Top Banner
SYMAP ® SYMAP_A1_Communication_E.doc 1/55 Appendix A1 Communication - Power Protection - Monitoring - Diesel Control - Power Management SYMAP ®
55

SYMAP A1 Communication E

Dec 09, 2015

Download

Documents

Vu Duc Truong

Symap communication events with CAN, MODBUS and Profibus
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: SYMAP A1 Communication E

SYMAP® SYMAP_A1_Communication_E.doc 1/55

Appendix A1 Communication

- Power Protection - Monitoring - Diesel Control - Power Management

SYMAP®

Page 2: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 2/55

FOR THIS DOCUMENT WE RESERVE ALL RIGHTS. WITHOUT OUR CONSENT IN WRITING IT SHALL NOT BE REPRODUCED

BY ANY MEANS NOR BE MADE ACCESSIBLE TO THIRD PARTIES. ANY VIOLATION WILL BE SUBJECT TO CRIMINAL PROSECUTION.

THE CONTENT OF THIS MANUAL IS FURNISHED FOR INFORMATIONAL USE

ONLY. THE CONTENT IS SUBJECT TO CHANGE WITHOUT NOTICE, AND SHOULD NOT

BE CONSTRUED AS A COMMITMENT BY STUCKE ELEKTRONIK GMBH.

STUCKE ELEKTRONIK GMBH ASSUMES NO RESPONSIBILITY OR LIABILITY FOR ANY ERRORS OR INACCURACIES THAT MAY APPEAR IN THIS

DOCUMENTATION.

Version: 25.01.2008 (RR) File: SYMAP_A1_Communication_E Firmware:

- CU: 1.10 / 16.04.2007 - MU: 1.10 / 01.02.2005 - RU: 1.10 / 31.03.2006

Page 3: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 3/55

Table of content

A1.1 Introduction ...................................................................................................... 4

A1.2 PROFIBUS DP.................................................................................................. 5 A1.2.1 Introduction ........................................................................................................ 5 A1.2.2 Parameter setting ................................................................................................ 5 A1.2.3 Operation ............................................................................................................ 5 A1.2.4 Data exchange..................................................................................................... 5 A1.2.5 PROFIBUS DP protocol data ............................................................................. 6 A1.2.5.1 PROFIBUS DP output data (master -> slave) .................................................... 6 A1.2.5.2 PROFIBUS DP input data (slave -> master) ...................................................... 8

A1.3 MODBUS......................................................................................................... 15 A1.3.1 Introduction ...................................................................................................... 15 A1.3.2 Message frame format ...................................................................................... 15 A1.3.3 Function code 03 READ OUTPUT REGISTERS ........................................... 16 A1.3.4 Function code 06 PRESET SINGLE REGISTER............................................ 22 A1.3.5 Wiring and adjustment of communication port ................................................ 24

A1.4 CANBUS Bus .................................................................................................. 28 A1.4.1 CANBUS1 ........................................................................................................ 28 A1.4.2 CANBUS2 ........................................................................................................ 30 A1.4.2.1 CANopen (via CANBUS2) .............................................................................. 30 A1.4.2.1.1 Introduction ...................................................................................................... 30 A1.4.2.1.2 Parameter setting .............................................................................................. 30 A1.4.2.1.3 Network management (NMT) .......................................................................... 31 A1.4.2.1.4 Object Dictionary introduction......................................................................... 32 A1.4.2.1.5 Service Data Objects (SDO)............................................................................. 33 A1.4.2.1.5.1 SDO Upload ..................................................................................................... 33 A1.4.2.1.5.2 SDO Download................................................................................................. 34 A1.4.2.1.6 Process Data Objects (PDO)............................................................................. 35 A1.4.2.1.6.1 Receive Process Data Object (RPDO).............................................................. 35 A1.4.2.1.6.2 Transmit Process Data Objects (TPDOs) ......................................................... 36

A1.5 Detailed description of communication data................................................ 38

A1.6 IEC 60870-5-103 Protocol .............................................................................. 46 A1.6.1 Introduction ...................................................................................................... 46 A1.6.2 Parameter setting .............................................................................................. 46 A1.6.3 Initialisation procedure ..................................................................................... 47 A1.6.4 Data exchange................................................................................................... 49 A1.6.5 Time synchronisation ....................................................................................... 50 A1.6.6 Commands ........................................................................................................ 50 A1.6.7 Measure/Status data.......................................................................................... 52

Page 4: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 4/55

A1.1 Introduction

The device offers several communication interfaces which are shown in the figure A1.1-1. In this appendix the various protocolls are detailed described .

Figure A1.1-1 Communication interfaces

COMMUNICATION INTERFACES

Serial interfaces RS 232 RS 422 RS 485

Extra RS 485

(Fiber optic optional)

CANBUS1

CANBUS2

PC-Tools Modbus Remote

IEC60870-5-103

Profibus DP

Power

Management

Diesel Control: MDEC

CANopen

Hardware

Software (Protocoll)

Page 5: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 5/55

A1.2 PROFIBUS DP

A1.2.1 Introduction

SYMAP® provides the PROFIBUS DP communication system according to the international rules EN 50170 and 50254. This communication system offers baud rates up to 12 Mbaud. Via the protocol all measure and process data of SYMAP® can be accessed. The structure of the protocol is modular, thus the user can built up his own protocol profile.

A1.2.2 Parameter setting

For the adjustment of the PROFIBUS protocol, the communication parameter within the system settings is available. (Menu: SETTING > CHANGE > SYSTEM > COMMUNICATION):

• The PROFIBUS port can be switched on through parameter [0304] (Note: Event

[0304] will be activated if the device exchanges data with the master). • Parameter [0305] sets the slave address. • The sequence of bytes (starting with low or high byte) of the register (16/32 bits) is

defined by parameter [0306].

A1.2.3 Operation

If the PROFIBUS is switched on, the “COM.” LED, placed at the front panel of SYMAP®, will indicate the communication status. The following conditions are possible:

• LED off: PROFIBUS switched off. • LED red: PROFIBUS switched on but no connection to the master system. • LED amber: Baud rate detected from master system. • LED green blinking: data exchange status (event [0304] will be active).

On the PROFIBUS page, SYMAP® provides more detailed information about PROFIBUS process. This page is only available if the PROFIBUS port is switched on. (Menu: DISPLAY> PROFIBUS).

A1.2.4 Data exchange

• Via the PROFIBUS protocol at maximum 16 bytes output data and 244 bytes input data can be transferred. The output data are organized in 2 modules. The input data are organized in 30 modules.

• Through the modular system, the protocol can tailor made for each user. Within the GSD-file 32 modules are available for the protocol description.

• To control the device (e.g. relay output controls the breaker), 16 communication events are available (see module 1). These communication events are organized within the first two bytes (0.1) in module 1, whereby each bit is one event. The event is set as long as the corresponding bit in the protocol is set.

• All bits within the control byte (2) are available only once and have to be reset before the next control byte can be accepted.

Page 6: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 6/55

A1.2.5 PROFIBUS DP protocol data

SYMAP® provides several modules for data exchange. In help with the corresponding GSD-file, the modules can be selected for the data exchange. Tables A1.2-1 to A1.2-4 consist of the module number, the module name and the number of bytes the module provide. Within the tables the certain bytes will be described.

A1.2.5.1 PROFIBUS DP output data (master -> slave)

SYMAP® provides 2 modules for master to slave data transfers. If both modules are to be used, module 1 must be send first in the protocol.

Table A1.2-1 Module 1:Output data

• Use the PROFIBUS events to trigger a breaker or to drive a binary output. The events are active as long as the corresponding bits are active. Note: refer to the chapter 2.5 “Breaker control” in the User’s Manual to use the PROFIBUS events with the breaker control function.

• All bits in the control byte will cause an device action on L -> H. For example to change the operating mode do the following steps:

• Set the new mode in byte 3. • Wait for 100 ms. • Set bit 0 in byte 2 (L->H). • Wait for 500 ms. • Reset bit 0 in byte 2.

• The “tripped bits” in the ANSI protection status#x (PROFIBUS Module 3) will be reset with PROFIBUS ACK (control byte -> bit 1), or with ACK-key or remote ACK (binary input).

Module 1: Output data (12 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Unit 0-1 16 PROFIBUS events ([0350]-[0365]), Bit 0=event [0350] - 2 Control byte: bit 0=change op.mode, bit 1=ACK, bit 2=set new time - 3 New operating mode (see table A1.5-2) - 4 New time year - 5 New time month - 6 New time day - 7 New time hour h 8 New time minute min 9 New time second sec 10-11 New time millisecond msec

Page 7: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 7/55

Table A1.2-2 Module 30: Instructions

Note: Only new instructions will cause an device reaction: The instruction will be only executed if either the instruction nr. (byte 0-1) or the data value (byte 2-3) has changed. The instruction nr. and the data value are taken as decimal values.

Table A1.2-3 Description of module 30:

Instruction (byte 0-1) Nr. Name

Data value (byte 2-3) Unit

0 No command x (don’t care) - 1 Acknowledge x - 2 Diesel start order x - 3 Diesel start next order x - 4 Diesel stop order x - 5 Diesel stop next order x - 6 Set operation mode 0: Manual, 1: Automatic - 7 Set breaker operating mode see table A1.5-2 - 8 Reset temp. power counter (module 19) x - 9-19 Not in use 20 Priority of generator 1-14 - 21 Asym. load sharing setpoint 0 - 200 % 22 Asym. PF controller setpoint (× 100) 0 - 100 cos ϕ 947 Freq. controller idle speed (× 100) 0 - 9999 Hz 948 Freq. controller full load (× 100) 0 - 9999 Hz

Module 30: Instructions (4 Bytes) Byte Data (first byte: low/high depends on parameter [0306])

0-1 Instruction nr. 2-3 Data value

Page 8: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 8/55

A1.2.5.2 PROFIBUS DP input data (slave -> master)

SYMAP® provides 30 modules for slave to master data transfers. The modules can be arranged through the protocol in any way.

Table A1.2-4 Modules 2 to 26, 31 to 35 and 37 to 38

Module 2: Device general status (6 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Symbol/Unit 0-1 Measure status (see table A1.5-1) - 2 Operating mode (see table A1.5-2) - 3 Breaker 1 position (see table A1.5-3) - 4 Breaker 2 position (see table A1.5-3) - 5 Breaker 3 position (see table A1.5-3) -

Module 3: Protection status (10 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Symbol/Unit 0-1 ANSI protection status #1 (see table A1.5-4) - 2-3 ANSI protection status #2 (see table A1.5-5) - 4-5 ANSI protection status #3 (see table A1.5-6) - 6-7 ANSI protection status #4 (see table A1.5-7) - 8-9 ANSI protection status #5 (see table A1.5-8) -

Module 4: Device binary I/O status (4 Bytes)

Byte Data (first byte: low/high depends on parameter [0306]) Symbol/Unit

0-1 State of binary inputs (see table A1.5-14) - 2-3 State of binary outputs (see table A1.5-15) -

Module 5: Ext. board binary I/O status (10 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Symbol/Unit 0-1 State of binary inputs extension board (see table A1.5-16) - 2-3 State of binary inputs extension board (see table A1.5-17) - 4-5 State of binary inputs extension board (see table A1.5-18) - 6-7 State of binary outputs extension board (see table A1.5-19) - 8-9 State of binary outputs extension board (see table A1.5-20) -

Module 6: Device real time (8 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Unit 0 Actual time year y 1 Actual time month m 2 Actual time day d 3 Actual time hour h 4 Actual time minute min 5 Actual time second sec 6-7 Actual time millisecond ms

Page 9: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 9/55

Module 7: Feeder frequency + voltages (16 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Symbol/Unit 0-1 Feeder frequency (× 100) Ffeed/Hz 2-3 Feeder voltage L1-N U1/V 4-5 Feeder voltage L2-N U2/V 6-7 Feeder voltage L3-N U3/V 8-9 Feeder voltage L1-L2 U12/V 10-11 Feeder voltage L1-L3 U13/V 12-13 Feeder voltage L2-L3 U23/V 14-15 Feeder average voltage Uavr/V

Module 8: Bus 1 frequency + voltages (16 Bytes) Byte Data (first byte: low/high depends on parameter 0306]) Symbol/Unit 0-1 Bus1 frequency (× 100) Fbus1/Hz 2-3 Bus1 voltage L1-N U1/V 4-5 Bus1 voltage L2-N U2/V 6-7 Bus1 voltage L3-N U3/V 8-9 Bus1 voltage L1-L2 U12/V 10-11 Bus1 voltage L1-L3 U13/V 12-13 Bus1 voltage L2-L3 U23/V 14-15 Bus1 average voltage Uavr/V

Module 9: Bus 2 frequency + voltages (16 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Symbol/Unit 0-1 Bus2 frequency (× 100) Fbus2/Hz 2-3 Bus2 voltage L1-N U1/V 4-5 Bus2 voltage L2-N U2/V 6-7 Bus2 voltage L3-N U3/V 8-9 Bus2 voltage L1-L2 U12/V 10-11 Bus2 voltage L1-L3 U13/V 12-13 Bus2 voltage L2-L3 U23/V 14-15 Bus2 average voltage Uavr/V

Module 10: Feeder currents (8 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Symbol/Unit 0-1 Feeder current L1 I1/A 2-3 Feeder current L2 I2/A 4-5 Feeder current L3 I3/A 6-7 Feeder average current Iavr/A

Module 11: Differential currents (6 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Symbol/Unit 0-1 Differential current L1 I1diff/A 2-3 Differential current L2 I2diff/A 4-5 Differential current L3 I3diff/A

Page 10: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 10/55

Module 12: Feeder actual power (∑) (8 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Symbol/Unit 0-1 Active power P/kW 2-3 Reactive power Q/kvar 4-5 Apparent power S/kVA 6-7 Sum power factor (× 100) PF/cos φ

Module 13: Feeder active power (phases) (6 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Symbol/Unit 0-1 Active power L1 P-L1/kW 2-3 Active power L2 P-L2/kW 4-5 Active power L3 P-L3/kW

Module 14: Feeder reactive power (phases) (6 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Symbol/Unit 0-1 Reactive power L1 Q-L1/kvar 2-3 Reactive power L2 Q-L2/kvar 4-5 Reactive power L3 Q-L3/kvar

Module 15: Feeder power factor (phases) (6 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Symbol/Unit 0-1 Power factor L1 (× 100) PF L1/cos φ 2-3 Power factor L2 (× 100) PF L2/cos φ 4-5 Power factor L3 (× 100) PF L3/cos φ

Module 16: Ground 1 data (8 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Symbol/Unit 0-1 Ground 1 current Io1/A 2-3 Ground 1 voltage Uo1/V 4-5 Ground 1 active power Po1/kW 6-7 Ground 1 reactive power Qo1/kvar

Module 17: Ground 2 data (8 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Symbol/Unit 0-1 Ground 2 current Io2/A 2-3 Ground 2 voltage Uo2/V 4-5 Ground 2 active power Po2/kW 6-7 Ground 2 reactive power Qo2/kvar

Module 18: Power counter absolute (16 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Symbol/Unit 0-3 Active power counter (4 Bytes!!) P+/kWh 4-7 Reverse active power counter (4 Bytes!!) P-/kWh 8-11 Reactive power counter cap. (4 Bytes!!) Q+/kvarh 12-15 Reactive power counter ind. (4 Bytes!!) Q-/kvarh

Page 11: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 11/55

Module 20: Working hours (6 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Unit 0-3 Work hours (4 Bytes!!) h 4-5 Work minutes min

Module 24: 16 × PT100 Ext. board (32 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Unit 0-1 PT100-1 analog input 5 (× 10) C 2-3 PT100-2 analog input 6 (× 10) C 4-5 PT100-3 analog input 7 (× 10) C 6-7 PT100-4 analog input 8 (× 10) C 8-9 PT100-5 analog input 9 (× 10) C 10-11 PT100-6 analog input 10 (× 10) C 12-13 PT100-7 analog input 11 (× 10) C

Module 19: Power counter temporary (16 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Symbol/Unit 0-3 Active power counter (4 Bytes!!) P+/kWh 4-7 Reverse active power counter (4 Bytes!!) P-/kWh 8-11 Reactive power counter cap. (4 Bytes!!) Q+/kvarh 12-15 Reactive power counter ind. (4 Bytes!!) Q-/kvarh

Module 21: Operating values (8 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Symbol/Unit 0-1 Shunt #1 circuit voltage (× 10) Vac/dc 2-3 Shunt #2 circuit voltage (× 10) Vac/dc

4-5 Aux power voltage (× 10) Uaux/bat / Vac/dc

6-7 Device temperature C

Module 22: Device analog inputs (8 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Unit 0-1 Analog input 1 (× 10) (Device inputs) mA 2-3 Analog input 2 (× 10) mA 4-5 Analog input 3 (× 10) mA 6-7 Analog input 4 (× 10) mA

Module 23: 8 × PT100 Ext. board (16 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Unit 0-1 PT100-1 analog input 5 (× 10) C 2-3 PT100-2 analog input 6 (× 10) C 4-5 PT100-3 analog input 7 (× 10) C 6-7 PT100-4 analog input 8 (× 10) C 8-9 PT100-5 analog input 9 (× 10) C 10-11 PT100-6 analog input 10 (× 10) C 12-13 PT100-7 analog input 11 (× 10) C 14-15 PT100-8 analog input 12 (× 10) C

Page 12: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 12/55

14-15 PT100-8 analog input 12 (× 10) C 16-17 PT100-9 analog input 13 (× 10) C 18-19 PT100-10 analog input 14 (× 10) C 20-21 PT100-11 analog input 15 (× 10) C 22-23 PT100-12 analog input 16 (× 10) C 24-25 PT100-13 analog input 17 (× 10) C 26-27 PT100-14 analog input 18 (× 10) C 28-29 PT100-15 analog input 19 (× 10) C 30-31 PT100-16 analog input 20 (× 10) C

Module 25: Alarm status (10 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Symbol/Unit 0-1 Alarm status #1 (see table A1.5-9) - 2-3 Alarm status #2 (see table A1.5-10) - 4-5 Alarm status #3 (see table A1.5-11) - 6-7 Alarm status #4 (see table A1.5-12) - 8-9 Alarm status #5 (see table A1.5-13) -

Module 26: MDEC measure data (22 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) PV – No. Factor Unit 0-1 Speed 110002 0.1 rpm 2-3 Injection quantity 0 - 120 % 110072 0.1 % 4-5 Temp. Lube oil 110140 0.1 °C 6-7 Temp. Coolant 110126 0.1 °C 8-9 Temp. Charge air 110131 0.1 °C 10-11 Temp. Fuel 110152 0.1 °C 12-13 Temp. Coolant intercooler 110137 0.1 °C 14-15 Pressure Lube oil 110026 0.01 bar 16-17 Pressure Charge air 110049 0.01 bar 18-19 Pressure Fuel 110046 0.01 bar 20-21 Pressure Fuel (common rail) 110053 0.1 bar

Module 31: Power management (26 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Unit Description

0-1 Gen. number/priority/net Table A1.5-30 2-3 BCG process status Table A1.5-31 4-5 BCG own status Table A1.5-32 6-7 BCG net status Table A1.5-33 8-9 Start/stop standby Table A1.5-34

10-11 BCG fail status Table A1.5-35 12-13 BCG last start/stop source Table A1.5-36

14-15 Net used power (×10) % +: active, -: reverse

16-17 Net used power kW +: active, -: reverse18-19 Net standby power kW 20-21 Net available power kW 22-23 Setpoint for the asy. load sharing %

24-25 Setpoint for the asy. PF controller (*100) cos ϕ

Page 13: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 13/55

Module 32: Meters overview (18 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Unit Description

0-1 Generator power kW

2-3 Generator power (×10) %

4-5 Generator current A

6-7 Generator current (×10) %

8-9 Generator voltage V

10-11 Generator frequency (×100) Hz

12-13 Generator power factor (×100) cos ϕ +: cap, -: ind

14-15 Bus 1 voltage V

16-17 Bus 1 frequency (×100) Hz

Module 33: Meters additional data (16 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Unit Description

0-1 Engine speed rpm 2-3 Breaker 1 ON cycles - Parameter [0158] 4-5 Breaker 2 ON cycles - Parameter [0160] 6-7 Breaker 3 ON cycles - Parameter [0162] 8-9 Start counter n Parameter [0644]

10-11 Not in use 12-13 Not in use 14-15 Not in use

Module 34: Power (total). Large format. (8 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Symbol/Unit 0-2 Active power. Range: 0-999999 (3 bytes) P/kW 3-5 Reactive power. Range: 0-999999 (3 bytes) Q/kvar 6-7 Sum power factor (× 100) PF/cos φ

Module 35: Active power phases. Large format. (10 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Symbol/Unit 0-2 Active power L1. Range: 0-999999 (3 bytes) P-L1/kW 3-5 Active power L2. Range: 0-999999 (3 bytes) P-L2/kW 6-8 Active power L3. Range: 0-999999 (3 bytes) P-L3/kW 9 Not in use

Page 14: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 14/55

Module 37: CMA228 Analog Inputs 5-20 (32 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Symbol/Unit 0-1 Analog input 5 2-3 Analog input 6 4-5 Analog input 7 6-7 Analog input 8 8-9 Analog input 9

10-11 Analog input 10 12-13 Analog input 11 14-15 Analog input 12 16-17 Analog input 13 18-19 Analog input 14 20-21 Analog input 15 22-23 Analog input 16 24-25 Analog input 17 26-27 Analog input 18 28-29 Analog input 19 30-31 Analog input 20

Unit depends on the selected

measure type

Module 38: CMA228 Analog Inputs 21-24, VDO 1-2, NiCrNi 1-10 (32 Bytes) Byte Data (first byte: low/high depends on parameter [0306]) Symbol/Unit 0-1 Analog input 21 2-3 Analog input 22 4-5 Analog input 23 6-7 Analog input 24

Unit depends on the selected

measure type

8-9 Analog input 45 – VDO 1 10-11 Analog input 46 – VDO 2 12-13 Analog input 49 – NiCrNi 1 °C 14-15 Analog input 50 – NiCrNi 2 °C 16-17 Analog input 51 – NiCrNi 3 °C 18-19 Analog input 52 – NiCrNi 4 °C 20-21 Analog input 53 – NiCrNi 5 °C 22-23 Analog input 54 – NiCrNi 6 °C 24-25 Analog input 55 – NiCrNi 7 °C 26-27 Analog input 56 – NiCrNi 8 °C 28-29 Analog input 57 – NiCrNi 9 °C 30-31 Analog input 58 – NiCrNi 10 °C

Page 15: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 15/55

A1.3 MODBUS

A1.3.1 Introduction

SYMAP® offers via the RS422/RS485 communication port the MODBUS protocol in accordance with „Gould MODBUS protocol“ Reference guide PI-MBUS-300 Rev. B. The protocol controls the query and response cycle which takes place between master and slave devices. The protocol provides for one master and up to 247 slaves on a common line. SYMAP® devices operates as slave within this network and covers the function code 3 and 6 of the MODBUS protocol.

On the MODBUS page (Menu: DISPLAY > MODBUS), SYMAP® provides more detailed information about the communication status. This page is only available if parameter [0303] “protocol” is switched to “MODBUS” (Menu: SETTING > CHANGE > SYSTEM > COMMUNICATION).

A1.3.2 Message frame format

SYMAP® accepts only the remote terminal unit (RTU) framing transmission mode which is represented in the table A1.3-1.

Table A1.3-1 Message frame format

T1 T2 T3 address function code data error check T1 T2 T3 8 bits 8 bits N*8 bits 16 bits

The address field immediately follows the beginning of frame and consists of 8 bits (RTU). These bits indicate the user assigned address of the slave device that is to receive the message sent by the attached master. The function code field tells the addressed slave what function to perform. The data field contains information needed by slave to perform the specific function or it contain data collected by slave in response to a query. The error check field allows the master and slave device to check error in transmission.

Note: To ensure a good communication the master has to provide an idle time on the bus at min. 100 ms at any baudrate. The idle time is the delay between the finished reception of a slave query and the transmitting of a next master query:

…. -> Master sends query to one slave -> Slave responds -> Master waits for min. 100 ms -> Master sends query to one slave -> …. ->

Page 16: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 16/55

A1.3.3 Function code 03 READ OUTPUT REGISTERS

This function allows the master system to obtain the content of output registers of the addressed slave. The output registers contains status information and measure values of the device. The addressing allows up to 124 register (16 bit) to be obtained at each request. Corresponding to the MODBUS protocol the device expect the query (message length: 8 bytes) witch is shown in table A1.3-2.

Table A1.3-2 FC 03 query

Slave address

Function code 3

Register start address

Number of registers

Error check field CRC

1 byte 1 byte = 3 high byte low byte high byte low byte low byte high byte

The addressed device responds normally with the message witch is shown in the table A1.3-3 (message length: 4 + [1 or 2 Counterbyte] + [Number of registers × 2 bytes]).

Table A1.3-3 Corresponding FC 03 answer

Slave address

Function code 3

Byte count (of the registers)

0 - N Registers Error check field CRC

1 byte 1 byte = 3 1 or 2 byte (depends on parameter

[0057])

high byte low byte low byte high byte

Table A1.3-4 shows the output registers of the device.

Table A1.3-4 MODBUS output register

Reg. addr. Output register Unit Symbol Description

0 Measure status - - Table A1.5-1 1 Low byte: Op. mode

High byte: Breaker 1 position - - Op.mode:

see table A1.5-2 Breaker position: see table A1.5-3

2 Low byte: Breaker 2 position High byte: Breaker 3 position

- - see table A1.5-3

3 RTC/year y - - 4 RTC/month m - - 5 RTC/day d - - 6 RTC/hour h - - 7 RTC/minute min - - 8 RTC/second sec - - 9 RTC/millisecond ms - - 10 Gen-Frequency (× 100) Hz GenFreq Measured via L1-L2 11 BUS1-Frequency (× 100) Hz Bus1Freq Measured via L1-L2 12 BUS2-Frequency (× 100) Hz Bus2Freq Measured via L1-L2 13 Generator ground voltage - U1N V GenVoltL1 L1-N 14 - U2N V GenVoltL2 L2-N 15 - U3N V GenVoltL3 L3-N 16 Generator line voltage - U12 V GenVL1_L2 L1-L2 17 - U13 V GenVL1_L3 L1-L3 18 - U31 V GenVL2_L3 L2-L3 19 Average Generator line voltage V GenAvVolt 20 Average Generator line voltage (× 10) %

Page 17: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 17/55

Reg. addr. Output register Unit Symbol Description

21 Ground voltage 1 V Ugnd1 22 Ground voltage 2 V Ugnd2 23 Generator current A GenCurL1 L1 24 A GenCurL2 L2 25 A GenCurL3 L3 26 Average Gen.current A GenAvCur 27 Short circuit current A GenSCurL1 L1 28 A GenSCurL2 L2 29 A GenSCurL3 L3 30 Differential current Igen-Idiff A GenDiffL1 L1 31 A GenDiffL2 L2 32 A GenDiffL3 L3 33 ANSI 87N A ∑ (Idiff1-3)– Ignd2 34 Ground 1 current A Ignd1 35 Ground 2 current A Ignd2 36 Active power kW GenPowA_L1 L1 37 kW GenPowA_L2 L2 38 kW GenPowA_L3 L3 39 ∑ (Active power) kW GenPowA ∑ (L1-L3) 40 Reactive power - phase L1 kvar GenPowQ_L1 L1 41 - phase L2 kvar GenPowQ_L2 L2 42 - phase L3 kvar GenPowQ_L3 L3 43 Total reactive power kvar GenPowQ ∑ (L1-L3) 44 Total apparent power kVA GenPowS ∑ (L1-L3) 45 Ground 1 active power kW 46 Ground 1 reactive power kvar 47 Ground 2 active power kW 48 Ground 2 reactive power kvar 49 Negative sequence current IANSI46 A L1-L3 50 Negative seq. voltage UANSI47 V 51 Residual voltage 59N V L1-L3 52 Power factor L1 L1 53 Power factor L2 L2 54 Power factor L2 L3 55 Total power factor L1-L3 56 BUS1 voltage L1-N V U1 57 - voltage L2-N V U2 58 - voltage L3-N V U3 59 - voltage L1-L2 V U12 60 - voltage L1-L3 V U13 61 - voltage L2-L3 V U23 62 - average voltage V Uavr 63 BUS2 voltage L1-N V U1 64 - voltage L2-N V U2 65 - voltage L3-N V U3 66 - voltage L1-L2 V U12 67 - voltage L1-L3 V U13 68 - voltage L2-L3 V U23 69 - average voltage V Uavr 70-71 Absolut power counter - active kWh P+ 4 bytes each counter 72-73 - reverse kWh P- 74-75 - reactive kvarh Q+ 76-77 - reactive (ind.) kvarh Q- 78-79 Temp. power counter - active kWh P+ 4 bytes each counter

Page 18: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 18/55

Reg. addr. Output register Unit Symbol Description

80-81 - reverse kWh P- 82-83 - reactive kvarh Q+ 84-85 - reactive (ind.) kvarh Q- 86-87 Working hours h 4 bytes counter 88 Working minutes min 2 bytes 89 Working seconds sec 2 bytes 90 Shunt #1 circuit voltage (× 10) Vac/dc 91 Shunt #2 circuit voltage (× 10) Vac/dc 92 Aux power voltage (× 10) Vac/dc Uaux/bat 93 Device temperature °C 94 System busy (× 10) % 95-99 Not in use 100 Function inputs (basic unit) Table A1.5-14 101 Function outputs (basic unit) Table A1.5-15 102 Function inputs (ext.board) Table A1.5-16 103 Function inputs (ext.board) Table A1.5-17 104 Function inputs (ext.board) Table A1.5-18 105 Function outputs (ext.board) Table A1.5-19 106 Function outputs (ext.board) Table A1.5-20 107 ANSI protection status #1 Table A1.5-4 108 ANSI protection status #2 Table A1.5-5 109 ANSI protection status #3 Table A1.5-6 110 ANSI protection status #4 Table A1.5-7 111 ANSI protection status #5 Table A1.5-8 112 Alarm status #1 Table A1.5-9 113 Alarm status #2 Table A1.5-10 114 Alarm status #3 Table A1.5-11 115 Alarm status #4 Table A1.5-12 116 Alarm status #5 Table A1.5-13 117-119

Not in use

120 Gen. number/priority/net - - Table A1.5-30 121 BCG process status - - Table A1.5-31 122 BCG own status - - Table A1.5-32 123 BCG net status - - Table A1.5-33 124 Start/stop standby - - Table A1.5-34 125 BCG fail status - - Table A1.5-35 126 BCG last start/stop source - - Table A1.5-36 127 Net used power (×10) % Pr_net +: active, -: reverse 128 Net used power kW Pa_net +: active, -: reverse 129 Net standby power kW Pstby 130 Net available power kW Pa_spi 131 Generator power kW Pa_gen +: active, -: reverse 132 Generator power (×10) % Pr_gen +: active, -: reverse 133 Generator current A Ia_avr 134 Generator current (×10) % Ir_avr 135 Generator voltage V Ua_gen_avr 136 Generator frequency (×100) Hz fgen 137 Generator power factor (×100) cos ϕ PF +: cap, -: ind 138 BUS voltage V Ua_bus1_avr 139 BUS frequency (×100) Hz fbus1 140 Setpoint for the asy. load sharing % - 141 Setpoint for the asy. PF controller

(×100) cos ϕ

Page 19: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 19/55

Reg. addr. Output register Unit Symbol Description

142 Engine speed rpm 143-159 Not in use 160-161 Active power L1 kW GenPowA_L1 L1 phase (range: 0-999999) 162-163 Active power L2 kW GenPowA_L2 L2 phase (range: 0-999999) 165-165 Active power L3 kW GenPowA_L3 L3 phase (range: 0-999999) 166-167 Total active power kW GenPowA ∑(L1-L3) (range: 0-999999) 168-169 Total reactive power kvar GenPowQ ∑(L1-L3) (range: 0-999999) 170-199 Not in use 200 Analog input 1 (× 10) Device input 201 Analog input 2 (× 10) Device input 202 Analog input 3 (× 10) Device input 203 Analog input 4 (× 10) Device input 204 Analog output 1 (× 10) mA Device output 205 Analog output 2 (× 10) mA Device output 206 Analog output 3 (× 10) mA Device output 207 Analog output 4 (× 10) mA Device output 208 PT100-1 analog input 5 (× 10) °C Extension board 209 PT100-2 analog input 6 (× 10) °C 210 PT100-3 analog input 7 (× 10) °C 211 PT100-4 analog input 8 (× 10) °C 212 PT100-5 analog input 9 (× 10) °C 213 PT100-6 analog input 10 (× 10) °C 214 PT100-7 analog input 11 (× 10) °C 215 PT100-8 analog input 12 (× 10) °C 216 PT100-9 analog input 13 (× 10) °C 217 PT100-10 analog input 14 (× 10) °C 218 PT100-11 analog input 15 (× 10) °C 219 PT100-12 analog input 16 (× 10) °C 220 PT100-13 analog input 17 (× 10) °C 221 PT100-14 analog input 18 (× 10) °C 222 PT100-15 analog input 19 (× 10) °C 223 PT100-16 analog input 20 (× 10) °C 224 MTU: Speed rpm PV 110002 Factor: 0.1 225 MTU: Injection quantity 0 – 120 % % PV 110072 Factor: 0.1 226 MTU: Temp. Lube oil °C PV 110140 Factor: 0.1 227 MTU: Temp. Coolant °C PV 110126 Factor: 0.1 228 MTU: Temp. Charge air °C PV 110131 Factor: 0.1 229 MTU: Temp. Fuel °C PV 110152 Factor: 0.1 230 MTU: Temp. Coolant intercooler °C PV 110137 Factor: 0.1 231 MTU: Pressure Lube oil bar PV 110026 Factor: 0.01 232 MTU: Pressure Charge air bar PV 110049 Factor: 0.01 233 MTU: Pressure Fuel bar PV 110046 Factor: 0.01 234 MTU: Pressure Fuel (common rail) bar PV 110053 Factor: 0.1 235-655 Not in use -

656 [0656] COOLING DOWN – time sec/10 0 - 9999 657-899

Not in use -

900 [0900] P.M. - switch by event Event nr. 0 - 9999 901 [0901] - characteristic Textring 0 = “ON->OFF”, 1 = “OFF->ON”

902 [0902] START - check limits Textring 0 = “SINGLE” , 1 = “AVERAGE”

903 [0903] - 1.load limit %/10 0 - 9999 904 [0904] - delay sec 0 - 9999 905 [0905] - 2.load limit %/10 0 - 9999 906 [0906] - delay sec 0 - 9999

Page 20: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 20/55

Reg. addr. Output register Unit Symbol Description

907 [0907] - low frequency Hz/100 0 - 9999 908 [0908] - delay sec 0 - 9999 909 [0909] - high current %/10 0 - 9999 910 [0910] - delay sec 0 - 9999 911 [0911] STOP - with priority Textring 0 = “LOW” , 1 = “HIGH” 912 [0912] - block by event Event nr. 0 - 9999 913 [0913] - remaining load %/10 0 - 9999 914 [0914] - remaining curr. %/10 0 - 9999 915 [0915] - delay sec 0 - 9999 916 [0916] Stop without run.down Textring 0 = “NO”, 1 = “YES” 917-924 Not in use - 925 [0925] SYM. - switch by event Event nr. 0 - 9999 926 [0926] - characteristic Textring 0 = “ON->OFF”, 1 = “OFF->ON”

927 [0927] - break time sec/10 0 - 9999 928 [0928] - pulse time sec/10 0 - 9999 929 [0929] - deadband %/10 0 - 9999 930-931

Not in use -

932 [0932] ASYM. - switch by event Event nr. 0 - 9999 933 [0933] - characteristic Textring 0 = “ON->OFF”, 1 = “OFF->ON”

934 [0934] - setpoint % 0 - 100 935 [0935] - analog input Textring 0="none",1="CURR.1",2="CURR.2"

,3="CURR.3",4="CURR.4" 936 [0936] - range minimum % 0 - 100 937 [0937] - range maximum % 0 - 100 938 [0938] - next attempt sec 0 - 9999 939 [0939] Allowed load difference %/10 0 - 9999 940 [0940] - delay sec 0 - 9999 941-944

Not in use -

945 [0945] F.C.- switch by event Event nr. 0 - 9999 946 [0946] - characteristic Textring 0 = “ON->OFF”, 1 = “OFF->ON”

947 [0947] - idle speed Hz/100 0 - 9999 948 [0948] - full load Hz/100 0 - 9999 949 [0949] - break time sec/10 0 - 9999 950 [0950] - pulse time sec/10 0 - 9999 951 [0951] - deadband %/10 0 - 9999 952-953

Not in use -

954 [0954] RANGE - maximum Hz/100 0 - 9999 955 [0955] - minimun Hz/100 0 - 9999 956-3999

Not in use -

4000 Gen- Frequency (*100) Hz GenFreq Measured via L1-L2 4001 Bus1-Frequency (*100) Hz Bus1Freq Measured via L1-L2 4002 Bus2-Frequency (*100) Hz Bus2Freq Measured via L1-L2 4003 Generator line voltage - U12 V GenVL1_L2 L1-L2 4004 - U13 V GenVL1_L3 L1-L3 4005 - U31 V GenVL2_L3 L2-L3 4006 Generator current A GenCurL1 L1 4007 A GenCurL2 L2 4008 A GenCurL3 L3 4009 ∑ (Active power) kW GenPowA ∑(L1-L3) 4010 Total reactive power kvar GenPowQ ∑(L1-L3) 4011 Total apparent power kVA GenPowS ∑(L1-L3) 4012 Total power factor L1-L3 4013 BUS1 - average voltage V Uavr

Page 21: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 21/55

Reg. addr. Output register Unit Symbol Description

4014 BUS2 - average voltage V Uavr 4015-4016 Absolut power counter - active kWh P+ 4 bytes

4017-4018 - reactive kvarh Q+ 4 bytes

4019 ANSI protection status #1 Table A1.5-4 4020 ANSI protection status #2 Table A1.5-5 4021 ANSI protection status #3 Table A1.5-6 4022 ANSI protection status #4 Table A1.5-7 4023 ANSI protection status #5 Table A1.5-8 4024 Alarm status #1 Table A1.5-9 4025 Alarm status #2 Table A1.5-10 4026 Alarm status #3 Table A1.5-11 4027 Alarm status #4 Table A1.5-12 4028 Alarm status #5 Table A1.5-13 4029-9999

Not in use

10000 Actual number of nodes in the CANBUS net

- - 1 - 14

10001-10008 CANBUS data of device 1 - - Table A1.5-39

10009-10016 CANBUS data of device 2 - - Table A1.5-39

10017-10024 CANBUS data of device 3 - - Table A1.5-39

10025-10032 CANBUS data of device 4 - - Table A1.5-39

10033-10040 CANBUS data of device 5 - - Table A1.5-39

10041-10048 CANBUS data of device 6 - - Table A1.5-39

10049-10056 CANBUS data of device 7 - - Table A1.5-39

10057-10064 CANBUS data of device 8 - - Table A1.5-39

10065-10072 CANBUS data of device 9 - - Table A1.5-39

10073-10080 CANBUS data of device 10 - - Table A1.5-39

10081-10088 CANBUS data of device 11 - - Table A1.5-39

10089-10096 CANBUS data of device 12 - - Table A1.5-39

10097-10104 CANBUS data of device 13 - - Table A1.5-39

10105-10112 CANBUS data of device 14 - - Table A1.5-39

Page 22: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 22/55

A1.3.4 Function code 06 PRESET SINGLE REGISTER

This function allows the master system to send an instruction or to change settings of the device. Corresponding to the MODBUS protocol the device expect the query (message length: 8 bytes) witch is shown in the table A1.3-5. Notice that only one instruction can be send per query. The normal response of the device is to retransmit the query. The master can send a broadcast mode (slave address = 0). In this case all slaves will perform the desired instruction but no slave will retransmit the message.

Table A1.3-5 FC 06 query

Slave address

Function code 6 Register address Data value Error check field

CRC 1 byte 1 byte = 6 high byte low byte high byte low byte low byte high byte

Table A1.3-6 shows the possible commands which can be send with function code 6 to the device.

Table A1.3-6 Commends of FC 06

Reg. Addr.

Instruction/ change request Content of data value (range) Unit

0 No command x (don’t care) -

1 Acknowledge x - 2 Diesel start order x - 3 Diesel start next order x - 4 Diesel stop order x - 5 Diesel stop next order x - 6 Set operation mode 0: Manual, 1: Automatic - 7 Set breaker operating mode see table A1.5-2

- 8 Reset temp. power counter x - 9-19 Not in use - 20 Priority of generator 1-14 - 21 Asym. load sharing setpoint 0 - 200 % 22 Asym. PF controller setpoint 0 - 100 cos ϕ 23 RTC/year 2003-2040 y 24 RTC/month 1-12 m 25 RTC/day 1-31 d 26 RTC/hour 0-23 h 27 RTC/minute 0-59 min 28 RTC/second 0-59 sec 29 RTC/millisecond 0-999 ms 30 Event [0330] - 31 Event [0331] - 32 Event [0332] - 33 Event [0333] - 34 Event [0334] - 35 Event [0335] - 36 Event [0336] - 37 Event [0337] - 38 Event [0338] - 39 Event [0339] - 40 Event [0340] - 41 Event [0341]

0 = reset event 1 = set event Use the MODBUS events to trigger a breaker or to drive a binary output. Note: refer to the chapter 2.5 “Breaker control” in the User’s Manual to use the MODBUS events with the breaker control function.

-

Page 23: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 23/55

42 Event [0342] - 43 Event [0343] - 44 Event [0344] - 45 Event [0345] - 46 Event [0346] - 47 Event [0347] - 48 Event [0348] - 49 Event [0349]

- 50-655 Not in use - 656 [0656] COOLING DOWN -

time 0 - 9999 sec/10

657-899 Not in use -

900 [0900] P.M. - switch by event 0 - 9999 Event nr.

901 [0901] - characteristic 0 = “ON->OFF”, 1 = “OFF->ON” Textring 902 [0902] START - check limits 0 = “SINGLE” , 1 = “AVERAGE” Textring 903 [0903] - 1.load limit 0 - 9999 %/10 904 [0904] - delay 0 - 9999 sec 905 [0905] - 2.load limit 0 - 9999 %/10 906 [0906] - delay 0 - 9999 sec 907 [0907] - low frequency 0 - 9999 Hz/100 908 [0908] - delay 0 - 9999 sec 909 [0909] - high current 0 - 9999 %/10 910 [0910] - delay 0 - 9999 sec 911 [0911] STOP - with priority 0 = “LOW” , 1 = “HIGH” Textring 912 [0912] - block by event 0 - 9999 Event nr. 913 [0913] - remaining load 0 - 9999 %/10 914 [0914] - remaining curr. 0 - 9999 %/10 915 [0915] - delay 0 - 9999 sec 916 [0916] Stop without run.down 0 = “NO”, 1 = “YES” Textring 917-924 Not in use - 925 [0925] SYM. - switch by event 0 - 9999 Event nr. 926 [0926] - characteristic 0 = “ON->OFF”, 1 = “OFF->ON” Textring 927 [0927] - break time 0 - 9999 sec/10 928 [0928] - pulse time 0 - 9999 sec/10 929 [0929] - deadband 0 - 9999 %/10 930-931 Not in use -

932 [0932] ASYM. - switch by event

0 - 9999 Event nr.

933 [0933] - characteristic 0 = “ON->OFF”, 1 = “OFF->ON” Textring 934 [0934] - setpoint 0 - 100 % 935 [0935] - analog input 0="none",1="CURR.1",2="CURR.2",3="CURR.3",4="CURR.4" Textring 936 [0936] - range minimum 0 - 100 % 937 [0937] - range maximum 0 - 100 % 938 [0938] - next attempt 0 - 9999 sec 939 [0939] Allowed load difference 0 - 9999 %/10 940 [0940] - delay 0 - 9999 sec 941-944 Not in use - 945 [0945] F.C.- switch by event 0 - 9999 Event nr. 946 [0946] - characteristic 0 = “ON->OFF”, 1 = “OFF->ON” Textring 947 [0947] - idle speed 0 - 9999 Hz/100 948 [0948] - full load 0 - 9999 Hz/100 949 [0949] - break time 0 - 9999 sec/10 950 [0950] - pulse time 0 - 9999 sec/10 951 [0951] - deadband 0 - 9999 %/10 952-953 Not in use - 954 [0954] RANGE - maximum 0 - 9999 Hz/100 955 [0955] - minimun 0 - 9999 Hz/100

Page 24: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 24/55

A1.3.5 Wiring and adjustment of communication port

Connect the receive and transmit lines according to the pin assignment of SYMAP® RS422/485 port. If more than one SYMAP® has to be connected to the master system no further RS422/485 Communication port are required. After transmission of each message SYMAP® set the communication lines into high impedance state. Thus the communication lines (TxD-A , TxD-B , RxD-A and RxD-B) can be connected in parallel of all SYMAP® devices. The master system select the SYMAP® slave with it’s slave address. The diagram in the appendix shows the wiring of the RS422/485 communication port of SYMAP® with the master system. The receive lines of the SYMAP® slave with the longest distance to the master system should be terminated with a 120Ω resistor. The same resistor will be required for the receive lines of the master system. The RS422/485 communication parameter [0300] to [0303] serve the adjustment of the RS422/485 communication port and protocol. Table A1.3-7 shows the adjustment possibilities for the communication.

Table A1.3-7 Adjustment possibilities for the communication

Adjustment set with parameter

selection [range]

Port selection [0300] Selection of physical communication standard. RS422: physical standard of RS422 active. RS485: physical standard of RS485 active.

slave address [0301] This parameter defines the slave address of the device. 1-255: Possible address selection.

baud rate of communication

[0302] Baud rate for the communication. 9600...57600 Possible baud rate selection.

protocol selection

[0303] This parameter defines the protocol standard: PC-Tools: reserved for all PC applications. MODBUS: activates the MODBUS protocol.

transmission mode

fixed RTM mode: SYMAP® allows only the Remote Terminal Mode and thus a 8 bit coding system and a CRC 16 error checking.

start bit fixed 1 Stop bits fixed 1 or 2 (depends on parameter [0054]) parity fixed Non

Page 25: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 25/55

Figure A1.3-1 Connection diagram for RS422 communication

RS 422 TxDA

RS 422 TxDB

RS 422 RxDA

RS 422 RxDB

SUPERVISOR SYSTEM

-R R120Ω

¼ W

120Ω ¼ W

-R

-X2.2 27 26 29 28 *

*

-X2.2 27 26 29 28 *

-X2.227 26 29 28 *

* The cable for the RS 422 HAVE TO BE SHIELDED.

The Shielding HAVE TO BE CONNECTED ON BOTH SIDES ON EARTH. A POTENTAIL EQUALISATION NOT LESS THAN 10 TIMES AS THE

SHIELD SECTION HAVE TO BE INSTALLED.

The length between the earth thread bolt and the bared shielding. HAVE TO BE AS SHORT AS POSSIBLE.

The termination resistors HAVE TO BE INSTALLED ON BOTH ENDS OF THE LINE.

IT MUST BE AN EARTH SYSTEM, ACCORDING TO DIRECTIONS in all cubilcles and theirs Components.

Page 26: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 26/55

Figure A1.3-2 Connection diagram for RS485 communication

* The cable for the RS 485 (MODBUS) HAVE TO BE SHI ELDED.

The Shielding HAVE TO BE CONNECTED ON BOTH SIDES ON EARTH. A POTENTAIL EQUALISATION NOT LESS THAN 10 TIMES AS THE

SHIELD SECTION HAVE TO BE INSTALLED.

The length between the earth thread bolt and the bared shielding. HAVE TO BE AS SHORT AS POSSIBLE.

The termination resistors HAVE TO BE INSTALLED ON BOTH ENDS OF THE LINE.

IT MUST BE AN EARTH SYSTEM, ACCORDING TO DIRECTIONS in all cubilcles and theirs Components.

RS 485 TD (A)

RS 485 TD (B)

SUPERVISOR SYSTEM

-R 120Ω ¼ W

RS 485 TD (A)

RS 485 TD (B)

120Ω ¼ W

-R

-X2.226 27 *

-X2.2 26 27 *

-X2.2 26 27 *

*

Page 27: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 27/55

Figure A1.3-3 Connection diagram for CANBUS communication

• • • • • • • • CAN1_H CAN1_L

CAN1_H

CAN1_L

-R120Ω¼ W

-R120Ω¼ W

-X2.2 22 23 *-X2.2 22 23 *-X2.2 22 23 *

* The cable for the CANBUS HAVE TO BE SHIELDED.

The Shielding HAVE TO BE CONNECTED ON BOTH SIDES ON EARTH. A POTENTAIL EQUALISATION NOT LESS THAN 10 TIMES AS THE

SHIELD SECTION HAVE TO BE INSTALLED.

The length between the earth thread bolt and the bared shielding. HAVE TO BE AS SHORT AS POSSIBLE.

The termination resistors HAVE TO BE INSTALLED ON BOTH ENDS OF THE LINE.

IT MUST BE AN EARTH SYSTEM, ACCORDING TO DIRECTIONS in all cubilcles and theirs Components.

Page 28: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 28/55

A1.4 CANBUS

The device offers two CANBUS interfaces for field bus communication. Note: The high/low lines of the two devices with the longest distance to each other should be terminated with a 120Ω resistor on both sides.

A1.4.1 CANBUS1

The CANBUS1 interface is used for power management applications. With this interface max. 14 main devices can be linked together. Furthermore this net can be linked to a PC monitor system (over a CAN-Card) for data acquisition. Note: For the communication to the extension boards CAM216 and CAM218, you must use this same identifier setting also for the extension board.

Table A1.4-1 CANBUS identifier for all objects

CANBUS identifier for all objects Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

CANBUS priority 0-7 CANBUS object number 0-9 Device CANBUS identifier 1-14

Table A1.4-2 CANBUS objects 1, 2 and 6 to 9

1. CANBUS object: Command data (cycle: if request) Byte Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

0 Global command

Synchro- nize time

Start/stop history Device CANBUS identifier 1-14

(if change/command request) 1 Change / command request (see table A1.5-21) 2 New value (if change request) 3 4 5 6 7

2. CANBUS object: Event/measure data (cycle: 1 sec or if changed) Byte Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

0 event [0377] event [0376] event [0375] event [0374] event [0373] event [0372] event [0371] event [0370] 1 event [0385] event [0384] event [0383] event [0382] event [0381] event [0380] event [0379] event [0378] 2 3 4 5 6 7 Voltage (%) (Range: 0 - 255 %)

6. CANBUS object: PM data (cycle: 500 ms, send by PM Netmaster only if a PM-limit is reached) Byte Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

0 Generator fault number 1-14 Start/stop generator number 1-14

1 Currentlimit

for Stop (Event [0914])

Loadlimit for Stop

(Event [0913])

High current (Event [0909])

Low freq. (Event [0907])

2. Loadlimit (Event [0905])

1. Loadlimit (Event [0903])

2 Fault actual value - low byte 3 - high byte 4 Fault limit - low byte 5 - high byte 6 PM timer (sec) - low byte 7 - high byte

Page 29: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 29/55

7. CANBUS object: Status/measure data (cycle: 250 ms) Byte Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

0 CB ON Automatic Net number 0-3 Diesel status (see table A1.5-22) 1 PF asymm.

ON PF contr.

ON Volt. contr.

ON Freq. contr.

ON LS asymm.

active LS asymm.

ON LS ON PM ON

2 Blackout volt. limit

PM: block stopping BCR active PM master PM limit status (see table A1.5-24)

3 Blackout Blackout Interlock BCR key Load

reduction Load diff. (Delay event)

Load diff. (Limit event) Stopping Starting

4 LS-PTI MODE 4

LS-Shaft generator

PF limit deactive

PM: work count. reached

PM: load ranges active

PM: block own start

5 Current (A) - low byte 6 Current (A) - high byte 7 0 = cap (+)

1 = ind (-) Power factor (cosϕ × 100)

8. CANBUS object: Measure data (cycle: 500 ms) Byte Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

0 Power (%) (Range: 0 - 255 %) 1 Current (%) (Range: 0 - 255 %) 2 Power (kW) - low byte 3 Rev. power Power (kW) - high byte (Range: 0 - 32767 kW) 4 Voltage [V] - low byte 5 - high byte (Range: 0 – 65535 V) 6 Frequency (Hz × 100) - low byte 7 - high byte

9. CANBUS object: Parameter data (cycle: 2 sec or if changed) Byte Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

0 Generator priority 1-14 (parameter [0181]) Generator number 1-14 (parameter [0180]) 1 Nominal power (kW) - low byte (parameter [0202]) 2 - high byte 3 Asymm. load setpoint (%) (parameter [0934]) 4 Asymm. PF setpoint (cosϕ × 100) (parameter [0979]) 5 Nominal current (A) - low byte (parameter [0200]) 6 - high byte

7 STOP with high

priority (parameter [0911])

Manual mode type (parameter [0191])

mains monitor: REDUNDANT

(parameter [0231])

Page 30: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 30/55

A1.4.2 CANBUS2

The CANBUS2 interface can be used to link the device to a monitor system or to other diesel control systems.

A1.4.2.1 CANopen (via CANBUS2)

A1.4.2.1.1 Introduction

SYMAP® offers via the CANBUS2 communication port the CANopen protocol in accordance with the international standard:

CANopen Application Layer and Communication Profile

Draft Standard 301, Version 4.02, 13 February 2002 CAN in Automation (CiA)

The protocol has the following general features:

• CANopen is a “master – slave” communication, and requires one master (usually the monitor system).

• SYMAP® device operates only as a slave within this network. • SYMAP ® device will respond to service requests (SDOs: Service Data Objects) of the

master or other slave devices. • SYMAP® device will transmit or receive process data (PDOs: Process Data Objects)

only, if the related PDOs are enabled by the master, and SYMAP® device is in the state “operational”.

• Up to 127 slaves can be connected to a CANopen network, which is controlled by one master.

• The following baudrates are supported: 15.6 kBd, 25 kBd, 50 kBd, 100 kBd, 125 kBd, 250 kBd, 500 kBd and 1 MBd.

• Only CAN standard frames with 11-bit identifier field are supported. • SYMAP® device will respond to a service request within 2-5 ms.

A1.4.2.1.2 Parameter setting

For the adjustment of the protocol, the communication parameters within the system settings are available. (Menu: SETTING > CHANGE > SYSTEM > COMMUNICATION):

• Parameter [0314] (“CANBUS2 - com.port”) enables the comm. port. • Parameter [0315] (“number of nodes”) has no function for CANopen. • Parameter [0316] (“identifier”) sets the slave address. Range: 1 - 127. • Parameter [0317] (“identifier size”) has no function for CANopen. • Parameter [0318] (“baudrate”) sets the comm. speed. • Parameter [0319] (“application”) must be set to “CANopen”.

Page 31: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 31/55

A1.4.2.1.3 Network management (NMT)

The network management requires that one device fullfils the function of the NMT master. This will be usually the monitor system. Through NMT services, slave devices can be controlled by the master device. The slaves can be initialised, started, monitored, resetted or stopped through the object which is shown in the table A1.4-3. Table A1.4-3 NMT communication object

Communication object name NMT service Direction Master -> Slave Identifier field 0 Data field length: 2 bytes Byte Name Description

0 NMT command specifier

1: Start node 2: Stop node 128: Enter pre-operational state 129: Reset node 130: Reset communication

1 Node-ID 0: Address all nodes 1-127: Address specific node

The addressed slave will not confirm this service, but will change the state and/or perform the requested command.

SYMAP® device will send in every state periodically the sign of life – object, which is shown in the table A1.4-4.

Table A1.4-4 SYMAP® sign of life-object

Communication object name Heartbeat Direction Slave -> Master/other Slaves Identifier field 700h + device identifier (1-127 d) Data field length: 1 byte Byte Name Description

0 State of the Heartbeat producer

0: Bootup 4: Stopped 5: Operational 127: Pre-operational

The cycle time of the Heartbeat object (default: 1000 ms) can be changed through a SDO (see next chapter).

SYMAP® device will enter the state “pre-operational” automatically after Power-ON. The master must place the device in the operational state to obtain the process data. SYMAP® device will transmit or receive process data (PDOs) only if the related PDOs are enabled by the master, and the device is in the state “operational”.

Page 32: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 32/55

A1.4.2.1.4 Object Dictionary introduction

The Object Dictionary is a collection of all data items which have an influence on the behavior of the application objects, the communication objects and the state machine of the SYMAP® device. The Object Dictionary is accessible via the network through the service data objects (SDO). All Object Dictionary items can be read through the SDOs, and some of them can be written, in order to change the communication behavior of the SYMAP® device. The items are organized in unique numbers (index) from 0-FFFFh. Every item can have one ore more subindex from 0-FFh.

Table A1.4-5 shows the items which are supported by the SYMAP® device.

Table A1.4-5 Object Dictionary mandatory items

Index Sub-index Name Description Access Data-

type Default

1000h - Device type Read only U32 0 1001h - Error register Read only U8 0 1017h - Producer Heartbeat time Read/Write U16 1000 ms 1018h 0 Identity Object Number of entries Read only U8 4 1018h 1 Identity Object Vendor ID Read only U32 0 1018h 2 Identity Object Product code Read only U32 0 1018h 3 Identity Object Revision number Read only U32 0 1018h 4 Identity Object Serial number Read only U32 - 1400h The comm. parameter for the Rx PDO are described in Chapter A1.4.2.1.6. 1600h The mapping for the Rx PDO are described in Chapter A1.4.2.1.6. 1800h- 1815h The comm. parameter for the 22 Tx PDOs are described in Chapter A1.4.2.1.6.

1A00h- 1A15h The mapping for the 22 Tx PDOs are described in Chapter A1.4.2.1.6.

Page 33: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 33/55

A1.4.2.1.5 Service Data Objects (SDO)

The SDOs provides the access to the items of the Object Dictionary.

A1.4.2.1.5.1 SDO Upload

To read an item of the Object Dictionary the following object can be send to the slave (see table A1.4-6):

Table A1.4-6 SDO upload request

Communication object name SDO upload request Direction Master -> Slave Identifier field 600 h + 0 (all) or device identifier (1-127 d) Data field length: 8 bytes Byte Name Description

0 Specifier byte Bit 0-4: always 0 Bit 5-7: 2 (client command specifier)

1 Index (low byte) Index of the item to be read 2 Index (high byte) Index of the item to be read 3 Subindex Subindex of the item to be read

4-7 reserved -

The adressed slave will respond with the following object, if the item is supported (see table A1.4-7):

Table A1.4-7 SDO upload response

Communication object name SDO upload response Direction Slave -> Master Identifier field (hex) 580 h + device identifier (1-127 d) Data field length: 8 bytes Byte Name Description

0 Specifier byte

Bit 0 : 0 (data set size not indicated) Bit 1 : 1 (expedited transfer) Bit 2-3: 0 (number of bytes with no data) Bit 4 : 0 (reserved) Bit 5-7: 2 (server command specifier)

1 Index (low byte) Index of the item to be read 2 Index (high byte) Index of the item to be read 3 Subindex Subindex of the item to be read

4-7 Data The content of the object dictionary item

If the item is not supported (or does not exist) an abort SDO transfer protocol will be issued (see table A1.4-8):

Table A1.4-8 Abort SDO transfer protocol Communication object name Abort SDO transfer protocol Direction Slave -> Master Identifier field (hex) 580 h + device identifier (1-127 d) Data field length: 8 bytes Byte Name Description

0 Specifier byte Bit 0-4: 0 (reserved) Bit 5-7: 4 (command specifier)

1 Index (low byte) Index of the item 2 Index (high byte) Index of the item 3 Subindex Subindex of the item

4-7 Abort code Refer to CiA Draft Standard 301, Table 20

Page 34: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 34/55

A1.4.2.1.5.2 SDO Download

To write an item, the following object can be send to the slave (see table A1.4-9):

Table A1.4-9 SDO download request The adressed slave will respond with the following object if the item is supported (see table A1.4-10):

Table A1.4-10 SDO download response

Communication object name SDO download response Direction Slave -> Master Identifier field (hex) 580 h + device identifier (1-127 d) Data field length: 8 bytes Byte Name Description

0 Specifier byte Bit 0-4: always 0 Bit 5-7: 3 (server command specifier)

1 Index (low byte) Index of the item to be read 2 Index (high byte) Index of the item to be read 3 Subindex Subindex of the item to be read

4-7 reserved -

If the item is not supported (or read only) an abort SDO transfer protocol will be issued (see table A1.4-8).

Communication object name SDO download request Direction Master -> Slave Identifier field (hex) 600 h + 0 (all) or device identifier (1-127 d) Data field length: 8 bytes Byte Name Description

0 Specifier byte

Bit 0 : size indicator Bit 1 : transfer type Bit 2-3: number of bytes with no data Bit 4 : 0 (reserved) Bit 5-7: 1 (client command specifier)

1 Index (low byte) Index of the item to write 2 Index (high byte) Index of the item to write 3 Subindex Subindex of the item to write

4-7 Data The new content of the object dictionary item

Page 35: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 35/55

A1.4.2.1.6 Process Data Objects (PDO)

The process data objects are used to transfer application data (e.g. measure/status data, commands or instructions) between SYMAP® device and the monitor system or other slave devices. The application data are organized in one receive (RPDO) and 22 transmit (TPDO) process data objects. Every PDO is described in the object dictionary with the communication parameters and the mapping. These can be read via the SDOs. The communication parameters defines the communication behavior of the PDO on the CANBUS network (e.g. the CANBUS identifier, the cycle time). Some of these parameters can be changed with the SDOs, in order to adjust the communication behavior. The mapping describes the distribution of the application data over the 8 bytes of the data field of the PDO (usually there are more than one application data transported with one PDO). The mapping is fixed and can not be changed.

A1.4.2.1.6.1 Receive Process Data Object (RPDO)

To send commands or instructions to the SYMAP® device one RPDO is defined. The comm. parameters and the mapping are defined in the object dictionary as follows (see table A1-4.11):

Table A1.4-11 RPDO Object Dictionary item

Index Sub-index Name Description Access Data-

type Default

1400h 0 RPDO 1 Comm. Parameter Number of entries Read only U8 2 1400h 1 RPDO 1 Comm. Parameter PDO valid/COB-ID Read/Write U32 valid, 200 h + device id. 1400h 2 RPDO 1 Comm. Parameter Transmission type Read only U8 254 1600h 0 RPDO 1 Mapping Number of entries Read only U8 2 1600h 1 RPDO 1 Mapping 1. application object Read only U16 - 1600h 2 RPDO 1 Mapping 2. application object Read only U16 -

SYMAP® device will accept this object only if the RPDO is marked as valid and the received identifier matches the COB-ID (dictionary index: 1400 h, subindex: 1). Over this RPDO two words (4 bytes) are transported to the SYMAP® device. The first word (byte 0-1) is the instruction number and the second word (byte 2-3) additional data values. Only new instructions will cause an device reaction: the instruction will be only executed if either the instruction nr. (byte 0-1) or the data value (byte 2-3) has changed.

Table A1.4-12 RPDO application data

Instruction (byte 0-1) Nr. Name

Data value (byte 2-3) Unit

0 No command x (don’t care) - 1 Acknowledge x - 2 Diesel start order x - 3 Diesel start next order x - 4 Diesel stop order x - 5 Diesel stop next order x - 6 Set operation mode 0: Manual, 1: Automatic - 7 Set breaker operating mode see table A1.5-2 - 8 Reset temp. power counter (module 19) x - 20 Priority of generator 1-14 - 21 Asym. load sharing setpoint 0 - 200 % 22 Asym. PF controller setpoint (× 100) 0 - 100 cos ϕ 30 Event [0330] … Event [03xx] 49 Event [0349]

0: reset event 1: set event -

Page 36: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 36/55

A1.4.2.1.6.2 Transmit Process Data Objects (TPDOs)

The SYMAP® measure/status data are organized in 22 TPDOs. The comm. parameter of the TPDOs are located in the dictionary from index 1800 h to 1815 h, and they all have the same features:

• All 5 subindex are supported (in order to reach the event timer). • The state of the TPDO can be changed between valid/not valid. The TPDO will be

only send on the CANBUS net if the state is valid. • RTR is not allowed. • The COB-ID can be changed. • Transmission type is 254 (manufacturer specific), so the TPDO will be send if the

event timer (subindex 5) elapses. The transmission type can not be changed. • The inhibit time has no function on the SYMAP® device. • The value of the event timer (in milliseconds) can be changed.

The mapping of the TPDOs are located in the dictionary from index 1A00 h to 1A15 h. Table A1.4-13 summarizes the presetting of the comm. parameter and the mapping of the TPDOs.

Table A1.4-13 TPDO Object Dictionary items

Communication Parameter (presetting) Mapping of the application objects data types

TPD

O

Index Valid COB-ID Event

timer Index Objects 1 2 3 4 1 1800h Yes 180h + device id 500 1A00h 4 U16 U16 U16 U16 2 1801h Yes 280h + device id 500 1A01h 3 U16 U16 U16 - 3 1802h Yes 380h + device id 500 1A02h 3 U16 U16 U16 - 4 1803h Yes 480h + device id 500 1A03h 3 U16 U16 U16 - 5 1804h No 500h - device id 500 1A04h 3 U16 U16 U16 - 6 1805h No 4F0h - device id 1000 1A05h 2 U32 U32 - - 7 1806h No 4E0h - device id 1000 1A06h 2 U32 U32 - - 8 1807h No 4D0h - device id 1000 1A07h 2 U32 U32 - - 9 1808h No 4C0h - device id 1000 1A08h 2 U32 U32 - - 10 1809h No 4B0h - device id 1000 1A09h 1 U32 - - - 11 180Ah No 4A0h - device id 500 1A0Ah 4 U16 U16 U16 U16 12 180Bh No 400h - device id 500 1A0Bh 4 U16 U16 U16 U16 13 180Ch No 3F0h - device id 500 1A0Ch 3 U16 U16 U16 - 14 180Dh No 3E0h - device id 500 1A0Dh 4 U16 U16 U16 U16 15 180Eh No 3D0h - device id 500 1A0Eh 3 U16 U16 U16 - 16 180Fh No 3C0h - device id 500 1A0Fh 4 U16 U16 U16 U16 17 1810h No 3B0h - device id 500 1A10h 4 U16 U16 U16 U16 18 1811h No 3A0h - device id 500 1A11h 2 U16 U16 - - 19 1812h No 300h - device id 500 1A12h 4 U16 U16 U16 U16 20 1813h No 2F0h - device id 500 1A13h 4 U16 U16 U16 U16 21 1814h No 2E0h - device id 500 1A14h 4 U16 U16 U16 U16 22 1815h No 2D0h - device id 500 1A15h 3 U16 U16 U16 -

The application data of each TPDO are described in the table A1.4-14.

Page 37: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 37/55

Table A1.4-14 TPDO application data TPDO Object Bytes Name Unit Type Factor Reference

1 0-1 Generator line voltage U12 V U16 1 - 2 2-3 Generator line voltage U23 V U16 1 - 3 4-5 Generator line voltage U31 V U16 1 -

1

4 6-7 Generator Frequency Hz U16 100 - 1 0-1 Generator current L1 A U16 1 - 2 2-3 Generator current L2 A U16 1 - 2 3 4-5 Generator current L3 A U16 1 - 1 0-1 Generator active power L1 kW U16 1 - 2 2-3 Generator active power L2 kW U16 1 - 3 3 4-5 Generator active power L3 kW U16 1 - 1 0-1 Generator reactive power L1 kvar U16 1 - 2 2-3 Generator reactive power L2 kvar U16 1 - 4 3 4-5 Generator reactive power L3 kvar U16 1 - 1 0-1 Generator power factor L1 cos U16 100 - 2 2-3 Generator power factor L2 cos U16 100 - 5 3 4-5 Generator power factor L3 cos U16 100 - 1 0-3 Absolut power counter - active kWh U32 1 - 6 2 4-7 Absolut power counter - reverse kWh U32 1 - 1 0-3 Absolut power counter - reactive kvarh U32 1 - 7 2 4-7 Absolut power counter – reactive (ind.) kvarh U32 1 - 1 0-3 Tempor. power counter - active kWh U32 1 - 8 2 4-7 Tempor. power counter - reverse kWh U32 1 - 1 0-3 Tempor. power counter - reactive kvarh U32 1 - 9 2 4-7 Tempor. power counter – reactive (ind.) kvarh U32 1 -

10 1 0-3 Work counter h U32 1 - 1 0-1 Bus1 line voltage U12 V U16 1 - 2 2-3 Bus1 line voltage U23 V U16 1 - 3 4-5 Bus1 line voltage U31 V U16 1 - 11 4 6-7 Bus1 Frequency Hz U16 100 - 1 0-1 Bus2 line voltage U12 V U16 1 - 2 2-3 Bus2 line voltage U23 V U16 1 - 3 4-5 Bus2 line voltage U31 V U16 1 - 12 4 6-7 Bus2 Frequency Hz U16 100 - 1 0-1 Measure status - U16 - Table A1.5-1

2 2-3 Byte2: Operating mode Byte3: Breaker 1 position - U16 - Op.mode: Table A1.5-2

Breaker position: Table A1.5-3 13 3 4-5 Byte4: Breaker 2 position

Byte5: Breaker 3 position - U16 - Table A1.5-3

1 0-1 Function inputs (basic unit) - U16 - Table A1.5-14 2 2-3 Function inputs (ext.board) - U16 - Table A1.5-16 3 4-5 Function inputs (ext.board) - U16 - Table A1.5-17 14 4 6-7 Function inputs (ext.board) - U16 - Table A1.5-18 1 0-1 Function outputs (basic unit) - U16 - Table A1.5-15 2 2-3 Function outputs (ext.board) - U16 - Table A1.5-19 15 3 4-5 Function outputs (ext.board) - U16 - Table A1.5-20 1 0-1 Alarm status #1 - U16 - Table A1.5-9 2 2-3 Alarm status #2 - U16 - Table A1.5-10 3 4-5 Alarm status #3 - U16 - Table A1.5-11 16 4 6-7 Alarm status #4 - U16 - Table A1.5-12 1 0-1 Alarm status #5 - U16 - Table A1.5-13 2 2-3 ANSI protection status #1 - U16 - Table A1.5-4 3 4-5 ANSI protection status #2 - U16 - Table A1.5-5 17 4 6-7 ANSI protection status #3 - U16 - Table A1.5-6 1 0-1 ANSI protection status #4 - U16 - Table A1.5-7 18 2 2-3 ANSI protection status #5 - U16 - Table A1.5-8 1 0-1 Analog input 1 - U16 10 - 2 2-3 Analog input 2 - U16 10 - 3 4-5 Analog input 3 - U16 10 - 19 4 6-7 Analog input 4 - U16 10 - 1 0-1 Gen. number / priority / net - U16 - Table A1.5-30 2 2-3 BCG process status - U16 - Table A1.5-31 3 4-5 BCG own status - U16 - Table A1.5-32 20 4 6-7 BCG net status - U16 - Table A1.5-33 1 0-1 Net used power % I16 10 - 2 2-3 Net used power kW I16 1 - 3 4-5 Net standby power kW U16 1 - 21 4 6-7 Net available power kW U16 1 - 1 0-1 Start / stop standby - U16 - Table A1.5-34 2 2-3 BCG last start/stop source - U16 - Table A1.5-36 22 3 4-5 Engine speed rpm U16 1 -

Page 38: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 38/55

A1.5 Detailed description of communication data

Table A1.5-1 Measure status

Bit Symbol Description 0x0001 Reverse power 0:active 1:reverse 0x0002 L1 reverse power 1: reverse power phase L1 0x0004 L2 reverse power 1: reverse power phase L2 0x0008 L3 reverse power 1: reverse power phase L3 0x0010 Power factor 0: ind 1: cap 0x0020 Ground 1 rev. power 0:active 1:reverse 0x0040 Ground 1 cap/ind 0: ind 1: cap 0x0080 Ground 2 rev. power 0:active 1:reverse 0x0100 Ground 2 cap/ind 0: ind 1: cap

Table A1.5-2 Breaker operating mode

Decimal value Op. mode 0 local 1 remote 2 scada 3 test local 4 test remote

Table A1.5-3 Breaker positions

Decimal value Position 0 Undefined 1 ON 2 OFF 3 EARTH 4 OUT - ON 5 OUT - OFF

Table A1.5-4 ANSI protection status #1

Bit Event Nr. Symbol Description ANSI Nr. 0x0001 [1401] Inst. Overcurrent (1.limit) Limit reached 50_1 0x0002 [1402] Inst. Overcurrent (1.limit) Tripped 0x0004 [1404] Inst. Overcurrent (2.limit) Limit reached 50_2 0x0008 [1405] Inst. Overcurrent (2.limit) Tripped 0x0010 [1407] Inst. Overcurrent (reverse) Limit reached 50_r 0x0020 [1408] Inst. Overcurrent (reverse) Tripped 0x0040 [1421] Inst. Overcurrent G/N Limit reached 50 G/N 0x0080 [1422] Inst. Overcurrent G/N Tripped 0x0100 [1201] Negative Sequence TOC Limit reached 46TOC 0x0200 [1202] Negative Sequence TOC Tripped 0x0400 [1205] Negative Sequence 1.limit Limit reached 46_1 0x0800 [1206] Negative Sequence 1.limit Tripped 0x1000 [1207] Negative Sequence 2.limit Limit reached 46_2 0x2000 [1208] Negative Sequence 2.limit Tripped 0x4000 [1301] Reverse Sequence Limit reached 47 0x8000 [1302] Reverse Sequence Tripped

Page 39: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 39/55

Table A1.5-5 ANSI protection status #2

Bit Event Nr. Symbol Description ANSI Nr. 0x0001 [1601] Overvoltage 1.step Limit reached 59_1 0x0002 [1602] Overvoltage 1.step Tripped 0x0004 [1605] Overvoltage 2.step Limit reached 59_2 0x0008 [1606] Overvoltage 2.step Tripped 0x0010 [1101] Undervoltage 1.step Limit reached 27_1 0x0020 [1102] Undervoltage 1.step Tripped 0x0040 [1103] Undervoltage 2.step Limit reached 27_2 0x0080 [1104] Undervoltage 2.step Tripped 0x0100 [2001] Overfrequency 1.step Limit reached 0x0200 [2002] Overfrequency 1.step Tripped 0x0400 [2004] Overfrequency 2.step Limit reached 0x0800 [2005] Overfrequency 2.step Tripped 81 0x1000 [2007] Underfrequency 1.step Limit reached 0x2000 [2008] Underfrequency 1.step Tripped 0x4000 [2010] Underfrequency 2.step Limit reached 0x8000 [2011] Underfrequency 2.step Tripped

Table A1.5-6 ANSI protection status #3

Bit Event Nr. Symbol Description ANSI Nr. 0x0001 [1501] AC overcurrent (TMS) Limit reached 51_TOC 0x0002 [1502] AC overcurrent (TMS) Tripped 0x0004 [1505] AC overcurrent 1.step Limit reached 51_1 0x0008 [1506] AC overcurrent 1.step Tripped 0x0010 [1507] AC overcurrent 2.step Limit reached 51_2 0x0020 [1508] AC overcurrent 2.step Tripped 0x0040 [1509] AC overcurrent 3.step Limit reached 51_3 0x0080 [1510] AC overcurrent 3.step Tripped 0x0100 [1521] AC overcurrent (ground) Limit reached 51G/N 0x0200 [1522] AC overcurrent (ground) Tripped 0x0400 [1841] Phase jump detected Protection initiated 78 0x0800 [1842] Current increase after phase jump Tripped 0x1000 [1701] Ground 1 detector relay Limit reached 0x2000 [1702] Ground 1 detector relay Tripped 64 0x4000 [1704] Ground 2 detector relay Limit reached 0x8000 [1705] Ground 2 detector relay Tripped

Table A1.5-7 ANSI protection status #4

Bit Event Nr. Symbol Description ANSI Nr. 0x0001 ]1708] Overvoltage (Neutral) Limit reached 59N 0x0002 [1709] Overvoltage (Neutral) Tripped 0x0004 [2101] Differential protection Limit reached 87 TGM 0x0008 [2102] Differential protection Tripped 0x0010 [2121] Differential protection REF Limit reached 87N 0x0020 [2122] Differential protection REF Tripped 0x0040 [1812] AC directional GND max.overcurrent Max Limit reached 67 GS 0x0080 [2303] Inrush blocking (common) Tripped 95i 0x0100 [1801] AC directional overcurrent Limit reached 67 0x0200 [1802] AC directional overcurrent Tripped 0x0400 [1811] AC directional GND overcurrent Limit reached 67 GS 0x0800 [1813] AC directional GND overcurrent Tripped 0x1000 [1131] Reverse power 1 Limit reached 0x2000 [1132] Reverse power 1 Tripped 32_R1 0x4000 [1133] Reverse power 2 Limit reached 0x8000 [1134] Reverse power 2 Tripped 32_R2

Page 40: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 40/55

Table A1.5-8 ANSI protection status #5

Bit Event Nr. Symbol Description ANSI Nr. 0x0001 [1135] Active power 1 Limit reached 0x0002 [1136] Active power 1 Tripped 32_1 0x0004 [1137] Active power 2 Limit reached 0x0008 [1138] Active power 2 Tripped 32_2 0x0010 [1091] overexcitation Limit reached 0x0020 [1092] Tripped 24 0x0040 [1171] Loss of field Limit reached 0x0080 [1172] Tripped 40 Q

0x0100 [1175] Loss of field – Circle 1 Limit reached 0x0200 [1177] Tripped 0x0400 [1179] Loss of field – Circle 2 Limit reached 0x0800 [1181] Tripped

40

0x1000 [1845] dF/dt supervision Limet reached 78 dF 0x2000 [1846] dF/dt supervision Tripped

Table A1.5-9 Alarm status #1

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Alarm 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Table A1.5-10 Alarm status #2

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Alarm 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

Table A1.5-11 Alarm status #3

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Alarm 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

Table A1.5-12 Alarm status #4

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Alarm 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

Table A1.5-13 Alarm status #5

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Alarm - 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65

Table A1.5-14 Binary inputs (device)

Bit Symbol Flag description 0x0001 Fun 10 1: function input set 0x0002 Fun 11 1: function input set 0x0004 Fun 12 1: function input set 0x0008 Fun 13 1: function input set 0x0010 Fun 14 1: function input set 0x0020 Fun 15 1: function input set 0x0040 Fun 16 1: function input set 0x0080 Fun 17 1: function input set 0x0100 Fun 18 1: function input set 0x0200 Fun 19 1: function input set 0x0400 Fun 20 1: function input set 0x0800 Fun 21 1: function input set 0x1000 Fun 22 1: function input set 0x2000 Fun 23 1: function input set

Page 41: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 41/55

Table A1.5-15 Binary outputs (device)

Bit Symbol Flag description 0x0001 Shunt #1 1: Shunt #1 output set 0x0002 Shunt #2 1: Shunt #2 output set 0x0004 Lock out Fail 1: Lockout Relay Failure set 0x0008 Sycnchr.On 1: Synchron.On output set 0x0010 Fun 1 1: function output set 0x0020 Fun 2 1: function output set 0x0040 Fun 3 1: function output set 0x0080 Fun 4 1: function output set 0x0100 Fun 5 1: function output set 0x0200 Fun 6 1: function output set 0x0400 Fun 7 1: function output set 0x0800 Fun 8 1: function output set

Table A1.5-16 Binary inputs ext. board

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Func. 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

Table A1.5-17 Binary inputs ext. board

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Func. 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40

Table A1.5-18 Binary inputs ext. board

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Func. - - - - - - - - - - - - 59 58 57 56

Table A1.5-19 Binary outputs ext. board

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Func. 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60

Table A1.5-20 Binary outputs ext. board

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Func. - - - - - - - - 83 82 81 80 79 78 77 76

Table A1.5-21 CANBUS - change/command request

Nr. Type Request 1 command Start order 2 command Start next diesel 3 command Stop order 5 command Set speed higher [2920] 6 command Reset speed higher 7 command Set speed lower [2921] 8 command Reset speed lower

10 change Change mode 11 change Change priority 12 change Change asymm. load 13 change Change asymm. PF 20 global command Calculate new freq.ctrl. pulsetime 21 global command Calculate new volt.ctrl. pulsetime 22 global command Blackout interlock: Gen.Id with permission

Page 42: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 42/55

Table A1.5-22 Diesel status

Nr. LCD text Description 0 STOPPED n < ignition speed and CB OPEN 1 RUNNING n > ignition speed and CB OPEN 2 PREGLOW 3 ST.VALVE Start valve 4 BREAKT. 5 RUNN.UP 6 R.F.LOAD Ready for take load 7 SYNC. 8 CB CLSD 9 SYM.LOAD

10 ASY.LOAD 11 DEL.STOP Alarm stop delay 12 L.REDUCT Load reduction 13 COOLDOWN 14 RUN DOWN 15 STOP FIX Stop delay fixed

Table A1.5-23 PM block/enabled status

Status Description 0 PM: OFF 1 PM: BLOCKED (by CANBUS node) 2 PM: ON (no CANBUS nodes) 3 PM: BLOCKED (all in MANUAL) 4 PM: ON / slave 5 PM: ON / master 6 PM: STOP BLOCKED (EVENT) 7 PM: STOP BLOCKED (Big consumer request)

Table A1.5-24 PM limit status (Note: the status shows the limit with the smallest delay)

Status Description 0 No limit reached, PM idle 1 1.single loadlimit 2 2.single loadlimit 3 1. average loadlimit 4 2. average loadlimit 5 Low frequency 6 Single high current 7 Average high current 8 Loadlimit for stop reached 9 Load & current limit for stop reached

10 Wait until starting 11 Load balance delay after start

Table A1.5-25 Big consumer request status

Status Description 0 No request active 1 BCR: wait until starting 2 BCR: Load balance delay after start 3 BCR: wait until stopping 4 BCR: power not available 5 BCR: power available 6 BCR: wait until other req.

Page 43: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 43/55

Table A1.5-30 Gen. number/priority/net

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data CB ON

Auto- matic Net (0-3) Diesel status

(see table A1.5-22) Generator priority

(1 - 14) Generator number

(1 - 14)

Table A1.5-31 BCG process status

Bit Description 0 Power management ON (own) 1 Load sharing ON (own) 2 Asymmetrical load sharing ON (own) 3 Asymmetrical load sharing active (own) 4 Frequency controller ON (own) 5 Voltage controller ON (own) 6 Power factor controller ON (own) 7 Asymmetrical power factor controller ON (own) 8 All net nodes: Power management ON 9 All net nodes: Load sharing ON 10 11 12 13 14 15

Table A1.5-32 BCG own status

Bit Description 0 Starting (start phase until synchronizing) 1 Stopping 2 n > (event [2942]) 3 n < (event [2943]) 4 Start release 5 Synchronizing 6 Load reduction (load shifting) 7 8 9 10

Breaker operating mode: see table A1.5-2

11 12 13 14 15

Table A1.5-33 BCG net status Bit Description

0 1 2

PM block/enabled status (see table A1.5-23)

3 4 5 6

PM limit status (see table A1.5-24)

7 8 9

Big consumer request status (see table A1.5-25)

10 Blackout 11 12

Page 44: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 44/55

Table A1.5-34 Start/stop standby

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data 2. Stop stand-by (Gen. Nr.: 1-14)

1. Stop stand-by (Gen. Nr.: 1-14)

2. Start stand-by (Gen. Nr.: 1-14)

1. Start stand-by (Gen. Nr.: 1-14)

Table A1.5-35 BCG fail status

Bit Description 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table A1.5-36 BCG last start/stop source

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data last stop source (table A1.5-38) last start source (table A1.5-37)

Table A1.5-37 BCG last start source

Nr. Start source 1 PM: 1. single load limit 2 PM: 2. single load limit 3 PM: 1. average load limit 4 PM: 2. average load limit 5 PM: Low frequency 6 PM: High current single 7 PM: High current average 12 Big consumer request 20 Front panel: Start key 21 Load page: Start order 22 Start next by event (Parameter [0186]) 23 Blackout: start all 24 Blackout: start next 25 Start fail: start next 26 Alarm: start next 27 Blackout: start own 29 Remote start (Parameter [0187]) 51 Communication (PROFIBUS or MODBUS): start own 52 Communication (PROFIBUS or MODBUS): start next

Page 45: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 45/55

Table A1.5-38 BCG last stop source

Nr. Stop source 100 PM: Load limit 101 PM: Load & current limit 110 Front panel: Stop key 111 Load page: Stop order 112 Blackout: stop 113 Alarm: stop 115 Remote stop (Parameter [0188]) 116 Front panel: EMERGENCY stop (ACK+STOP keys) 117 Event: EMERGENCY stop 151 Communication (PROFIBUS or MODBUS): stop own 152 Communication (PROFIBUS or MODBUS): stop next

Table A1.5-39 Device CANBUS data for MODBUS

Device CANBUS data (8 register/16 bytes) Byte Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

0 CANBUS -Id.: 0-14 (parameter [0310]) 1 Generator priority 1-14 (parameter [0181]) Generator number 1-14 (parameter [0180]) 2 CB ON Automatic Net number 0-3 Diesel status (see table A1.5-22)

3 PF asymm. ON

PF contr. ON

Volt. contr. ON

Freq. contr. ON

LS asymm. active

LS asymm. ON LS ON PM ON

4 Current max phase (A) - low byte 5 Current max phase (A) - high byte (Range: 0 - 65535 A) 6 Voltage average (V) - low byte 7 Voltage average (V) - high byte (Range: 0 - 65535 V) 8 Power (kW) - low byte 9 Reverse bit Power (kW) - high byte (Range: 0 - 32767 kW)

10 Frequency (Hz × 100) - low byte 11 Frequency (Hz × 100) - high byte 12 0 = cap (+)

1 = ind (-) Power factor (cosϕ × 100) 13 Current average (%) (Range: 0 - 255 %) 14 Power (% × 10) - low byte 15 Power (% × 10) - high byte

Page 46: SYMAP A1 Communication E

Appendix A1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 46/55

A1.6 IEC 60870-5-103 Protocol

A1.6.1 Introduction

SYMAP® offers via the RS232/RS422/RS485 communication port the IEC 60870-5-103 protocol in accordance with the international standard:

Telecontrol equipment and systems – Part 5-103: Tranmission protocols – Companion standard for the informative interface of protection

equipment; (IEC 60870-5-103: 1997)

The protocol has the following general features:

• Normative baudrates of 9600, 19200, 38400 and 57600 Baud. • Each byte consists of 1 Startbit, 8 Databits, 1 even Paritybit and 1 Stopbit. • The bytes can also be send without the parity bit (automatic parity recognition is

implemented in SYMAP®). • “Master – Slave” communication (unsymmetric communication). • Up to 32 Slaves can be connected to a RS422/RS485 network, which is controlled by

one master. • SYMAP® device operates as a slave within this network and is sending data only on

request of the master. • The max. total size of one frame is limited to 254 bytes. • SYMAP® device will respond to a master request within 15-20 ms.

A1.6.2 Parameter setting

For the adjustment of the protocol, the communication parameters within the system settings are available. (Menu: SETTING > CHANGE > SYSTEM > COMMUNICATION):

• The physical port can be set with Parameter [0300]. • Parameter [0301] sets the slave address. • Parameter [0302] sets the baudrate. • Parameter [0303] can be set to “60870-103”. This parameter is not mandatory because

an automatic protocol recognition is implemented in SYMAP®

Page 47: SYMAP A1 Communication E

Appendix 1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 47/55

A1.6.3 Initialisation procedure

Before the master and the slaves steps into a cyclic data exchange, the communication must be established. This is done by a initialisation procedure. The master must have the information about how many slaves are connected to the network, and the communication address (parameter [0301]) of each slave. To start up the communication, the master executes the initialisation procedure with every slave. Typical Initialisation cycles are decribed in the table A1.6-1.

Table A1.6-1 Initialisation procedure

Cycle Master request Slave respond 1 Function code 0 (reset of remote link) or

Function code 7 (reset FCB) Function code 0 (positive ACK)

2 Function code 11 (request user data class 2) Function code 8 (user data) with: - Typ 5 (Identification) - Cause of transmission 4 (reset comm. unit) or 3 (reset FCB)

3 Function code 3 (user data) with: - Typ 5 (Identification) - Cause of transmission 3 (reset FCB)

Function code 0 (positive ACK)

4 Function code 3 (user data) with: - Typ 7 (Initiation of general interrogation) - Cause of transmission 9 (Initiation of general interrogation)

Function code 0 (positive ACK)

5 Function code 11 (request user data class 2) Function code 8 (user data) with: - Typ 9 (Measurands II) - Cause of transmission 2 (cycle)

6 see cycle 5 see cycle 5

The initialisation procedure is finished after the 4th cycle. The described initialisation procedure is only an example and not mandatory. The procedure is not requested from SYMAP® device and can also be skipped by the master. In the tables A1.6-2 to A1.6-7 the frames are described in detail.

Table A1.6-2 Reset remote link/Reset frame count bit (5 Bytes)

Value Byte Hex Dec

Name Description 0 10 16 Start sequence This byte has the fixed value 10 h

1 40/47 64/71 Control byte Function code 0 (reset remote link), or Function code 7 (reset Frame Count Bit). The control byte is described in table A1.6-3

2 x x Address field Contains the slave address (parameter [0301]) 3 x x Checksum The plain checksum is calculated from the bytes 1-2 4 16 22 Stop sequence This byte has the fixed value 16 h

Table A1.6-3 Control byte (direction: Master -> Slave)

Bit Name Description 0 1 2 3

Function code

0: reset remote link 3: user data 4: user data 7: reset FCB

9: request link layer status 10: request user data class 1 11: request user data class 2

4 FCV (Frame count bit valid) Indicates the validation of the FCB 5 FCB (Frame count bit) This bit changes with every new message 6 PRM (Primary message) This bit has the fixed value 1 7 Reserved -

Table A1.5.3.4: Acknowledge positiv (5 Bytes)

Value Byte Hex Dec

Name Description 0 10 16 Start sequence This byte has the fixed value 10 h

1 0 0 Control byte Function code 0 (Acknowledge positiv) The control byte is described in table A1.6-5

2 x x Address field Contains the slave address (parameter [0301]) 3 x x Checksum The plain checksum is calculated from the bytes 1-2 4 16 22 Stop sequence This byte has the fixed value 16 h

Page 48: SYMAP A1 Communication E

Appendix 1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 48/55

Table A1.6-5 Control byte (direction: Slave -> Master)

Bit Name Description 0 1 2 3

Function code

0: ACK (positive) 1: ACK (negative) 8: user data 9: NACK (data not available)

11: link layer status 14: link layer not ready 15: link layer function not available

4 DFC (Data flow control) 1: further messages can cause an overflow 5 ACD (Access demand) 1: user data class 1 (high priority) are available 6 PRM (Primary message) This bit has the fixed value 0 7 Reserved -

Table A1.6-6 Request user data class 2 (5 Bytes)

Value Byte Hex Dec

Name Description 0 10 16 Start sequence This byte has the fixed value 10 h

1 4B 75 Control byte Function code 11 (request user data class 2) The control byte is described in table A1.6-3

2 x x Address field Contains the slave address (Parameter [0301]) 3 x x Checksum The plain checksum is calculated from the bytes 1-2 4 16 22 Stop sequence This byte has the fixed value 16 h

Table A1.6-7 Identification (27 Bytes)

Value Byte Hex Dec

Name Description 0 68 104 Start sequence This byte has the fixed value 68 h 1 15 21 Lenght The length includes the bytes 4 - 24 2 15 21 Lenght The length includes the bytes 4 - 24 3 68 104 Start sequence This byte has the fixed value 68 h

4 08 8 Control byte Function code 8 (user data) The control byte is described in table A1.6-5

5 x x Address field Contains the slave address (parameter [0301]) 6 05 5 Type Identification Identification report 7 81 129 Structure qualifier Indicates the adressing and amount of data 8 04 4 Cause of transfer Reset comm. unit 9 x x Device address Contains the slave address (parameter [0301]) 10 FF 255 Function type Global 11 03 3 Information number Reset Comm. unit 12 01 1 COL Compatibility level 13 53 83 ASCII sign 1 S 14 59 89 ASCII sign 2 Y 15 4D 77 ASCII sign 3 M 16 41 65 ASCII sign 4 A 17 50 80 ASCII sign 5 P 18 20 32 ASCII sign 6 Space 19 20 32 ASCII sign 7 Space 20 20 32 ASCII sign 8 Space 21 x x Device type Hardware version 22 x x d Firmware version day 23 x x m Firmware version month 24 x x y Firmware version year 25 x x Checksum The plain checksum is calculated from the bytes 4-24 26 16 22 Stop sequence This byte has the fixed value 16 h

Page 49: SYMAP A1 Communication E

Appendix 1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 49/55

A1.6.4 Data exchange

After the initialisation procedure, the master steps into cyclic data exchange with the slaves. The master can poll each slave with the “Request user data class 2” (see table A1.6-6). The addressed slave will response with the “Measurands II”.

Table A1.6-8 Measurands II (32 Bytes)

Value Byte Hex Dec

Name Description 0 68 104 Start sequence This byte has the fixed value 68 h 1 1A 26 Lenght The length includes the bytes 4 - 29 2 1A 26 Lenght The length includes the bytes 4 - 29 3 68 104 Start sequence This byte has the fixed value 68 h

4 08 8 Control byte Function code 8 (user data) The control byte is described in table A1.6-5

5 x x Address field Contains the slave address (parameter [0301]) 6 09 9 Type Identification Measurands II 7 9 9 Structure qualifier Indicates the adressing and amount of data 8 02 2 Cause of transfer Cyclic 9 x x Device address Contains the slave address (parameter [0301]) 10 FF 255 Function type Global 11 94 148 Information number Measurand IL123, UL123, P,Q.f 12 x x IL1 low byte 13 x x IL1 high byte

Current IL1 (the MEA format is described in table A1.6-9)

14 x x IL2 low byte 15 x x IL2 high byte Current IL2 (the MEA format is described in table A1.6-9) 16 x x IL3 low byte 17 x x IL3 high byte Current IL3 (the MEA format is described in table A1.6-9) 18 x x UL1 low byte 19 x x UL1 high byte Voltage UL1 (the MEA format is described in table A1.6-9)

20 x x UL2 low byte 21 x x UL2 high byte Voltage UL2 (the MEA format is described in table A1.6-9) 22 x x UL3 low byte 23 x x UL3 high byte Voltage UL3 (the MEA format is described in table A1.6-9) 24 x x Pw low byte 25 x x Pw high byte Power active (the MEA format is described in table A1.6-9)

26 x x Pq low byte 27 x x Pq high byte Power reactive (the MEA format is described in table A1.6-9)

28 x x f low byte 29 x x f high byte Frequency (the MEA format is described in table A1.6-9)

30 x x Checksum The plain checksum is calculated from the bytes 4-29 31 16 22 Stop sequence This byte has the fixed value 16 h

Table A1.6-9 Measurand with quality descriptor (MEA)

Bit Name Description 0 Overflow 1: overflow of MVAL 1 Error 1: MVAL is invalid 2 Reserved - 3 4 5 6 7 8 9 10 11 12 13 14

MVAL (Value of measurand)

The MVAL has a resolution of 212 Bits (0 - 4095). The value is calculated in percent from the related nominal value with 0 (0%) to 1 (100%):

• 0000 = 0.0 • 0001 = 0.000244 • ….. • 4094 = 0.999512 • 4095 = 0.999756

15 Sign 1: MVAL is negative

Page 50: SYMAP A1 Communication E

Appendix 1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 50/55

A1.6.5 Time synchronisation

To synchronize the time on a slave device, the master has to send the frame, which is shown in the table A1.6-10.

Table A1.6-10 Time synchronisation (21 Bytes)

Value Byte Hex Dec

Name Description 0 68 104 Start sequence This byte has the fixed value 68 h 1 0F 15 Lenght The length includes the bytes 4 - 18 2 0F 15 Lenght The length includes the bytes 4 - 18 3 68 104 Start sequence This byte has the fixed value 68 h

4 x3 Control byte Function code 3 (user data) The control byte is described in table A1.6-3

5 x x Address field Slave address (parameter [0301]) or the global address (255) 6 06 6 Type Identification Time sync. 7 81 129 Structure qualifier Indicates the adressing and amount of data 8 08 8 Cause of transfer Time sync. 9 x x Device address Slave address (parameter [0301]) or the global address (255) 10 FF 255 Function type Global 11 00 0 Information number Time sync. 12 x x ms low byte 13 x x ms high byte

milliseconds (Range 0 - 59999)

14 x x minute Range 0 - 59 15 x x hour Range 0 - 23 16 x x day Range 1 - 31 17 x x month Range 1 - 12 18 x x year Range 0 - 99 19 x x Checksum The plain checksum is calculated from the bytes 4 - 18 20 16 22 Stop sequence This byte has the fixed value 16 h

The master can address a particular slave or send a broadcast to all connected slaves (byte 5 = 255). In case of a broadcast all slaves will perform the time sync. but no slave will send a response. In case of particular address, the addressed slave will response with an acknowledge frame (see table A1.6-4).

A1.6.6 Commands

To send commands to a slave device, the master has to send the frame, which is shown in the table A1.6-11.

Table A1.6-11 General command (16 Bytes) Value Byte

Hex Dec Name Description

0 68 104 Start sequence This byte has the fixed value 68 h 1 0A 10 Lenght The length includes the bytes 4 - 13 2 0A 10 Lenght The length includes the bytes 4 - 13 3 68 104 Start sequence This byte has the fixed value 68 h

4 x3 x Control byte Function code 3 (user data) The control byte is described in table A1.6-3

5 x x Address field Slave address (parameter [0301]) or the global address (255) 6 14 20 Type Identification General command 7 81 129 Structure qualifier Indicates the adressing and amount of data 8 01 1 Cause of transfer Spontaneous 9 x x Device address Slave address (parameter [0301]) or the global address (255) 10 FF 255 Function type Global 11 00 0 Information number End of general interrogation 12 x x DCO Double command (see table A1.6-11) 13 x x RII Return information identifier (see table A1.6-11) 14 x x Checksum The plain checksum is calculated from the bytes 4 - 13 15 16 22 Stop sequence This byte has the fixed value 16 h

Page 51: SYMAP A1 Communication E

Appendix 1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 51/55

The “Double command” (byte 12) and the “Return information identifier” (byte 13) have another function as described in the IEC standard. The two bytes are used to transport commands to the slave device.

Table A1.6-12 Commands

Byte 12: Command Dec Description

Byte 13: Data

0 No command

x (don’t care) 1 Acknowledge x 2 Diesel start order x 3 Diesel start next order x 4 Diesel stop order x 5 Diesel stop next order x 6 Set operation mode 0: Manual, 1: Automatic

7 Set breaker operating mode

See Table A1.5-28 Reset temp. power counter x 9 Priority of generator 1-14

10 Asym. load sharing setpoint 0 – 200 % 11 Asym. PF controller setpoint 0 – 99 30 Event [0330] 31 Event [0331] 32 Event [0332] 33 Event [0333] 34 Event [0334] 35 Event [0335] 36 Event [0336] 37 Event [0337] 38 Event [0338] 39 Event [0339] 40 Event [0340] 41 Event [0341] 42 Event [0342] 43 Event [0343] 44 Event [0344] 45 Event [0345] 46 Event [0346] 47 Event [0347] 48 Event [0348] 49 Event [0349]

0 = Reset event 1 = Set event

Use the Events for breaker

control, or to drive a binary output.

Note: refer to the chapter 2.5 “Breaker control” in the User’s Manual to use

the Events with the breaker control function.

200 Activate the transmission of “Measurands II” (see A1.6.4) x

201 Activate the transmission of “Measurands III” (see A1.6.7) x

If the command is defined (byte 12, see table A1.6-13) and the data is in range (byte 13, see table A1.6-13), the addressed slave will response with an acknowledge frame (see table A1.6-4). Otherwise the slave will respond with an “Link layer function not available” frame:

Table A1.6-13 Link layer function not available (5 Bytes)

Value Byte Hex Dec

Name Description 0 10 16 Start sequence This byte has the fixed value 10 h

1 0F 15 Control byte Function code 11 (link layer function not available) The control byte is described in table A1.6-5

2 x x Address field Contains the slave address (parameter [0301]) 3 x x Checksum The plain checksum is calculated from the bytes 1-2 4 16 22 Stop sequence This byte has the fixed value 16 h

Page 52: SYMAP A1 Communication E

Appendix 1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 52/55

A1.6.7 Measure/Status data

Measure values (e.g. A, V, kWh) or status data (e.g. Breaker positions, relay status) are not defined in the IEC standard. For this reason the private data unit 201 “Measurands III” has been defined to transmit these data. This frame contains nearly all measure/status data SYMAP® device offers. To activate the transmission of the “Measurands III” the master has to send once the following frame (see chapter A1.6.6).

Table A1.6-14 General command (16 Bytes) Value Byte

Hex Dec Name Description

0 68 104 Start sequence This byte has the fixed value 68 h 1 0A 10 Lenght The length includes the bytes 4 - 13 2 0A 10 Lenght The length includes the bytes 4 - 13 3 68 104 Start sequence This byte has the fixed value 68 h

4 x3 x Control byte Function code 3 (user data) The control byte is described in table A1.6-3

5 x x Address field Slave address (parameter [0301]) or the global address (255) 6 14 20 Type Identification General command 7 81 129 Structure qualifier Indicates the adressing and amount of data 8 01 1 Cause of transfer Spontaneous 9 x x Device address Slave address (parameter [0301]) or the global address (255) 10 FF 255 Function type Global 11 00 0 Information number End of general interrogation 12 C9 201 DCO Double command (see table A1.611) 13 0 0 RII Return information identifier (see table A1.6-12) 14 x x Checksum The plain checksum is calculated from the bytes 4 - 13 15 16 22 Stop sequence This byte has the fixed value 16 h

After that, the master can poll the slave with the “Request user data class 2” (see table A1.6-6). The addressed slave will then response with the “Measurands III”.

Table A1.6-15 Measurands III (254 Bytes) Value Byte

Hex Dec Name Description

0 68 104 Start sequence This byte has the fixed value 68 h 1 F8 248 Lenght The length includes the bytes 4 - 251 2 F8 248 Lenght The length includes the bytes 4 - 251 3 68 104 Start sequence This byte has the fixed value 68 h

4 08 8 Control byte Function code 8 (user data) The control byte is described in table A1.6-5

5 x x Address field Contains the slave address (parameter [0301]) 6 C9 201 Type Identification Measurands III 7 81 129 Structure qualifier Indicates the adressing and amount of data 8 02 2 Cause of transfer Cyclic 9 x x Device address Contains the slave address (parameter [0301])

10 00 0 Function type Private 11 95 149 Information number Measurands III

12-251 x x Measure data III

see table A1.6-16

252 x x Checksum The plain checksum is calculated from the bytes 4-251 253 16 22 Stop sequence This byte has the fixed value 16 h

Page 53: SYMAP A1 Communication E

Appendix 1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 53/55

Table A1.5.7.3: Measure data III (240 Bytes)

Byte Name Unit Symbol Description 12-13 Measure status Table A1.5-1

14 Operating mode

Table A1.5-2

15 Breaker 1 position Table A1.5-3

16 Breaker 2 position

Table A1.5-3

17 Breaker 3 position Table A1.5-3 18 RTC (year - 2000) y 19 RTC/month m 20 RTC/day d 21 RTC/hour h 22 RTC/minute min 23 RTC/second sec

24-25 Gen- Frequency (× 100) Hz GenFreq Measured via L1-L2 26-27 Bus1-Frequency (× 100) Hz Bus1Freq Measured via L1-L2 28-29 Bus2-Frequency (× 100) Hz Bus2Freq Measured via L1-L2 30-31 Generator ground voltage- U1N V GenVoltL1 L1-N 32-33 - U2N V GenVoltL2 L2-N 34-35 - U3N V GenVoltL3 L3-N 36-37 Generator line voltage - U12 V GenVL1_L2 L1-L2 38-39 - U13 V GenVL1_L3 L1-L3 40-41 - U31 V GenVL2_L3 L2-L3 42-43 Average Generator line voltage V GenAvVolt 44-45 Ground voltage 1 V Ugnd1 46-47 Generator current A GenCurL1 L1 48-49 A GenCurL2 L2 50-51 A GenCurL3 L3 52-53 Average Generator current A GenAvCur 54-55 Differential current Igen-Idiff A GenDiffL1 L1 56-57 A GenDiffL2 L2 58-59 A GenDiffL3 L3 60-61 Ground 1 current A Ignd1 62-63 Active power kW GenPowA_L1 L1 64-65 kW GenPowA_L2 L2 66-67 kW GenPowA_L3 L3 68-69 ∑ (Active power) kW GenPowA ∑(L1-L3) 70-71 Reactive power kvar GenPowQ_L1 L1 72-73 kvar GenPowQ_L2 L2 74-75 kvar GenPowQ_L3 L3 76-77 Total reactive power kvar GenPowQ ∑(L1-L3) 78-79 Total apparent power kVA GenPowS ∑(L1-L3) 80-81 Ground 1 active power kW 82-83 Ground 1 reactive power kvar 84-85 Power factor L1 L1 86-87 Power factor L2 L2 88-89 Power factor L2 L3 90-91 Total power factor L1-L3 92-93 Bus1 voltage L1-N V U1 94-95 - voltage L2-N V U2 96-97 - voltage L3-N V U3 98-99 - voltage L1-L2 V U12

100-101 - voltage L1-L3 V U13 102-103 - voltage L2-L3 V U23 104-105 - average voltage V Uavr 106-107 Bus2 voltage L1-N V U1 108-109 - voltage L2-N V U2 110-111 - voltage L3-N V U3 112-113 - voltage L1-L2 V U12 114-115 - voltage L1-L3 V U13 116-117 - voltage L2-L3 V U23 118-119 - average voltage V Uavr 120-123 Absolut power counter - active kWh P+ 4 bytes each counter 124-127 - reverse kWh P- 128-131 - reactive kvarh Q+ 132-135 - reactive (ind.) kvarh Q- 136-139 Temp. power counter - active kWh P+ 4 bytes each counter 140-143 - reverse kWh P- 144-147 - reactive kvarh Q+ 148-151 - reactive (ind.) kvarh Q-

Page 54: SYMAP A1 Communication E

Appendix 1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 54/55

Byte Name Unit Symbol Description 152-155 Working hours h 4 bytes counter 156-157 Shunt #1 circuit voltage (× 10) Vac/dc 158-159 Shunt #2 circuit voltage (× 10) Vac/dc 160-161 Aux power voltage (× 10) Vac/dc Uaux/bat 162-163 Function inputs (basic unit) Table A1.5-14 164-165 Function outputs (basic unit) Table A1.5-15 166-167 Function inputs (ext.board) Table A1.5-16 168-169 Function inputs (ext.board) Table A1.5-17 170-171 Function inputs (ext.board) Table A1.5-18 172-173 Function outputs (ext.board) Table A1.5-19 174-175 Function outputs (ext.board) Table A1.5-20 176-177 ANSI protection status #1 Table A1.5-4 178-179 ANSI protection status #2 Table A1.5-5 180-181 ANSI protection status #3 Table A1.5-6 182-183 ANSI protection status #4 Table A1.5-7 184-185 ANSI protection status #5 Table A1.5-8 186-187 Alarm status #1 Table A1.5-9 188-189 Alarm status #2 Table A1.5-10 190-191 Alarm status #3 Table A1.5-11 192-193 Alarm status #4 Table A1.5-12 194-195 Alarm status #5 Table A1.5-13 196-197 Gen. number/priority/net - - Table A1.5-30 198-199 BCG process status - - Table A1.5-31 200-201 BCG own status - - Table A1.5-32 202-203 BCG net status - - Table A1.5-33 204-205 Start/stop standby - - Table A1.5-34 206-207 BCG fail status - - Table A1.5-35 208-209 BCG last start/stop source - - Table A1.5-36 210-211 Net used power (×10) % Pr_net +: active, -: reverse 212-213 Net used power kW Pa_net +: active, -: reverse 214-215 Net standby power kW Pstby 216-217 Net available power kW Pa_spi

218 Setpoint for the asy. load sharing % - 219 Setpoint for the asy. PF controller (×100) cos ϕ -

220-221 Engine speed rpm 222-223 Analog input 1 (× 10) Device input 224-225 Analog input 2 (× 10) Device input 226-227 Analog input 3 (× 10) Device input 228-229 Analog input 4 (× 10) Device input 230-231 PT100-1 analog input 5 (× 10) °C Extension board 232-233 PT100-2 analog input 6 (× 10) °C 234-235 PT100-3 analog input 7 (× 10) °C 236-237 PT100-4 analog input 8 (× 10) °C 238-239 PT100-5 analog input 9 (× 10) °C 240-241 PT100-6 analog input 10 (× 10) °C 242-243 PT100-7 analog input 11 (× 10) °C 244-245 PT100-8 analog input 12 (× 10) °C 246-247 PT100-9 analog input 13 (× 10) °C 248-249 PT100-10 analog input 14 (× 10) °C 250-251 PT100-11 analog input 15 (× 10) °C

To activate back the transmission of the “Measurands II” the master has to send once the General command (see chapter A1.6.6) with Byte 12 = 200 d.

Page 55: SYMAP A1 Communication E

Appendix 1 Communication

SYMAP® SYMAP_A1_Communication_E.doc 55/55