Top Banner
SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd , August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton
38

SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Dec 22, 2015

Download

Documents

Janiya Joye
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8th to 23rd, August, 2006

Standard Solar Models IIAldo Serenelli

Institute for Advanced Study, Princeton

Page 2: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Homework• Dating the Solar System

• Ratio 238U/235U known and constant (in space, not in time) in solar system material

• Primordial isotopic composition of lead (Pb) known from meteoritic samples with very low abundances of U or Th

• Measure the ratio 206Pb/204Pb and 207Pb/204Pb in your sample, and, taking into account that 204Pb does not change, write

1

1

235

238

235204204

207

204

207*207

238204204

206

204

206*206

TPRIM

PRIM

TPRIM

PRIM

eUPbPb

Pb

Pb

PbPb

eUPbPb

Pb

Pb

PbPb

1

1235

238

235

238

*207

*206

T

T

e

e

U

U

Pb

Pb

is only function of T

Page 3: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Updates since 2001 1/3

Microscopic physics

• Relativistic corrections to electrons missing Updated EoS (OPAL 2001)

• Independent calculations of opacities: Opacity Project

• 10% increase in 7Be + p cross section (Junghans et al. 2003)

HeHeBe

eBeB

BpBe

448

88

87

eppIII1%

change in 8B) flux

Page 4: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Updates since 2001 2/3

• Minor change (1%) in pp and also in hep cross sections (Park et al. 2003)

Microscopic physics

• Factor of 2 reduction in the 14N+p cross section (experimental result from LUNA collaboration)

HeCpN

eNO

OpN

NpC

eCN

NpC

41215

1515

1514

1413

1313

1312

e

e

CN-cycle

CN cycle slowed down by similar amount 13N) and 15O) ~ of previous theoretical value

Page 5: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Updates since 2001 3/3

Solar composition

• Large change in solar composition: mostly reduction in C, N, O, Ne. Results presented in many papers by the “Asplund group”. Summarized in Asplund, Grevesse & Sauval (2005)

Page 6: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model (2005)

BS05 (updated microphysics, Grevesse & Sauval 1998 composition)

(Bahcall, Serenelli & Basu 2005)

Quantities to match

R=6.9598 1010cm

0.1%

Solar radius

(Z/X)= 0.0229Solar metals/hydrogen ratio

L=3.842 1033erg s-1

0.4%

Solar luminosity

Initial Present day values

Center Surface

X 0.7087 0.3461 0.7404

Y 0.2725 0.6337 0.2426

Z 0.0188 0.0202 0.0170

Page 7: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model (2005)

BS05 Helios. BP00

RCZ 0.713 0.713±0.001 0.714

YSURF 0.2485 ±0.0035 0.244

<c> 0.001 --- 0.001

<> 0.012 --- 0.005

Difference in the sense: Sun - model

Page 8: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model (2005)Sound speed

p-modes are acoustic modes sound speed c is the key to i

dr

dT

dr

dTTkN

dr

dcTkNc AvAv

21

321

/2

1

Radiat. transport Convect. transport change in temp. gradient

Change in slope

dc/dr < 0 gradient important: information about composition

Page 9: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model (2005)Internal structure

Page 10: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model (2005)Neutrino production

2pHeHeHe

HepH

Hpp

ppI433

32

2ee

24)/(

)(r

RRd

FluxdFN

Distribution of neutrino fluxes

Page 11: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model (2005)Neutrino production

HeCpN

eNO

OpN

NpC

eCN

NpC

41215

1515

1514

1413

1313

1312

e

e

CN-cycle

C+N (+O) = Const.

Page 12: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model (2005)Neutrino production

BS05 BP00

pp 5.99x1010 5.95x1010

pep 1.42x108 1.40x108

hep 7.93x103 9.3x103

7Be 4.84x109 4.77x109

8B 5.69x106 5.05x106

13N 3.05x108 5.48x108

15O 2.31x108 4.80x108

17F 5.84x106 5.63x106

Cl(SNU) 8.12 7.6

Ga(SNU) 126.1 128

Neutrino fluxes on Earth (cm-2 s-1)

No neutrino oscillation

SNO8B)=4.99±0.33x106 cm-2 s-1

Page 13: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model (2005)Comparison with experiments

Page 14: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model (2005)Solar neutrino spectra

Page 15: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model (2005)Electron and neutron density

)(2)( rnGrV eFFor matter effects the “neutrino potential” is

Page 16: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model (2005)Solar neutrinos and matter effects

)(2)( xnGxV eF

Fogli, et al. 2006 (hep-ph/0506083)

Solar neutrinos heavily affected by matter effects, but…

Page 17: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model (2005)Solar neutrinos and matter effects

Fogli, et al. 2006 (hep-ph/0506083)

12222

12

212

12

1212

2sin/)(2cos

/)(2cosˆ2cos

2cos)(ˆ2cos2

1

2

1

mxA

mxA

xPee

… survival probability Pee depends on A(x)=2EV(x) and matter effect are important if A(x) m

Vacuum oscillations for pp and 7Be Matter effects for 8B

Page 18: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

New Solar composition 1/4Troubles in paradise?

• Large change in solar composition: mostly reduction in C, N, O, Ne. Results presented in many papers by the “Asplund group”. Summarized in Asplund, Grevesse & Sauval (2005)

Authors (Z/X) Main changes (dex)

Grevesse 1984 0.0277

Anders & Grevess 1989 0.0267 C=-0.1,

Grevesse & Noels 1993 0.0245

Grevesse & Sauval 1998 0.0229 C=-0.04, N=-0.07, O=-0.1

Asplund, Grevesse & Sauval 2005

0.0165 C=-0.13, N=-0.14,

O=-0.17, Ne=-0.24, Si=-0.05 (affects meteor. abd.)

Page 19: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

New Solar Composition 2/4

Two main sources:

• Spectral lines from solar photosphere/corona• Meteorites

• Volatile elements (do not aggregate easily into solid bodies): e.g. C, N, O, Ne, Ar only in solar spectrum• Refractory elements, e.g. Mg, Si, S, Fe, Ni both in solar spectrum and meteorites: meteoritic measurements more robust

Abundances from spectral lines: a lot of modeling required !!!

Page 20: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

New Solar Composition 3/4

• Improvements in the modeling: 3D model atmospheres, MHD equations solved, NLTE effects accounted for in most cases• Improvements in the data: better selection of spectral lines. Previous sets had blended lines (e.g. oxygen line blended with nickel line)

What is good…

• Much improved modeling

• Different lines of same element give same abundance (e.g. CO and CH lines)

• Sun has now similar composition to solar neighborhood

Page 21: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

New Solar Composition 4/4

What is not so good …

Agreement between helioseismology and SSM very much degraded

Was previous agreement a coincidence?

Page 22: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model 2005Old and new metallicity

(Z/X) down from 0.0229 to 0.0165 (~30% decrease)

Main effect: radiative opacity goes down

Consequence: smaller radiative gradient 416

3

mT

PL

acGm

rad

radad

Stability criterion:

location of convective boundaries is modified

BS05(GS98) BS05(ASG05) Helioseism.

RCZ 0.713 0.728 0.713±0.001

Page 23: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model 2005Old and new metallicity

Towards the center: temperature (radiative) gradient smaller initial helium must be lower to match present day Sun SSM prediction for YSURF too low

BS05(GS98) BS05(ASG05) Helioseism.

RCZ 0.713 0.728 0.713±0.001

YSURF 0.243 0.229 0.2485 ±0.0035

Page 24: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model 2005Old and new metallicity

BS05(GS98) BS05(ASG05) Helioseism.

RCZ 0.713 0.728 0.713±0.001

YSURF 0.243 0.229 0.2485 ±0.0035

<c> 0.001 0.005 ---

<> 0.012 0.044 ---

Sound speed and density profiles are degraded

Page 25: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model 2005Old and new metallicity

Central temperature lower by 1.2% changes in neutrino fluxes

BS05(GS98) BS05(AGS05)

pp 5.99x1010 6.06x1010

pep 1.42x108 1.45x108

hep 7.93x103 8.25x103

7Be 4.84x109 4.34x109

8B 5.69x106 4.51x106

13N 3.05x108 2.00x108

15O 2.31x108 1.44x108

17F 5.84x106 3.25x106

Cl(SNU) 8.12 6.6

Ga(SNU) 126.1 118.9

SNO8B)=4.99±0.33x106 cm-2 s-1

Page 26: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model Uncertainties

• 1st approach: compute SSM varying one input at the time compute dependences of desired quantity on each input (composition, nuclear cross sections, etc.). Draw back: estimation of total uncertainty is a bit fuzzy

• 2nd approach: do a Monte Carlo simulation using a (large) bunch of SSMs where all inputs are varied randomly and simultaneously better overall estimates of uncertainties. However input uncertainties are “hard wired”. Individual contributions to total uncertainties are hidden

Page 27: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model Power law dependences

Using 1st approach, power-law dependences of fluxes are very good approximation (Bahcall & Ulrich 1988)

11ln

ln0

000

ijij

j

jii

j

j

i

iij

j

i

x

x

x

x

xd

d

ij can be calculated from (at least) 2 SSMs computed with xj+xj and xj-xj

In the more general case, if many inputs are varying

j j

j

i

i

ij

x

x

00

Page 28: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model Power law dependences

S11 S1,14 L (Z/X)

pp +0.14 -0.02 +0.73 -0.07

7Be -0.97 0.0 +3.40 +0.69

8B -2.59 +0.01 +6.76 +1.28

13N -2.53 0.85 +5.16 +1.01

15O -2.93 1.00 +5.94 +1.27

Power laws: some instructive examples

Page 29: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model Power-law dependences

• One word of warning for very interested people: flux dependences on metallicity (details in Bahcall & Serenelli 2005)

• Better treat elements individually than (Z/X) uncertainty estimations for fluxes can get smaller, specially for 8B)

• Uncertainty in Z/X dominated by C, N, O, Ne; but fluxes depend more strongly on Si, S, Fe (these have small uncertainties as abundances are determined in meteorites) smaller uncertainties in the fluxes

• Total uncertainty for 8B) goes from 23% (using total uncertainty of Z/X) to 13% using individual element uncertainties and power-law dependences

Page 30: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model Monte Carlo Simulations

2nd approach: compute a large numbers of SSM by varying individual inputs independently and simultaneously. Originally done by Bahcall & Ulrich (1988)

An update: 10000 SSMs (in 2 groups of 5000) using 21 variable input parameters: 7 cross sections, age, luminosity, diffusion velocity, 9 individual elements, EoS and opacities.Details can be found in Bahcall, Serenelli & Basu (2006)

Page 31: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model Monte Carlo Simulations

Solar abundance dichotomy two choices for central values and uncertainties• “Conservative”: 1- defined as difference between GS98 and AGS05 central values (this is very conservative)

• “Optimistic”: 1- as given by AGS05

OptimisticConservative

0.05

0.22

0.04

0.05

0.05

0.24

0.17

0.14

0.13

0.03Fe

0.08Ar

0.04S

0.02Si

0.03Mg

0.06Ne

0.05O

0.06N

0.05C

Page 32: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model Monte Carlo Simulations

Some results for helioseismology: RCZ and YSURF

Page 33: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model Monte Carlo Simulations

Some results for helioseismology: sound speed and density profiles

AGS05 - Optimistic

GS98 - Conservative

Page 34: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model Monte Carlo Simulations

Some results on neutrino fluxes: 8B) and 7Be)

Page 35: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model Monte Carlo Simulations

Some results on neutrino fluxes: pp) and pep)

Page 36: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model Monte Carlo Simulations

Some results on neutrino fluxes: other fluxes

• 13N+15O mean and most probable values from GS98 and AGS05 distributions differ by 3.5OPT and 2.6OPT respectively

• Will neutrino experiments be able to determine the metallicity in the solar interior?

GS98-Conservative• Lognormal distributions reflect adopted composition uncertainties

Page 37: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

Standard Solar Model Monte Carlo Simulations

Fluxes uncertainties

Page 38: SUSSP61: Neutrino Physics - St. Andrews, Scotland – 8 th to 23 rd, August, 2006 Standard Solar Models II Aldo Serenelli Institute for Advanced Study, Princeton.

The end.