Top Banner
Surface plasmon polaritons (SPP): Surface plasmon polaritons (SPP): an alternative to cavity QED Strong coupling to excitons & Intermediary for quantum entanglement Intermediary for quantum entanglement A Gonzalez Tudela D Martin Cano P A Huidobro A. Gonzalez-Tudela, D. Martin-Cano, P . A. Huidobro, E. Moreno, F.J. Garcia-Vidal, C.Tejedor Universidad Autonoma de Madrid Universidad Autonoma de Madrid L. Martin-Moreno I i d Ci i d M il d A Instituto de Ciencia de Materiales de Aragon CSIC
67

Surface plasmon polaritons (SPP): an alternative to cavity QED

Mar 14, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Surface plasmon polaritons (SPP): an alternative to cavity QED

Surface plasmon polaritons (SPP):Surface plasmon polaritons (SPP): an alternative to cavity QED

Strong coupling to excitons & Intermediary for quantum entanglementIntermediary for quantum entanglement

• A Gonzalez Tudela D Martin Cano P A Huidobro• A. Gonzalez-Tudela, D. Martin-Cano, P. A. Huidobro, E. Moreno, F.J. Garcia-Vidal, C.TejedorUniversidad Autonoma de MadridUniversidad Autonoma de Madrid

• L. Martin-MorenoI i d Ci i d M i l d AInstituto de Ciencia de Materiales de AragonCSIC

Page 2: Surface plasmon polaritons (SPP): an alternative to cavity QED

SPPSPPStrongStrong couplingcoupling toto excitonsexcitons & & IntermediaryIntermediary forfor quantum quantum entanglemententanglement

Outline• Introduction to surface plasmon polaritons (SPP)• Coupling of 1 quantum emitter (QE) to SPP• Collective mode (excitons) strongly coupled to SPP• Coupling & entanglement of 2 QE mediated by SPP• ConclusionConclusion

Page 3: Surface plasmon polaritons (SPP): an alternative to cavity QED

SPPSPPStrongStrong couplingcoupling toto excitonsexcitons & & IntermediaryIntermediary forfor quantum quantum entanglemententanglement

Outline• Introduction to surface plasmon polaritons (SPP)• Co pling of 1 q ant m emitter (QE) to SPP• Coupling of 1 quantum emitter (QE) to SPP• Collective mode (excitons) strongly coupled to SPP• Coupling & entanglement of 2 QE mediated by SPP• Conclusion

Page 4: Surface plasmon polaritons (SPP): an alternative to cavity QED

Intro: Surface plasmon polaritons

p

Dielectric response of a metal is governed by free electron plasma:

i

p

2: : plasma frequency

d i f tBelow its plasma frequency Below its plasma frequency (()) is negativeis negative......

ßß

i : : damping factor

ck :wavevector purely purely imaginary           photonic insulatorimaginary           photonic insulator

What is a surface plasmon polariton ?p p

Page 5: Surface plasmon polaritons (SPP): an alternative to cavity QED

Intro: Surface plasmon polaritons

p

Dielectric response of a metal is governed by free electron plasma:Dielectric response of a metal is governed by free electron plasma:

i

p

2: plasma frequency

d i f tBelow its plasma frequency Below its plasma frequency (()) is negativeis negative......

ßß

i : damping factor

ck :wavevector purely purely imaginary           photonic insulatorimaginary           photonic insulator

What is a surface plasmon polariton ?p p

Page 6: Surface plasmon polaritons (SPP): an alternative to cavity QED

Intro: Surface plasmon polaritonsElectromagnetic radiation in dielectric Å Localized Plasmons in a metal surface

ßSURFACE PLASMON POLARITONS

200nm  500nm

Page 7: Surface plasmon polaritons (SPP): an alternative to cavity QED

Intro: Surface plasmon polaritonsSPP Length Scales span photonics and nano

P t ti d thPenetration depth into metal

Penetration depth into dielectric

SPP wavelengthSPP propagation

length

δm δd λSPP δSPPNon-local

effects

SPP LRSPP

10 nm1 nm 100 nm 1 cm1 mm1 μm 100 μm10 μm 10 cm

Length scales span 7 orders of magnitude!

Page 8: Surface plasmon polaritons (SPP): an alternative to cavity QED

Intro: Surface plasmon polaritons

Roadmap for plasmonicsRoadmap for plasmonics

Page 9: Surface plasmon polaritons (SPP): an alternative to cavity QED

Intro: Surface plasmon polaritons

•Propagation length: 50-100 mm (Ag or Au) Û lifetime £ 1 psInterestingInteresting featuresfeatures of of SPPsSPPs forfor photonicphotonic circuitscircuits:

p g g m ( g ) p•Two-dimensional character of EM-fields•Optical and electrical signals carried without interference

Page 10: Surface plasmon polaritons (SPP): an alternative to cavity QED

Intro: Surface plasmon polaritons

•Propagation length: 50-100 mm (Ag or Au) Û lifetime £ 1 psInterestingInteresting featuresfeatures of of SPPsSPPs forfor photonicphotonic circuitscircuits:

p g g m ( g ) p•Two-dimensional character of EM-fields•Optical and electrical signals carried without interference

1( 10 100 ) /SPP dk m c Beyond the diffraction limit

p

1 d

Page 11: Surface plasmon polaritons (SPP): an alternative to cavity QED

Intro: Surface plasmon polaritons

•Propagation length: 50-100 mm (Ag or Au) Û lifetime £ 1 psInterestingInteresting featuresfeatures of of SPPsSPPs forfor photonicphotonic circuitscircuits:

p g g m ( g ) p•Two-dimensional character of EM-fields•Optical and electrical signals carried without interference

1( 10 100 ) /SPP dk m c Beyond the diffraction limit

p

Main problem: coupling in and out to SPPs

1 d

coupling in and out to SPPs

k k Ph t l k it ti i id th li ht3D dk k

c

Photons can only make excitations inside the light coneWhile SPP are outside the light cone

Page 12: Surface plasmon polaritons (SPP): an alternative to cavity QED

One problem: coupling light to SPPs

Page 13: Surface plasmon polaritons (SPP): an alternative to cavity QED

SPPSPPStrongStrong couplingcoupling toto excitonsexcitons & & IntermediaryIntermediary forfor quantum quantum entanglemententanglement

Outline• Introduction to surface plasmon polaritons (SPP)

• Coupling of 1 quantum emitter (QE) to SPP• Coupling of 1 quantum emitter (QE) to SPP• Collective mode (excitons) strongly coupled to SPP• Coupling & entanglement of 2 QE mediated by SPP• Conclusion

Page 14: Surface plasmon polaritons (SPP): an alternative to cavity QED

Quantization of plasmons (without losses)Q p ( )

Q i i f l i fi ld ( · )(( ) ( )) i k k zkE Quantization of an electric field ( · )

0

(( ) ( ))2

( , )

zk

i k k zk k

kE r u z e aA

r z

( , )r z1 | |ˆ ˆ( )( )

( )zk zzkk

ku z e u uikL k

( ) zikL k

( ) ( )( ) ( ) 1( )m d mdL

with

( ) ( )( ) ( ) 12 ( ) | ( ) |

( )m d mm d

d m

Ldk

†( )H k a aeffective length to normalize the energy of each mode,

†( )EM k k kH k a a

Page 15: Surface plasmon polaritons (SPP): an alternative to cavity QED

Quantization of modes in a medium with dissipation

“Quantum Optics “ Vogel & Welsch (Wiley 2006)

Noise Polarization associated with absorption ,NP r t

0( , ) Im , ( , )NP r i r f r

2

2( , ) ' Im , , ', ( , )E r i d r r G r rc

f r

0

0( , ) ( , )

c

d rH f r f rd

Hereafter, everything is similar to the non-dissipation case ith b i fi ld l i th l f( )f with are bosonic fields playing the role of ( , )f r ka

Page 16: Surface plasmon polaritons (SPP): an alternative to cavity QED

Interaction of 1 quantum emitter (QE) with SPP†

0QEH

z( )· ( )U dr r E r

Interaction with a dipole

( )· ( )U dr r E r

0 0( · ( ) ) † ( · ( ) ) †( ; )( ) ( )( )

k

i t i ti k r k t i k r k tint k k

g k zH t a e a e e e

A

A

( ) | |ˆ ˆ( ; ) · ( ) ·( )2 ( )

zk zzkk k

k kg k z E u z e u ukL k

2 3 3

0 0 03 /c

02 ( ) kk kzkL k decay rate

of bare QE

Page 17: Surface plasmon polaritons (SPP): an alternative to cavity QED

Interaction of 1 quantum emitter (QE) with SPP†

0QEH

z( )· ( )U dr r E r

Interaction with a dipole

( )· ( )U dr r E r

0 0( · ( ) ) † ( · ( ) ) †( ; )( ) ( )( )

k

i t i ti k r k t i k r k tint k k

g k zH t a e a e e e

A

A

( ) | |ˆ ˆ( ; ) · ( ) ·( )2 ( )

zk zzkk k

k kg k z E u z e u ukL k

2 3 3

0 0 03 /c

02 ( ) kk kzkL k

I RWA † · † ·( ; ) ( )i k r ik rg k zH

decay rate

of bare QEIn RWA † †( ) ( )i k r ik r

int k k k

gH a e a e

A

Page 18: Surface plasmon polaritons (SPP): an alternative to cavity QED

Interaction of 1 quantum emitter (QE) with SPP† , 0 One QE with w0 only couples to a

bright SPP º symmetric linear

z

bright SPP º symmetric linear comb. (J0 Bessel funct.) of all themodes with

0; SPPk k

The higher coupling does notcoincide with the higher b-factor

plradiation to plasmonstotal radiation

Page 19: Surface plasmon polaritons (SPP): an alternative to cavity QED

Scheme of the quantum dynamics of an open system

gm

Solving TOTTOT TOTi H

t

is complicated and unnecessaryt

Page 20: Surface plasmon polaritons (SPP): an alternative to cavity QED

Scheme of the quantum dynamics of an open systemIsolated system Open systemIsolated system Open system

γ0

gm g

γSPP=vg/LSPP

gm gm

γ g SPP

Solving TOTTOT TOTi H

Solving

is complicated and unnecessary

Tracing out the reservoir’s

TOT TOTt

Tracing out the reservoir s

degrees of freedom

Page 21: Surface plasmon polaritons (SPP): an alternative to cavity QED

Scheme of the quantum dynamics of an open systemIsolated system Open systemIsolated system Open system

γ0

gmgm

Solving TOTTOT TOTi H

Solving

is complicated and unnecessaryWhen dissipation at the metal is very high,

TOT TOTt

When dissipation at the metal is very high, tracing out ONLY the vacuum’s degrees of

freedom

Page 22: Surface plasmon polaritons (SPP): an alternative to cavity QED

Dynamics of the QE population: Weisskopf-Wignert

0 0

0

[ ( )] ( )2

0

( ; ) ( ) ( ) / 2

( ; ) | ( ; ) | ( ; )

( (0) 1) ;

ci k i

K t z c d c t

K z g k z e d J z e

cc t

0

2

0 022

( ; ) | ( ; ) | ( ; )

1 ˆ( ; ) Im[ ( , , )] ( ) ( )[ ]k

K z g k z e d J z e

J z G r rc

g

0 c

•For a single QE with w 0 around the cut-off, spectral density (J) has a non lorentzian shape Þ different dynamicsp ythat a pseudomode (cavity QED) !•Non-markovian noise•Height/width ratio of J determines/allowsHeight/width ratio of J determines/allowssome (fast & local) reversibility !

Page 23: Surface plasmon polaritons (SPP): an alternative to cavity QED

SPPSPPStrongStrong couplingcoupling toto excitonsexcitons & & IntermediaryIntermediary forfor quantum quantum entanglemententanglementgg p gp g yy qq gg

Outline• Introduction to surface plasmon polaritons (SPP)• Coupling of 1 quantum emitter (QE) to SPPp g q ( )

• Collective mode (excitons) strongly coupled to SPP• Coupling & entanglement of 2 QE mediated by SPP• Conclusion

Page 24: Surface plasmon polaritons (SPP): an alternative to cavity QED

Exciton collective mode of emitters in a plane

More complicated system:

†,ij ij

emitters in a plane Dynamics described bymaster eq. for density matrix

& quantum regression th

zj0

ij ij

† †(k)

sNN H a aH

& quantum regression th.

0 , ,1

0 (k) i jpl k ki ji k

H a aH

· ·† †( ; )( )N

Ns ik r ik rj i iHg k z

a e a e

, ,1

( )Nint

i iH i j i jk kik

a e a eA

( ) | |ˆ( ; ) ·2 ( )

( )z jk zj zk

k kg k z e u ukL k

0

( )2 ( )

( )j zkz

gkL k

No fitting !!!

Page 25: Surface plasmon polaritons (SPP): an alternative to cavity QED

Exciton collective mode of emitters in a plane

More complicated system:

†,ij ij

emitters in a plane Dynamics described bymaster eq. for density matrix

& quantum regression th

zj0

ij ij

& quantum regression th.

† †(k)sN

N H a aH

· ·† †( ; )( )N

Ns ik r ik rj i iHg k z

a e a e

0 , ,1

0 (k) i jpl k ki ji k

H a aH

, ,1

( )Nint

i iH i j i jk kik

a e a eA

Holstein-Primakoff transf.(low excitation Þ no saturation) ( ) | |ˆ ˆ( ; ) ·

2 ( )( )z jk z

j zk

k kg k z e u ukL k

† † †1 ·i j i j i j i j i jb b b b

& Collective bosonic modeß

0

( )2 ( )

( )j zkz

gkL k

No fitting !!!

·† †

, , ,

,1

, ,

1( )

1s

i

Ni

i j i j i

q

j i j i j

Rj i j

is

D q b eN

b b b b

† * †

1,

( ; )( )· ( ) ( )· ( )

1

( )sNj s

int i j i jk kik q s

N

g k z nH S k q ra D q S k q ra D q

N

† †,

·,

1iiq R

i j j qqs

b D eN

·

1

1( )s

i

Nik r

is

S k eN

Structure factor

Page 26: Surface plasmon polaritons (SPP): an alternative to cavity QED

Experimental evidence of t li fstrong coupling of SPP & excitonsQE are not just in a plane

Ensembles of organic molecules• J. Bellessa, et al, Phys. Rev. Lett. 93, 036404 (2004).• J. Dintinger, et al, Phys. Rev. B 71, 035424 (2005).

k l l h ( )• T. K. Hakala, et al, Phys. Rev. Lett. 103, 053602 (2009).• P. Vasa, et al, Nano Lett. 12, 7559 (2010).• T. Schwartz, et al, Phys. Rev. Lett. 106, 196405 (2011).

Semicond. nanocrystals & Quantum wells  • P. Vasa, et al., Phys. Rev. Lett. 101, 116801 (2008).

ll l h 8 (2008)D=110meV

• J. Bellessa, et al, Phys. Rev. B 78 (2008).• D. E. Gomez, et al, Nano Lett. 10, 274 (2010).• M. Geiser, et al, Phys. Rev. Lett. 108, 106402 (2012).

Page 27: Surface plasmon polaritons (SPP): an alternative to cavity QED

Excitonic collective modein the volume of width W

( ; )jg k z

Coupling depends on distance zj

More complicated collective mode

Average of randomorientations

For many QE with disorder momentum is conserved,0( ) kS k q

† †( ; ) ( ) ( )( )LN

H g k z n a D k a D k

int1

†† †

( ; ) ( ) ( )

; [ ( ), ( )]1( ) ( ; ) ( )

( )L

j s j jk kjk

i j ij

N

j jND k g k z D k

H g k z n a D k a D k

D k D k

2 2

1; [ ( ), ( )]

( ) | ( , ) | d | ( , ) |

( ) ( ; ) ( )( )

L

i j ij

N sNj

j jNj

g

g k g k z n z g k z

g k

No fitting !1

† †0

( ) | ( , ) | | ( , ) |

( ) ( ) ( ) ( ) ( )

j sj

N Nk k

g g g

H D k D k a k a k g k

† †( ( ) ( ) ( ) ( ))a k D k a k D k

g

Decay of the collective mode 22 d ( ) | ( , ) |

| ( ) |k

s ND N s

n z z g k zg k

Page 28: Surface plasmon polaritons (SPP): an alternative to cavity QED

Dynamics under coherenti f S ipumping of a SPP with k-vector

Average of random orientations

CoherentCoherentpumping

(classical field) Reservoirs

Page 29: Surface plasmon polaritons (SPP): an alternative to cavity QED

Dynamics under coherenti f S ipumping of a SPP with k-vector

† † † †0

( ) ( ) ( ) ( ) ( )( ( ) ( ) ( ) ( ))

( ) ( )L L

N Nk k

i t i tL

H D k D k a k a k g k a k D k a k D k

H t

[ ]

( ) ( )

k

L

k

L

D aN L

i t i tLk k k kH t a e a e

i H H

†[ , ]2 2 2k kk k

D ak k k k D Di H H

Excitondecay

Plasmondecay

Pure dephasing(vibro-rotation)

† † †(2 )c c c c c c c decay decay (vibro rotation)

Page 30: Surface plasmon polaritons (SPP): an alternative to cavity QED

Dynamics under coherenti f S ipumping of a SPP with k-vector

† † † †0

( ) ( ) ( ) ( ) ( )( ( ) ( ) ( ) ( ))

( ) ( )L L

N Nk k

i t i tL

H D k D k a k a k g k a k D k a k D k

H t

[ ]

( ) ( )

k

L

k

L

D aN L

i t i tLk k k kH t a e a e

i H H

†[ , ]2 2 2k kk k

D ak k k k D Di H H

Excitondecay

Plasmondecay

Pure dephasing(vibro-rotation)

At the crossing (k0) between exciton and SPP,† † †(2 )c c c c c c c

decay decay (vibro rotation)

Rabi splitting is analytical

22 2[ ( )] ( ) / [ ( )]4N NR k i h k

0 0

220 0

2[ ( )] ( ) / [ ( )]4k k

ND a

NR g k with g k n

Page 31: Surface plasmon polaritons (SPP): an alternative to cavity QED

Strong coupling betweenSPP & excitons

0 0.1meV

N d d W

2 2 22isog g g

•gN depends on W with saturationdue to SPP z-decay

•gN practically independ. on sg p y p

gs i (s=1)

0 1 Ng

gs,iso(s=1)

gspp

6 3

0.1

10k g

n m

0 2eV

Page 32: Surface plasmon polaritons (SPP): an alternative to cavity QED

Strong coupling betweenSPP & i

1 ; 500N

s nm W nm SPP & excitons

0

0

(40 )2 ; 0.1

0.1 ; 0.1 ( )

Nk

N

meVeV g

meV g RT

Polariton populations µ absorption spect.

6 310 6 310n m

Page 33: Surface plasmon polaritons (SPP): an alternative to cavity QED

Strong coupling betweenSPP & i

1 ; 500N

s nm W nm SPP & excitons

0

0

(40 )2 ; 0.1

0.1 ; 0.1 ( )

Nk

N

meVeV g

meV g RT

Rabi splitting (at k0)

220

20 ;[ ( )] ( [ ( )]) / 4N

DNg kR k ng

Polariton populations µ absorption spect.0 0

00 ;[ ( )] ( [ ( )]) / 4k kD a g kR k ng

Weak Strong6 310

coupling coupling6 310n m

At RT, the incoherent processes (gf ) determine a critical density for observing strong coupling

Page 34: Surface plasmon polaritons (SPP): an alternative to cavity QED

Strong coupling between SPP & excitons:comparison with experimentscomparison with experiments

Our theoryExperimentHakala et al. PRL, 103, 053602 (09)

8 350 ; 1 2 10 ; 1W nm n m Ve 0

40 , 18

50 ; 1.2 10 ; 1

0 , 100isoth th thR

W nm n m

meV R meV R me

V

V

e

exp 115R meV

Page 35: Surface plasmon polaritons (SPP): an alternative to cavity QED

Quantum effects? : (Semi)-classical description

20

2 20

1 2 / 3/ ;1 1/ 3

Nf e mi N

Polarizability of 1 emitter

Eff. dielectricfunct of emitters 0 1 1/ 3i N 1 emitter funct. of emitters

e5 =1T@0 3

20 00 02 2 2

2 23m cmf

Oscillator strength

e t l

e(w)e3 =1

SPP

Absorbances

W

d

2 2 203e e from microsocpic info.

emetal

e1 1 R

AbsorbanceA=1-R-T

d

k

e1=3; d=50nm; s=1nm; W=500nm

ω0=2eV; N=106 μm-3

γ =γ0 +γdeph ; γ 0 =0.1meV; γdeph=40meV

Page 36: Surface plasmon polaritons (SPP): an alternative to cavity QED

Quantum effects: 1st & 2nd order coherences1 detector

Young’s interfer. exp.1 detector

Light source Two-slit

(1) ( ) ( )( ,0) ( ) ( ) ( )g t E t E t I tTwo slit

Amplitude interference pattern: the Fouriertransform is the spectrum

g(1) does not distinguish between classical & quantum light

Hanbury-Brown Twiss exp. 2 detectors

(2) ( ) ( ) ( ) ( )( , ) ( ) ( ) ( ) ( )( ) ( )

g t E t E t E t E tI t I t ( ) ( )

Intensity-intensity correlations

Page 37: Surface plasmon polaritons (SPP): an alternative to cavity QED

Quantum effects: 1st & 2nd order coherences

(1) ( ) ( )( , ) ( ) ( )g t E t E t ( ) ( )

0

1, , , iS r d E r t E r t e

Spectrum (g(1)) Amplitude interf. 1 measurementIt does not distinguish between classical & quantum waves

(2) ( ) ( ) ( ) ( )( , ) ( ) ( ) ( ) ( ) ( ) ( )g t E t E t E t E t I t I t

I i i l i ( (2)) 2Intensity-int. correlations (g(2)) 2 measurements

Classical: First detection does not affect second detection

Quantum: First detection affects second detection

classical fields (1< g (2) <)g (2) can distinguish0

1 classical fields (1< g ( ) <)

quantum fields (0<g (2)<)

g (2) can distinguishbetween q ( g )

(Better to measure Bell’s inequalities)

Page 38: Surface plasmon polaritons (SPP): an alternative to cavity QED

Quantum effects: g(2) (0) in different regimes

BOSONS FERMIONS2Thermal (gaussian)

mixture

P i di ib i

mixture/2Laser threshold

1Poisson distribution (Coherent sts.)

Poisson distribution (Coherent sts.)

Sub-poissonian distr. 0

non-classical sts. Chaotic

For a number (N) stFor a number (N) st., g(2) (=0) = 1-1/N

Page 39: Surface plasmon polaritons (SPP): an alternative to cavity QED

Quantum effects in the coupling between SPP & excitons

Quantum effects appear whennon-linear effects are important:Holstein-Primakoff up to 2nd order Mandel paramp

† †, , , , , , ,1 · (1 / 2)i j i j i j i j i j i j i jb b b b b b

0

Mandel param.

† † †0 0 0

s sL LN NN NN

i j i j i j i j i j i jH b b b b b b

Free energy part of the Hamilt. Coherent pumping of plasmons & 0

0 0 , , 0 , , , ,1 1 1 1

i j i j i j i j i j i jj i j i

H b b b b b b

In the quasi-2D limit & usingTh ll ti t

(2) (0) 1g (2) (0) 1g

† †

, ,nl k q k q k k

k k qDH D D D DU

The collective operators:

† †( )( )( ) ( )D t D D t D t

0DU

N

† †(2)

† 2

( )( )( ) ( )( ) lim

( )k k k k

tk k

D t D D t D tg

D D t

Page 40: Surface plasmon polaritons (SPP): an alternative to cavity QED

SPPSPPStrongStrong couplingcoupling toto excitonsexcitons & & IntermediaryIntermediary forfor quantum quantum entanglemententanglement

Outline• Introduction to surface plasmon polaritons (SPP)• Coupling of 1 quantum emitter (QE) to SPPp g q ( )• Collective mode (excitons) strongly coupled to SPP

• Coupling & entanglement of 2 QE mediated by SPP• Conclusion

Page 41: Surface plasmon polaritons (SPP): an alternative to cavity QED

QE-QE coupling mediated by plasmonic waveguidesQ Q p g y p g

Cilindrical wire WaveguideV-Channel W vegu deto reinforce

QE-QE effects

Fields are stronger in the channelthan in the cilinderthan in the cilinder

Page 42: Surface plasmon polaritons (SPP): an alternative to cavity QED

1QE: b and Purcell factors

Metallic nanostructures increase the emission from a QE (Purcell) but,

I i l h i i f SPP’ ??? (b)

; pltotal radiation radiation to plasmonsPurcell factor factorQE di i l di i

Is it always a coherent emission of SPP’s??? (b)

0

;f fQE radiation to vacuum total radiation

The channel is more convenient than the cilinder

Page 43: Surface plasmon polaritons (SPP): an alternative to cavity QED

b and Purcell factorsh=20nm

b- factor is very stable in a broad range of dipoleorientations while Purcellf t d i ifi tl

h=150nmfactor decreases significantlywhen the dipole is notproperly orientedproperly oriented

Page 44: Surface plasmon polaritons (SPP): an alternative to cavity QED

Dispersion & b factor for V-channel

h=140nmV‐angle= 20 degrees

b factorb-factor

Page 45: Surface plasmon polaritons (SPP): an alternative to cavity QED

Two QE’s dynamicsyAll the degrees of freedom (SPP, dissipation, radiation) can be traced outproducing effective coherent & incoherent interactions between the twoproducing effective coherent & incoherent interactions between the twoQE’s that can be computed from the classical Green’s function:

3 † †ˆ ˆ ˆˆ ˆ( ) ( ) [ ( ) ]H d d d h

d E 3 †00 0

1 2 1 2

, ,( , ) ( , ) [ ( , ) . .]i i i i

i iH d d a d ha c

r r r ω d E r

23ˆ ( ) ( ) ( ) ( )i d E r r r G r r ω r 3

20

( , ) ( , ) ( , , ) ( , )ii d ac

E r r r G r r ω r

† † †ˆ 1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ[ ] ( 2 )i H H σ σ σ σ σ σ

,

[ , ] ( 2 )2s ij i j i j jL i

i j

H Ht

σ σ σ σ σ σ

0† †ˆ ˆ ˆ ˆ ˆ( )s i i i ij i jH g † .ˆ .1ˆ L

i ii t

L e h cH 0( )s i i i ij i ji i j

g

2 i ii

L 2

*00

2 ( , , )ij i i j jIm d G r r d2

*00( , , )ij i i j jg Re d G r r d 02

0

( , , )ij i i j jImc

d G r r d02

0

( , , )ij i i j jg Rec

d G r r d

Page 46: Surface plasmon polaritons (SPP): an alternative to cavity QED

Scheme of levelse

gQE

1 2 1 2 1 2 1 213 0 ( )e e g g g e e g

g

1 2 1 2 1 2 1 23 0 ( )2

e e g g g e e g

Modulation of g12 would allow to swicth on/off red and blue paths

Page 47: Surface plasmon polaritons (SPP): an alternative to cavity QED

Two QE’s dynamicsIt is possible to identify the effects of SPP & dissipationSPP Green’s function t t t t( ) ( )i E r E r

y

SPP Green s functionß

Effective interactionCoherent

( )t *t

0

( ) ( )( , )2 ( )

ik zS

zP

zP

S

i edS

E r E rG r ru E H

/2 sin( )dg g e k d † †( ) ( )J h Coherent

Incoherent

,pl r

/2,pl r

sin( )2

cos( )

ij ij

dij ij

g g e k d

e k d

0 1 2

† †1,2 1 2 2 1

( )01,2

( ) ( ) . .( )2

iq x x

J h cJJ e

p/2 shift allows switching on/off

2

•Coherent versus incoherent interactions•Control of different decay paths

Page 48: Surface plasmon polaritons (SPP): an alternative to cavity QED

Two QE’s dynamicsIt is possible to identify the effects of SPP & dissipationSPP Green’s function t t t t( ) ( )i E r E r

y

SPP Green s functionß

Effective interactionCoherent

( )t *t

0

( ) ( )( , )2 ( )

ik zS

zP

zP

S

i edS

E r E rG r ru E H

/2 sin( )dg g e k d † †( ) ( )J h Coherent

Incoherent

,pl r

/2,pl r

sin( )2

cos( )

ij ij

dij ij

g g e k d

e k d

0 1 2

† †1,2 1 2 2 1

( )01,2

( ) ( ) . .( )2

iq x x

J h cJJ e

p/2 shift allows switching on/off ˆ ˆ ˆ ˆ[ , ]s L

i H Ht

2

•Coherent versus incoherent interactions•Control of different decay paths† † †

,

1 ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( 2 )2 ij i j i j j i

i j

t

σ σ σ σ σ σ

0† †ˆ ˆ ˆ ˆ ˆ( )s i i i ij i j

i i jH g

† .ˆ .1ˆ Li i

i tL e h cH . .

2 i ii

L e h cH

For inequivalent dipoles/2

,pl rcos( )dij ii jj i j e k d

Page 49: Surface plasmon polaritons (SPP): an alternative to cavity QED

Coherent (gij) & incoherent (gij) ff ti li b t QE’effective couplings between QE’s

Incoherent coupling much more important than the coherent onepbecause it switchs on/off each decaypath with respect to the other

12

Page 50: Surface plasmon polaritons (SPP): an alternative to cavity QED

Entanglement measuregConcurrence

Complex definition

What we need to know: for pure states

Wooters, PRL 80, (1988)

Separable states (e.g. ) =>Entangled states (e.g. ) =>

p

Entangled states (e.g. )

Page 51: Surface plasmon polaritons (SPP): an alternative to cavity QED

Entanglement measuregConcurrence

Complex definitionWooters, PRL 80, (1988)

What we need to know: for pure statesSeparable states (e.g. ) =>Entangled states (e.g. ) =>

p

Entangled states (e.g. )

Ûmaximally entangledmixed statesFor mixed states:

Concurrence -

24 13LS Tr

Linear entropy diagram

3

Page 52: Surface plasmon polaritons (SPP): an alternative to cavity QED

Spontaneous decay of a single excitationConcurrence becomes:

pl /(2 )2 2( ) [ ( ) ( )] 4 [ ( )] i h[ ]tC I

1 21( 0) 1 ( )2

t e g

pl /(2 )2 2( ) [ ( ) ( )] 4 [ ( )] sinh[ ]tC t t t Im t e e t

C

C

Page 53: Surface plasmon polaritons (SPP): an alternative to cavity QED

Stationary entanglementy g(in the previous viewgraph) Spontaneous decay mediated by plasmonsproduces finite-time entanglement starting from an unentangled stateproduces finite-time entanglement starting from an unentangled state

1 21( 0) 1 ( )2

t e g

But one wants both to obtain and manipulatestationary entanglement.stationary entanglement. This can be done by means of lasers:

In the coherent part of theIn the coherent part of themaster equation

Page 54: Surface plasmon polaritons (SPP): an alternative to cavity QED

Stationary entanglementy g

2 d 12 cos 2

pl

d 12 sin 2

pl

dg

Page 55: Surface plasmon polaritons (SPP): an alternative to cavity QED

Stationary entanglementy g

12 cos 2

pl

d

12 sin 2pl

dg

Page 56: Surface plasmon polaritons (SPP): an alternative to cavity QED

Stationary entanglementy g

12 cos 2pl

d

d 12 sin 2

pl

dg

Page 57: Surface plasmon polaritons (SPP): an alternative to cavity QED

How is stationary entanglement generated?

y g g

12 cos 2pl

d

12 12 12

12 12

Page 58: Surface plasmon polaritons (SPP): an alternative to cavity QED

How is stationary entanglement generated?

y g g

12 cos 2pl

d

12 12

12 12

Page 59: Surface plasmon polaritons (SPP): an alternative to cavity QED

How is stationary entanglement generated?

y g g

12 cos 2pl

d

12

12

12 12

Page 60: Surface plasmon polaritons (SPP): an alternative to cavity QED

Stationary state concurrence

Stationary state tomographyStationary state tomographyStationary

density matrixdensity matrix

1 20.15 , 0

Page 61: Surface plasmon polaritons (SPP): an alternative to cavity QED

How to measure stationary concurrence: QE QE l tiQE-QE correlation

1 2 0.1

Second order cross-coherence

† †(2) 1 2 2 1g

between the two QE’s

12 † †1 1 2 2

g

1 2 0.1

1 20.15 , 0 1 2,

b=1 V‐channel b=0.9

Cylinder b=0.6

Page 62: Surface plasmon polaritons (SPP): an alternative to cavity QED

Effect of pure dephasing

[ ] † †

deph ˆ ˆˆ ˆ ˆ ˆ[ ] [ , ],2

[ ]i i i ii

Pure dephasing reduces, but not critically, bothcorrelations & concurrence

Page 63: Surface plasmon polaritons (SPP): an alternative to cavity QED

PurityConcurrence - Linear entropy diagram 24 1

3LS Tr

Ûmaximally entangledmixed states

Still room fori !

b=0.94L=2mmd/lSPP=0.5-1.5

improvement! SPPW1=0.15g ; W2=0W1=W2=0.1gW1=-W2=0.1gW1 W2 0.1g

Page 64: Surface plasmon polaritons (SPP): an alternative to cavity QED

SPPSPPStrongStrong couplingcoupling toto excitonsexcitons & & IntermediaryIntermediary forfor quantum quantum entanglemententanglement

Outline• Introduction to surface plasmon polaritons (SPP)• Coupling of 1 quantum emitter (QE) to SPPp g q ( )• Collective mode (excitons) strongly coupled to SPP• Coupling & entanglement of 2 QE mediated by SPP

C i• Conclusion

Page 65: Surface plasmon polaritons (SPP): an alternative to cavity QED

ConclusionConclusion:: Plasmon-polaritons share many properties& capabilities with cavity exciton polaritons (Cav QED)& capabilities with cavity exciton-polaritons (Cav-QED).

Page 66: Surface plasmon polaritons (SPP): an alternative to cavity QED

ConclusionConclusion:: Plasmon-polaritons share many properties& capabilities with cavity exciton polaritons (Cav QED)

SPP

& capabilities with cavity exciton-polaritons (Cav-QED).

Strong coupling to excitons & Intermediary for quantum entanglement

A. Gonzalez‐Tudela et al,  A. Gonzalez‐Tudela et al,    ,Phys. Rev. Lett.  106 , 020501(2011)

,Phys. Rev. Lett.  110 , 126891 (2013)

D. Martin‐Cano, et al, Phys. Rev. B 84, 235306 (2011)

Page 67: Surface plasmon polaritons (SPP): an alternative to cavity QED

ConclusionConclusion:: Plasmon-polaritons share many properties& capabilities with cavity exciton polaritons (Cav QED)

SPP

& capabilities with cavity exciton-polaritons (Cav-QED).

Strong coupling to excitons & Intermediary for quantum entanglement

A. Gonzalez‐Tudela et al,  A. Gonzalez‐Tudela et al,    ,Phys. Rev. Lett.  106 , 020501(2011)

,Phys. Rev. Lett.  110 , 126891 (2013)

D. Martin‐Cano, et al, Phys. Rev. B 84, 235306 (2011)

Thanks for your attention