4 Steps starting at 59.4 Hz.

  • 8/16/2019 Symmetrical Componet Fauly calculation

    230/521

    106

    • Restoration must be controlled• Must coordinate with generator 81 relays

    • Responsibility of control areas

    Undervoltage Load Shedding

    • Detect 3 Phase undervoltage• Prevent voltage collapse

    • Sufficient time delay before tripping to ride

    through minor disturbances

    • Must Conform to WECC Guidelines

  • 8/16/2019 Symmetrical Componet Fauly calculation

    231/521

    107

    • Primarily installed West of Cascades

    Generator Dropping

    • Trip generators for loss of load• Trip generators for loss of transmission

    lines or paths

     – Prevent overloading

  • 8/16/2019 Symmetrical Componet Fauly calculation

    232/521

    108

    Reactive Switching

    • On loss of transmission lines – Trip shunt reactors to increase voltage

     – Close shunt capacitors to compensate for loss

    of reactive supplied by transmission lines – Close series capacitors to increase load

    transfers

  • 8/16/2019 Symmetrical Componet Fauly calculation

    233/521

    109

     – Utilize generator var output if possible – Static Var Compensators (SVC) provide high

    speed adjustments

    Direct Load Tripping

    • Provide high speed trip to shed load – May use transfer trip

     – May use sensitive, fast underfrequency (81)

    relay• Trip large industrial loads

  • 8/16/2019 Symmetrical Componet Fauly calculation

    234/521

    110

    Other RAS Schemes

    • Controlled islanding – Force separation at know locations

    • Load brake resistor insertion

     – Provide a resistive load to slow downacceleration of generators

    • Out of step tripping

  • 8/16/2019 Symmetrical Componet Fauly calculation

    235/521

    111

    • Out of step tripping

     – Force separation on swing

    • Phase shifting transformers

     – Control load flows

    Typical RAS Controller 

  • 8/16/2019 Symmetrical Componet Fauly calculation

    236/521

    112

    Typical RAS Controller Outputs

    • Generator tripping

    • Load tripping

    • Controlled islanding and separation (Four

    Corners)• Insert series caps on AC Intertie

    • Shunt capacitor insertion

  • 8/16/2019 Symmetrical Componet Fauly calculation

    237/521

    113

    Shunt capacitor insertion

    • Shunt reactor tripping

    • Chief Jo Load Brake Resister insertion

    • Interutility signaling• AGC Off 

    Chief Jo Brake

  • 8/16/2019 Symmetrical Componet Fauly calculation

    238/521

    1141400 Megawatts @ 230 kV

    RAS Enabling Criteria

    • Power transfer levels• Direction of power flow

    • System configuration

    • Some utilities are considering automatic

    enabling/disabling based on SCADA data

  • 8/16/2019 Symmetrical Componet Fauly calculation

    239/521

    115

    • Phasor measurement capability in relayscan be used to enable RAS actions

    RAS Design Criteria

    • Generally fully redundant• Generally use alternate route on

    telecommunications

    • Extensive use of transfer trip for signalingbetween substations, power plants, control

    centers and RAS controllers

  • 8/16/2019 Symmetrical Componet Fauly calculation

    240/521

    116

    centers, and RAS controllers

    UFOs vs. Power Outages

  • 8/16/2019 Symmetrical Componet Fauly calculation

    241/521

    117

    the end

  • 8/16/2019 Symmetrical Componet Fauly calculation

    242/521

    118

    Jon F. Daume

    Bonneville Power Administration

    retired

    March 15, 2011

  • 8/16/2019 Symmetrical Componet Fauly calculation

    243/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    244/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    245/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    246/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    247/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    248/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    249/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    250/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    251/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    252/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    253/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    254/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    255/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    256/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    257/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    258/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    259/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    260/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    261/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    262/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    263/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    264/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    265/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    266/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    267/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    268/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    269/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    270/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    271/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    272/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    273/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    274/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    275/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    276/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    277/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    278/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    279/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    280/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    281/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    282/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    283/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    284/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    285/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    286/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    287/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    288/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    289/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    290/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    291/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    292/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    293/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    294/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    295/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    296/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    297/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    298/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    299/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    300/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    301/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    302/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    303/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    304/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    305/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    306/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    307/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    308/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    309/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    310/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    311/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    312/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    313/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    314/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    315/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    316/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    317/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    318/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    319/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    320/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    321/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    322/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    323/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    324/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    325/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    326/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    327/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    328/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    329/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    330/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    331/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    332/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    333/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    334/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    335/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    336/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    337/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    338/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    339/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    340/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    341/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    342/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    343/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    344/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    345/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    346/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    347/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    348/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    349/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    350/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    351/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    352/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    353/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    354/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    355/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    356/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    357/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    358/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    359/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    360/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    361/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    362/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    363/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    364/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    365/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    366/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    367/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    368/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    369/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    370/521

  • 8/16/2019 Symmetrical Componet Fauly calculation

    371/521

    Transmission System Faults and

    Event AnalysisFault Analysis Theory

    andModern Fault Analysis Methods

    Presented by:

    Matthew Rhodes

    Electrical Engineer, SRP

    1

  • 8/16/2019 Symmetrical Componet Fauly calculation

    372/521

    Transmission System FaultTheory

    • Symmetrical Fault Analysis• Symmetrical Components

    • Unsymmetrical Fault Analysis usingsequence networks

    • Lecture material originally developed byDr. Richard Farmer, ASU Research

    Professor  2

  • 8/16/2019 Symmetrical Componet Fauly calculation

    373/521

    3

    Symmetrical Faults

  • 8/16/2019 Symmetrical Componet Fauly calculation

    374/521

    4

    Faults

    Shunt faults:

    Three phase a bc

    Line to line

    Line to ground

    2 Line to ground

     b

    a

    c

    a

     bc

    a b

    c

  • 8/16/2019 Symmetrical Componet Fauly calculation

    375/521

    5

    Faults

    Series faults

    One open phase: a bc

    2 open phasesa bc

    Increased phaseimpedance

    Za bc

  • 8/16/2019 Symmetrical Componet Fauly calculation

    376/521

    6

    Why Study Faults?• Determine currents and voltages in the

    system under fault conditions• Use information to set protective devices

    • Determine withstand capability thatsystem equipment must have:

     – Insulating level

     – Fault current capability of circuit breakers:• Maximum momentary current

    • Interrupting current

  • 8/16/2019 Symmetrical Componet Fauly calculation

    377/521

    7

    Symmetrical Faults

    α

    t=0

    2 V